Motivation

- Commonly-used programming languages are large and complex
 - ANSI C99 standard: 538 pages
 - ANSI C++ standard: 714 pages
 - Java language specification 2.0: 505 pages

- Not good vehicles for understanding language features or explaining program analysis
Develop a “core language” that has

- The essential features
- No overlapping constructs
- And none of the cruft
 - Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

Lambda calculus

- Standard core language for single-threaded procedural programming
- Often with added features (e.g., state); we’ll see that later
Origins of Lambda Calculus

• Invented in 1936 by Alonzo Church (1903-1995)
 - Princeton Mathematician
 - Lectures of lambda calculus published in 1941
 - Also know for
 - Church’s Thesis
 - All effective computation is expressed by recursive (decidable) functions, i.e., in the lambda calculus
 - Church’s Theorem
 - First order logic is undecidable
Lambda Calculus

• Syntax:

\[e ::= x \quad \text{variable} \]
\[| \quad \lambda x.e \quad \text{function abstraction} \]
\[| \quad e\ e \quad \text{function application} \]

• Only constructs in pure lambda calculus
 - Functions take functions as arguments and return functions as results
 - I.e., the lambda calculus supports *higher-order functions*
Semantics

• To evaluate \((\lambda x.e_1) e_2\)
 - Bind \(x\) to \(e_2\)
 - Evaluate \(e_1\)
 - Return the result of the evaluation

• This is called “beta-reduction”
 - \((\lambda x.e_1) e_2 \rightarrow_\beta e_1[e_2/x]\)
 - \((\lambda x.e_1) e_2\) is called a redex
 - We’ll usually omit the beta
Three Conveniences

• Syntactic sugar for local declarations
 • let x = e1 in e2 is short for (\lambda x.e2) e1

• Scope of \lambda extends as far to the right as possible
 • \lambda x.\lambda y.x y is \lambda x.(\lambda y.(x y))

• Function application is left-associative
 • x y z is (x y) z
Scoping and Parameter Passing

• Beta-reduction is not yet precise
 ▪ \((\lambda x. e_1) \ e_2 \rightarrow e_1[e_2/x]\)
 ▪ what if there are multiple \(x\)'s?

• Example:
 ▪ \(\text{let } x = a \text{ in}\)
 ▪ \(\text{let } y = \lambda z. x \text{ in}\)
 ▪ \(\text{let } x = b \text{ in } y \ x\)
 ▪ which \(x\)'s are bound to \(a\), and which to \(b\)?
Static (Lexical) Scope

• Just like most languages, a variable refers to the closest definition

• Make this precise using variable renaming
 - The term
 - let x = a in let y = λz.x in let x = b in y x
 - is “the same” as
 - let x = a in let y = λz.x in let w = b in y w
 - Variable names don’t matter
Free Variables and Alpha Conversion

• The set of *free variables* of a term is

\[
\begin{align*}
\text{FV}(x) &= \{x\} \\
\text{FV}(\lambda x. e) &= \text{FV}(e) - \{x\} \\
\text{FV}(e_1 e_2) &= \text{FV}(e_1) \cup \text{FV}(e_2)
\end{align*}
\]

• A term \(e \) is *closed* if \(\text{FV}(e) = \emptyset \)

• A variable that is not free is *bound*
Alpha Conversion

• Terms are equivalent up to renaming of bound variables
 ▪ $\lambda x.e = \lambda y.(e[y/x])$ if $y \notin FV(e)$

• This is often called *alpha conversion*, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution
Substitution

• Formal definition:
 - $x[e/x] = e$
 - $z[e/x] = z$ if $z \neq x$
 - $(e_1 \cdot e_2)[e/x] = (e_1[e/x] \cdot e_2[e/x])$
 - $(\lambda z. e_1)[e/x] = \lambda z.(e_1[e/x])$ if $z \neq x$ and $z \notin \text{FV}(e)$

• Example:
 - $(\lambda x. y \ x) \ x =_\alpha (\lambda w. y \ w) \ x \rightarrow_\beta y \ x$
 - (We won’t write alpha conversion down in the future)
A Note on Substitutions

• People write substitution many different ways
 ▪ $e_1[e_2/x]$
 ▪ $e_1[x \mapsto e_2]$
 ▪ $[x/e_2]e_1$
 ▪ and more...

