Security via Type Qualifiers

COMP 150-AVS
Fall 2018
Introduction

• Ensuring that software is secure is hard

• Standard practice for software quality:
 - Testing
 • Make sure program runs correctly on set of inputs
 - Code auditing
 • Convince yourself and others that your code is correct
Drawbacks to Standard Approaches

- Difficult
- Expensive
- Incomplete

- A malicious adversary is trying to exploit anything you miss!
Tools for Security

• What more can we do?
 - Build tools that analyze source code
 • Reason about all possible runs of the program
 - Check limited but very useful properties
 • Eliminate categories of errors
 • Let people concentrate on the deep reasoning
 - Develop programming models
 • Avoid mistakes in the first place
 • Encourage programmers to think about security
Tools Need Specifications

```c
spin_lock_irqsave(&tty->read_lock, flags);
put_tty_queue_nolock(c, tty);
spin_unlock_irqrestore(&tty->read_lock, flags);
```

- **Goal**: Add specifications to programs
 - In a way that...
 - Programmers will accept
 - Lightweight
 - Scales to large programs
 - Solves many different problems
Type Qualifiers

• Extend standard type systems (C, Java, ML)
 - Programmers already use types
 - Programmers understand types
 - Get programmers to write down a little more...

\[
\begin{align*}
\text{const int} & \quad \text{ANSI C} \\
\text{ptr(tainted char)} & \quad \text{Format-string vulnerabilities} \\
\text{kernel ptr(char) \rightarrow char} & \quad \text{User/kernel vulnerabilities}
\end{align*}
\]
Application: Format String Vulnerabilities

• I/O functions in C use format strings

 \[
 \text{printf("Hello!");}\quad \text{Hello!} \\
 \text{printf("Hello, %s!", name);} \quad \text{Hello, } name! \\
 \]

• Instead of

 \[
 \text{printf("%s", name);} \\
 \]

 Why not

 \[
 \text{printf(name);} \\
 \]
Format String Attacks

- Adversary-controlled format specifier

  ```c
  name := <data-from-network>
  printf(name); /* Oops */
  ```

 - Attacker sets name = “%s%s%s” to crash program
 - Attacker sets name = “...%n...” to write to memory
 - Yields (often remote root) exploits

- Lots of these bugs in the wild
 - Too restrictive to forbid variable format strings
Using Tainted and Untainted

- Add qualifier annotations
  ```c
  int printf(untainted char *fmt, ...)
  tainted char *getenv(const char *)
  ```

 `tainted` = may be controlled by adversary
 `untainted` = must not be controlled by adversary
Subtyping

void f(tainted int);
untainted int a;
f(a);

void g(untainted int);
tainted int b;
f(b);

OK
f accepts tainted or untainted data
untainted \leq tainted

Error
g accepts only untainted data
tainted $\not\leq$ untainted
untainted $<$ tainted
The Plan

• The Nice Theory

• Polymorphism

• The Icky Stuff in C
Type Qualifiers for MinML

• We’ll add type qualifiers to MinML
 - Same approach works for other languages (like C)

• Standard type systems define types as
 - \(t ::= c_0(t, ..., t) \mid ... \mid c_n(t, ..., t) \)
 • Where \(\Sigma = c_0...c_n \) is a set of type constructors

• Here are the types of MinML
 - \(t ::= \text{int} \mid \text{bool} \mid t \rightarrow t \)
 • Here \(\Sigma = \text{int, bool, \rightarrow} \) (written infix)
Type Qualifiers for MinML (cont’d)

• Let Q be the set of type qualifiers
 - Assumed to be chosen in advance and fixed
 - E.g., $Q = \{\text{tainted, untainted}\}$
• Then the qualified types are just
 - $qt ::= Q \ s$
 - $s ::= c_0(qt, \ldots, qt) \ | \ \ldots \ | \ cn(qt, \ldots, qt)$
 - Allow a type qualifier to appear on each type constructor
• For MinML
 - $qt ::= \text{int}^Q \ | \ \text{bool}^Q \ | \ qt \rightarrow^Q qt$
Abstract Syntax of MinML with Qualifiers

\[e ::= x \mid n \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \mid \text{fun } f^Q (x:qt):qt = e \mid e \mid \text{annot}(Q, e) \mid \text{check}(Q, e) \]

- \text{annot}(Q, e) = “expression } e \text{ has qualifier } Q”
- \text{check}(Q, e) = “fail if } e \text{ does not have qualifier } Q”
 - Checks only the top-level qualifier

- Examples:
 - \text{fun } \text{fread}(x:qt):\text{int}^{\text{tainted}} = \ldots \text{annot(tainted, 42)}
 - \text{fun } \text{printf}(x:qt):qt' = \text{check(untainted, x)}, \ldots
Typing Rules: Qualifier Introduction

