COMP 150-AVS
Fall 2018

Static Single Assignment Form
Motivation

• Data flow analysis needs to represent facts at every program point

• What if
 ▪ There are a lot of facts and
 ▪ There are a lot of program points?
 ▪ ⇒ potentially takes a lot of space/time

• Most likely, we’re keeping track of irrelevant facts
Example

\[
x := 3
\]

\[
y := a + b
\]

\[
z := 2 \times y
\]

\[
w := y + z
\]

\[
y := a - b
\]

\[
y := y \times 10
\]

\[
w := w + y
\]

\[
z := w + x
\]
Sparse Representation

• Instead, we’d like to use a sparse representation
 ▪ Only propagate facts about x where they’re needed

• Enter *static single assignment* form
 ▪ Each variable is defined (assigned to) exactly once
 ▪ But may be used multiple times
Example: SSA

- Add SSA edges from definitions to uses
 - No intervening statements use/define variable
 - Safe to propagate only along SSA edges
What About Joins?

• Add Φ functions/nodes to model joins
 - Intuitively, takes meet of arguments
 - At code generation time, need to eliminate Φ nodes
Def-Use Chains vs. SSA

- Alternative: Don’t do renaming; instead, compute simple def-use chains (reaching definitions)
 - Propagate facts along def-use chains

- Drawback: Potentially quadratic size
case (...) of
 0: a := 1;
 1: a := 2;
 2: a := 3;
end

case (...) of
 0: b := a;
 1: c := a;
 2: d := a;
end

Def-Use Chains

SSA Form

Quadratic vs. (in practice) linear behavior
Computing SSA Form

• Step 1: Compute the dominance frontier

• Step 2: Use dominance frontier to place Φ nodes
 - Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
 - Better: If node X contains assignment to a, put Φ function for a in dominance frontier of X
 - Adding Φ fn may require introducing additional Φ fn

• Step 3: Rename variables so only one definition per name
Dominators

• Let X and Y be nodes in the CFG
 - Assume single entry point Entry

• X dominates Y (written $X \geq Y$) if
 - X appears on every path from Entry to Y

• Write $X > Y$ when X dominates Y but $X \neq Y$
 - Note \geq is reflexive
Dominator Tree

- The dominator relationship forms a tree
 - Edge from parent to child = parent dominates child
 - Note: edges are not same as CFG edges!

![Dominator Tree Diagram]

```plaintext
Dominator Tree
• The dominator relationship forms a tree
  ▪ Edge from parent to child = parent dominates child
  ▪ Note: edges are not same as CFG edges!
```

![Dominator Tree Diagram]
Computing Dominator Tree

• Standard algorithm due to Lengauer and Tarjan

• Runs in time $O(E\alpha(E, N))$
 - $E = \# \text{ of edges, } N = \# \text{ of nodes}$
 - where $\alpha(\cdot)$ is the inverse Ackerman’s function
 - Very slow growing; effectively constant in practice

• Algorithm quite difficult to understand
 - But lots of pseudo-code available
Why Are Dominators Useful?

- Computing static single assignment form
- Computing control dependencies
- Identify loops in CFG
 - All nodes X dominated by entry node H, where X can reach H, and there is exactly one back edge (head dominates tail) in loop
Where do Φ Functions Go?

- We need a Φ function at node Z if
 - Two non-null CFG paths that both define v
 - Such that both paths start at two distinct nodes and end at Z
Dominance Frontiers: Illustration
Dominance Frontiers

• Y is in the dominance frontier of X iff
 - There exists a path from X to Exit through Y such that Y is the first node not strictly dominated by X

• Equivalently:
 - Y is the first node where a path from X to Exit and a path from Entry to Exit (not going through X) meet

• Equivalently:
 - X dominates a predecessor of Y
 - X does not strictly dominate Y
Example

DF(1) = \{1\}
DF(2) = \{7\}
DF(3) = \{6\}
DF(4) = \{6\}
DF(5) = \{1, 7\}
DF(6) = \{7\}
DF(7) = \emptyset
Computing SSA Form

• Step 1: Compute the dominance frontier

• Step 2: Use dominance frontier to place Φ nodes

• Step 3: Rename variables so only one definition per name
Step 2: Placing Φ Functions for v

- Let S be the set of nodes that define v
- Need to place Φ function in every node in $DF(S)$
 - Recall, those are all the places where the definition of v in S and some other definition of v may meet
- But a Φ function adds another definition of v!
 - $v := \Phi(v, ..., v)$
- So, iterate
 - $DF_1 = DF(S)$
 - $DF_{i+1} = DF(S \cup DF_i)$
Example

Entry

1: x := 3

2

3

5: x := 4

6

7

8: x := 5

9

10

11

Exit

= need \(\Phi \) function
Step 3: Renaming Variables

• Top-down (DFS) traversal of dominator tree
 - At definition of \(v \), push new \# for \(v \) onto the stack
 - When leaving node with definition of \(v \), pop stack
 - Intuitively: Works because there’s a \(\Phi \) function, hence a new definition of \(v \), just beyond region dominated by definition

• Can be done in \(O(E+|DF|) \) time
 - Linear in size of CFG with \(\Phi \) functions
Eliminating Φ Functions

- Basic idea: Φ represents facts that the value of join may come from different paths
 - So just set along each possible path

$$w_2 := y_1 + z_1 \quad w_3 := w_1 + y_3$$

$$w_4 := \Phi(w_2, w_3)$$

$$w_2 := y_1 + z_1 \quad w_3 := w_1 + y_3$$

$$w_4 := w_2$$

$$w_4 := w_3$$
Eliminating Φ Functions in Practice

• Copies performed at Φ fns may not be useful
 - Joined value may not be used later in the program
 - (So why leave it in?)

• Use dead code elimination to kill useless Φs

• Subsequent register allocation will map the (now very large) number of variables onto the actual set of machine register