• But they all mean the same thing
Multi-Argument Functions

• We can’t (yet) write multi-argument functions
 ▪ E.g., a function of two arguments $\lambda(x, y).e$

• Trick: Take arguments one at a time
 ▪ $\lambda x.\lambda y.e$
 ▪ This is a function that, given argument x, returns a function that, given argument y, returns e
 ▪ $(\lambda x.\lambda y.e)\ a\ b \rightarrow (\lambda y.e[a\ x])\ b \rightarrow e[a\ x][b\ y]$

• This is often called Currying and can be used to represent functions with any # of arguments
Booleans

• true = λx.λy.x
• false = λx.λy.y
• if a then b else c = a b c

• Example:
 ▪ if true then b else c → (λx.λy.x) b c → (λy.b) c → b
 ▪ if false then b else c → (λx.λy.y) b c → (λy.y) c → c
Combinators

- Any closed term is also called a *combinator*
 - So *true* and *false* are both combinators

- Other popular combinators
 - \(I = \lambda x.x \)
 - \(S = \lambda x.\lambda y.x \)
 - \(K = \lambda x.\lambda y.\lambda z.x \ z \ (y \ z) \)
 - Can also define calculi in terms of combinators
 - E.g., the SKI calculus
 - Turns out the SKI calculus is also Turing complete
Pairs

- \((a, b) = \lambda x.\text{if } x \text{ then } a \text{ else } b\)
- \(\text{fst} = \lambda p.p \text{ true}\)
- \(\text{snd} = \lambda p.p \text{ false}\)

Then
- \(\text{fst} \ (a, b) \rightarrow^* a\)
- \(\text{snd} \ (a, b) \rightarrow^* b\)
Natural Numbers (Church)

- $0 = \lambda x.\lambda y.y$
- $1 = \lambda x.\lambda y.x\ y$
- $2 = \lambda x.\lambda y.x(x\ y)$
- i.e., $n = \lambda x.\lambda y.\langle\text{apply } x\ n\ \text{times}\ \text{to } y\rangle$

- $\text{succ} = \lambda z.\lambda x.\lambda y.x(z\ x\ y)$
- $\text{iszero} = \lambda z.\text{z }\ (\lambda y.\text{false})\ \text{true}$
Natural Numbers (Scott)

- $0 = \lambda x.\lambda y. x$
- $1 = \lambda x.\lambda y. y\ 0$
- $2 = \lambda x.\lambda y. y\ 1$
- I.e., $n = \lambda x.\lambda y. y\ (n-1)$
- $\text{succ} = \lambda z.\lambda x.\lambda y. y\ z$
- $\text{pred} = \lambda z. z\ 0\ (\lambda x. x)$
- $\text{iszero} = \lambda z. z\ \text{true}\ (\lambda x. \text{false})$
Why are these semantics non-deterministic?
Example

• We can apply reduction anywhere in a term
 - $\lambda x. (\lambda y. y) \ x \ ((\lambda z. w) \ x) \rightarrow \lambda x. (x \ ((\lambda z. w) \ x) \rightarrow \lambda x. x \ w$
 - $\lambda x. (\lambda y. y) \ x \ ((\lambda z. w) \ x) \rightarrow \lambda x. ((\lambda y. y) \ x \ w) \rightarrow \lambda x. x \ w$

• Does the order of evaluation matter?
The Church-Rosser Theorem

• If \(a \rightarrow^* b \) and \(a \rightarrow^* c \), there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

• Church-Rosser is also called confluence
Normal Form

• A term is in normal form if it cannot be reduced
 ▪ Examples: $\lambda x.x$, $\lambda x.\lambda y.z$

• By Church-Rosser Theorem, every term reduces to at most one normal form
 ▪ Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation

• Notice that for our application rule, the argument need not be in normal form
Beta-Equivalence

- Let $=_{\beta}$ be the reflexive, symmetric, and transitive closure of \to
 - E.g., $(\lambda x.x) \ y \to y \leftarrow (\lambda z.\lambda w.z) \ y \ y$, so all three are beta equivalent

- If $a =_{\beta} b$, then there exists c such that $a \to^* c$ and $b \to^* c$
 - Proof: Consequence of Church-Rosser Theorem

- In particular, if $a =_{\beta} b$ and both are normal forms,
Not Every Term Has a Normal Form

• Consider
 - $\Delta = \lambda x. x x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \ldots$

• In general, *self application* leads to loops
 - ...which is good if we want recursion
A Fixpoint Combinator

- Also called a paradoxical combinator
 - \(Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \)
 - Note: There are many versions of this combinator

Then \(Y F =_\beta F (Y F) \)

- \(Y F = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \)
- \(\rightarrow (\lambda x. F (x x)) (\lambda x. F (x x)) \)
- \(\rightarrow F ((\lambda x. F (x x)) (\lambda x. F (x x))) \)
- \(\leftarrow F (Y F) \)
Example