• Newly-constructed values have “bare” types

\[
G |-- n : \text{int}
\]

\[
G |-- \text{true} : \text{bool} \quad \quad G |-- \text{false} : \text{bool}
\]

• Annotation adds an outermost qualifier

\[
G |-- e_1 : s
\]

\[
G |-- \text{annot}(Q, e) : Q \ s
\]
Typing Rules: Qualifier Elimination

• By default, discard qualifier at destructors

\[
G \vdash e_1 : \text{bool}^Q \quad G \vdash e_2 : qt \quad G \vdash e_3 : qt
\]

\[
G \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : qt
\]

• Use check() if you want to do a test

\[
G \vdash e_1 : Q^s
\]

\[
G \vdash \text{check}(Q, e) : Q^s
\]
Subtyping

- Our example used *subtyping*
 - If anyone expecting a T can be given an S instead, then S is a *subtype* of T
 - Allows *untainted* to be passed to *tainted* positions
 - I.e., $\text{check(tainted, annot(untainted, 42))}$ should typecheck

- How do we add that to our system?
Partial Orders

- Qualifiers Q come with a partial order \leq:
 - $q \leq q$ (reflexive)
 - $q \leq p, p \leq q \Rightarrow q = p$ (anti-symmetric)
 - $q \leq p, p \leq r \Rightarrow q \leq r$ (transitive)

- Qualifiers introduce subtyping

- In our example:
 - untainted $<\text{ tainted}$
Example Partial Orders

• Lower in picture = lower in partial order
• Edges show \leq relations
Combining Partial Orders

• Let \((Q_1, \leq_1)\) and \((Q_2, \leq_2)\) be partial orders
• We can form a new partial order, their cross-product:

\[
(Q_1, \leq_1) \times (Q_2, \leq_2) = (Q, \leq)
\]

where
- \(Q = Q_1 \times Q_2\)
- \((a, b) \leq (c, d)\) if \(a \leq_1 c\) and \(b \leq_2 d\)
Example

- Makes sense with orthogonal sets of qualifiers
 - Allows us to write type rules assuming only one set of qualifiers
Extending the Qualifier Order to Types

\[
Q \leq Q' \\
\text{bool}^Q \leq \text{bool}^{Q'}
\]

\[
Q \leq Q' \\
\text{int}^Q \leq \text{int}^{Q'}
\]

- Add one new rule *subsumption* to type system

\[
G \vdash e : qt \quad qt \leq qt' \\
\hline
G \vdash e : qt'
\]

- Means: If any position requires an expression of type \(qt'\), it is safe to provide it a subtype \(qt\)
Use of Subsumption

|-- 42 : int
|-- annot(untainted, 42) : untainted int untainted ≤ tainted
|-- annot(untainted, 42) : tainted int
|-- check(tainted, annot(untainted, 42)) : tainted int
Subtyping on Function Types

- What about function types?

\[qt1 \rightarrow^Q qt2 \leq qt1' \rightarrow^Q qt2' \]

- Recall: \(S \) is a subtype of \(T \) if an \(S \) can be used anywhere a \(T \) is expected
 - When can we replace a call \("f \ x" \) with a call \("g \ x" \)?
Replacing “f x” by “g x”

- When is $\mathsf{qt1}' \to^Q \mathsf{qt2}' \leq \mathsf{qt1} \to^Q \mathsf{qt2}$?

- Return type:
 - We are expecting $\mathsf{qt2}$ (f’s return type)
 - So we can only return at most $\mathsf{qt2}$
 - $\mathsf{qt2}' \leq \mathsf{qt2}$

- Example: A function that returns tainted can be replaced with one that returns untainted
Replacing “f x” by “g x” (cont’d)

- When is \(qt_1' \xrightarrow{Q} qt_2' \leq qt_1 \xrightarrow{Q} qt_2 \) ?

- Argument type:
 - We are supposed to accept \(qt_1 \) (f’s argument type)
 - So we must accept at least \(qt_1 \)
 - \(qt_1 \leq qt_1' \)

- Example: A function that accepts untainted can be replaced with one that accepts tainted
Subtyping on Function Types

- We say that \(\rightarrow \) is
 - **Covariant** in the range (subtyping dir the same)
 - **Contravariant** in the domain (subtyping dir flips)
Dynamic Semantics with Qualifiers

• Operational semantics tags values with qualifiers

 - $v ::= x | n^Q | true^Q | false^Q$
 - $\text{fun } f^Q (x : q_{t1}) : q_{t2} = e$

• Evaluation rules same as before, carrying the qualifiers along, e.g.,

 \[
 \text{if } true^Q \text{ then } e_1 \text{ else } e_2 \rightarrow e_1
 \]
Dynamic Semantics with Qualifiers (cont’d)

• One new rule checks a qualifier:

\[Q' \leq Q \]

\[\text{check}(Q, v^{Q'}) \rightarrow v \]

