SPR Day 08

Bayesian Linear Regression: Prediction and Model Selection

Readings & Bishop PRML Sec 3.3.1-3.3.2

Predictive
distribution

Sec. 3.4

Model
comparison

Sec 3.5

Evidence

Outline: (1) Posterior predictive

- (2) Evidence: A measure of model quality
- (3) Model se lection methods
 Fixed Validation/Cross Validation/Evidence
- (4) Estimating hyperparameters & and B

(1) Posteriar predictive for Linear Regression Recall our model: Prior: $p(w|x) = N(w|0, x^{-1}I)$ Likelihood: $p(t|w,\beta) = M(t_n|w^T\phi(x_n),\beta^{-1})$ id assumption says if we saw a new observation. $p(t_*, t_*|w, \beta) = p(t_*|w, \beta) p(t_*|w, \beta)$ saw a new observation of the say, then Then by linear-Gaussian rules? Joint distribution p (tin, w | x, B) is Gaussian P(tx, tin, W &, B) is Gaussian Expanded Joint distribution P(tx, tin x, B) is Gaussian Marginel of above Conditional of above P(tx | tin, x, B) is Gaussian

Formulas for Predictive Posterior

$$p(t_{*}|t_{1:N},\alpha,3) = N(t_{*}|M_{N}\phi(x_{*}),\frac{1}{\beta}+\phi(x_{*})S_{N}\phi(x_{*}))$$
shape

where M_N (M,1) is posterior mean vector $T_N^2(x_*)$ $S_N (M,M) is posterior covariance matrix$ $\phi(x_*) (M,1) is feature vector at test point <math>x_*$ $\beta (1,1) is scalar likelihood precision$

Useful Properties

- · Average over many weights w, de not commit to a point estimate
- Variance may change with location of prediction xx.
 Will always be at least to, can be larger.
- Variance $T_N^2(x_{\pm})$ cannot increase as more data seen. In HWZ we'll prove $T_N^2(x_{\pm}) \leq T_N^2(x_{\pm})$

(2) Evidence calculation

Following textbook Equs 3.77 - 3.85, we can

(1) sub in Gaussian PDF for both likelihood and prior

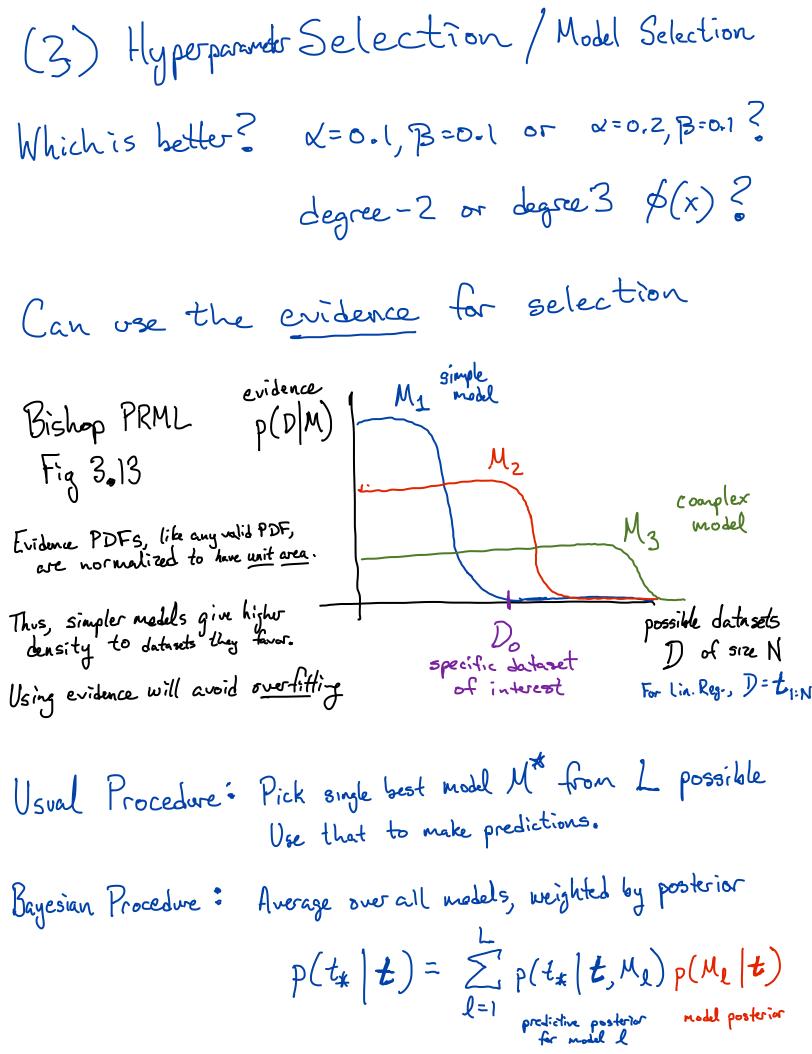
(2) bring constants ortside integral, completing the squre

(3) recongiains the remaining form is

$$\int \exp \left\{ E(m_N) + \frac{1}{2} (\omega - m_N)^T S_N (\omega - m_N) \right\} d\omega$$

$$= e^{E(m_N)} \frac{1}{C(m_N, S_N)}$$
of MV Gaussian

Thus, the log of evidence PDF is a prior tike norm log
$$P(t|x, \beta) = \frac{M}{2} |\log x + \frac{N}{2} |\log \beta|$$
 constants $-\frac{B}{2} ||t - \overline{T}m_N||^2 - \frac{\alpha}{2} ||m_N||^2 > E(m_N)$ Remember: $||a||^2 = a^T a = \frac{\overline{L}}{2} a a^2$ $+ \frac{1}{2} \log(\det S_N) - \frac{N}{2} \log(2\pi) > c(m_N s_N)$



Comparison of Methods for

Hyperparameter Selection

51	Evidence	Heldout likelihood	Heldout likelihood	function
				Fitness
Lower is better Faster evaluation	1 run	K runs N	1 run fN	examples seen for evaluation of fitness
				Total runs/
Lower is better Faster training	1 run N	K runs (K-1) * N	1 run (1 – f) N	Total runs/ examples seen for training
Higher is better Better use of training data	1.0	(K-1) / K	(1.0 – f)	Fraction data used for training run
	Bayesian evidence	K-fold cross-validation	Fixed valid. set (fraction f)	

Hyperparameter estimation Want to know good values for &, B. given diteset. 2, B = argmax logp(+ | x, B) This is "empirical Bayesian" point estimation, or Type 2- maximum likelihood. Can be solved viz :
1) enumeration via grid search 2) gradient descent 3) coordinate descent (see E-M algorithm) later in Unit 3) 4) analytical estimates (see PRML 3.92-3.95) Guess do Bo. While not conveyed: NOT CONVEYED $\lambda \leftarrow \text{Eigen Values}(\beta_t \Phi^T \Phi) \qquad \chi_{t+1} \leftarrow \frac{\chi}{M_N T_M N}$ $\chi \leftarrow \sum_{n=1}^M \frac{\lambda_n}{\alpha_t + \lambda_m}$ $M_N \leftarrow \text{Posterior-Mean}(\alpha_t, \beta_t, \Phi, \pm) \qquad \beta_{t+1} \leftarrow \frac{1}{N-\chi} \sum_{n=1}^N (t_n - m_n^T \phi(x))$