- **Fact n** = if n = 0 then 1 else n * fact(n-1)
- **Let** \(G = \lambda f. <\text{body of factorial}> \)
 - i.e., \(G = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1) \)
- \(Y \ G \ 1 = \beta \ G \ (YG) \ 1 \)
 - \(= \beta (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1)) \ (Y \ G) \ 1 \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1*((Y \ G) \ 0) \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1*(G \ (YG) \ 0) \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1*(\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1) \ (YG) \ 0) \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1*(\text{if } 0 = 0 \text{ then } 1 \text{ else } 0*((YG) \ 0) \)
 - \(= \beta 1*1 = 1 \)
In Other Words

• The \(Y \) combinator “unrolls” or “unfolds” its argument an infinite number of times
 - \(Y \ G = G (Y \ G) = G (G (Y \ G)) = G (G (G (Y \ G))) = ... \)
 - \(G \) needs to have a “base case” to ensure termination

• But, only works because we’re call-by-name
 - Different combinator(s) for call-by-value
 - \(Z = \lambda f.(\lambda x.f (\lambda y. x x y)) (\lambda x.f (\lambda y. x x y)) \)
 - Why is this a fixed-point combinator? How does its difference from \(Y \) make it work for call-by-value?
Encodings

• Encodings are fun

• They show language expressiveness

• In practice, we usually add constructs as primitives
 - Much more efficient
 - Much easier to perform program analysis on and avoid silly mistakes with
 - E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers
Lazy vs. Eager Evaluation

• Our non-deterministic reduction rule is fine for theory, but awkward to implement

• Two deterministic strategies:
 - **Lazy**: Given \(\lambda x. e_1 \) \(e_2 \), do not evaluate \(e_2 \) if \(x \) does not “need” \(e_1 \)
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)
 - **Eager**: Given \(\lambda x. e_1 \) \(e_2 \), always evaluate \(e_2 \) fully before applying the function
 - Also called call-by-value
Lazy Operational Semantics

\[(\lambda x. e_1) \rightarrow^/ (\lambda x. e_1) \]
\[e_1 \rightarrow^/ \lambda x. e \quad e[e_2/x] \rightarrow^/ e' \]
\[e_1 e_2 \rightarrow^/ e' \]

• The rules are deterministic and \textit{big-step}
 - The right-hand side is reduced “all the way”

• The rules do not reduce under \(\lambda\)

• The rules are normalizing:
 - If \(a\) is closed and there is a normal form \(b\) such that \(a \rightarrow^* b\), then \(a \rightarrow^/ d\) for some \(d\)
This big-step semantics is also deterministic and does not reduce under λ

- But it is not normalizing
 - Example: let $x = \Delta \Delta$ in $(\lambda y.y)$
Lazy vs. Eager in Practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)
The \(\lambda\) calculus is a prototypical functional programming language:

- Lots of higher-order functions
- No side-effects

In practice, many functional programming languages are “impure” and permit side-effects

- But you’re supposed to avoid using them
Functional Programming Today

• Two main camps:
 ▪ Haskell – Pure, lazy functional language; no side effects
 ▪ ML (SML/NJ, OCaml) – Call-by-value, with side effects

• Still around: LISP, Scheme
 ▪ Disadvantage/advantage: No static type systems
Influence of Functional Programming

• Functional ideas in many other languages
 - Garbage collection was first designed with Lisp; most languages often rely on a GC today
 - Generics in Java/C++ came from polymorphism in ML and from type classes in Haskell
 - Higher-order functions and closures (used widely in Ruby; proposed extension to Java) are pervasive in all functional languages
 - Many data abstraction principles of OO came from ML’s module system
 - …
Call-by-Name Example

OCaml

```ocaml
let cond p x y = if p then x else y
let rec loop () = loop ()
let z = cond true 42 (loop ())
```

Haskell

```haskell
cond p x y = if p then x else y
loop () = loop ()
z = cond True 42 (loop ())
```

- Infinite loop at call
- 3rd argument never used by cond, so never invoked
Two Cool Things to Do with CBN

• Build control structures with functions

\[
\text{cond } p \ x \ y = \text{if } p \ \text{then } x \ \text{else } y
\]

• “Infinite” data structures

\[
\text{integers } n = n: (\text{integers } (n+1))
\]
\[
\text{take 10 } (\text{integers } 0) \quad (* \ \text{infinite loop in cbv} *)
\]