- Evaluation at a check can continue only if the qualifier matches what is expected
 - Otherwise the program gets stuck
- (Also need rule to evaluate under a check)
Soundness

- We want to prove
 - Preservation: Evaluation preserves types
 - Progress: Well-typed programs don’t get stuck

- Proof: Exercise
 - See if you can adapt proofs to this system
 - (Not too much work; really just need to show that \textit{check} doesn’t get stuck)
Updateable References

- Our MinML language is missing side-effects
 - There’s no way to write to memory
 - Recall that this doesn’t limit expressiveness
 - But side-effects sure are handy
Language Extension

- We’ll add ML-style references
 - \(e ::= \ldots | \text{ref}^Q e | !e | e := e \)
 - \(\text{ref}^Q e \) -- Allocate memory and set its contents to \(e \)
 - Returns memory location
 - \(Q \) is qualifier on pointer (not on contents)
 - \(!e \) -- Return the contents of memory location \(e \)
 - \(e1 := e2 \) -- Update \(e1 \)'s contents to contain \(e2 \)

- Things to notice
 - No null pointers (memory always initialized)
 - No mutable local variables (only pointers to heap allowed)
Static Semantics

- Extend type language with references:
 - \(qt ::= \ldots \mid \text{ref}^Q qt \)
 - Note: In ML the ref appears on the right

\[
\begin{align*}
G \vdash e : qt \\
--- \\
G \vdash \text{ref}^Q e : \text{ref}^Q qt
\end{align*}
\]

\[
\begin{align*}
G \vdash e : \text{ref}^Q qt \\
--- \\
G \vdash !e : qt
\end{align*}
\]

\[
\begin{align*}
G \vdash e1 : \text{ref}^Q qt \\
--- \\
G \vdash e2 : qt
\end{align*}
\]

\[
\begin{align*}
G \vdash e1 : \text{ref}^Q qt \\
--- \\
G \vdash e1 := e2 : qt
\end{align*}
\]
Subtyping References

- The \textit{wrong} rule for subtyping references is

\[
Q \leq Q' \quad qt \leq qt' \\
\hline
\text{ref}^Q qt \leq \text{ref}^{Q'} qt'
\]

- \textbf{Counterexample}

 \[
 \text{let } x = \text{ref } 0^{\text{untainted}} \text{ in} \\
 \text{let } y = x \text{ in} \\
 \text{y := 3}^{\text{tainted}}; \\
 \text{check(untainted, !x)} \quad \text{oops!}
 \]
You’ve Got Aliasing!

- We have multiple names for the same memory location
 - But they have different types
 - *And we can write* into memory at different types

![Diagram](tainted_untainted)
Solution #1: Java’s Approach

• Java uses this subtyping rule
 - If S is a subclass of T, then $S[]$ is a subclass of $T[]$

• Counterexample:
 - `Foo[] a = new Foo[5];`
 - `Object[] b = a;`
 - `b[0] = new Object();` // forbidden at runtime
 - `a[0].foo();` // …so this can’t happen
Solution #2: Purely Static Approach

• Reason from rules for functions
 - A reference is like an object with two methods:
 • get : unit → qt
 • set : qt → unit
 - Notice that qt occurs both co- and contravariantly

• The right rule:

\[
\begin{align*}
Q & \leq Q' \\
qt & \leq qt' \\
qt' & \leq qt \\
\text{ref}_Q qt & \leq \text{ref}_{Q'} qt'
\end{align*}
\]

or

\[
\begin{align*}
Q & \leq Q' \\
qt & = qt' \\
\text{ref}_Q qt & \leq \text{ref}_{Q'} qt'
\end{align*}
\]
Challenge Problem: Soundness

• We want to prove
 - Preservation: Evaluation preserves types
 - Progress: Well-typed programs don't get stuck

• Can you prove it with updateable references?
 - Hint: You'll need a stronger induction hypothesis
 • You'll need to reason about types in the store
 - E.g., so that if you retrieve a value out of the store, you know what type it has
Type Qualifier Inference

• Recall our motivating example
 - We gave a legacy C program that had no information about qualifiers
 - We added signatures only for the standard library functions
 - Then we checked whether there were any contradictions

• This requires type qualifier inference
Type Qualifier Inference Statement

• Given a program with
 - Qualifier annotations
 - Some qualifier checks
 - And no other information about qualifiers

• Does there exist a valid typing of the program?

• We want an algorithm to solve this problem
Type Checking vs. Type Inference

• Let’s think about C’s type system
 - C requires programmers to annotate function types
 - …but not other places
 • E.g., when you write down 3 + 4, you don’t need to give that a type
 - So all type systems trade off programmer annotations vs. computed information

• Type checking = it’s “obvious” how to check
• Type inference = it’s “more work” to check
Why Do We Want Qualifier Inference?

- Because our programs weren’t written with qualifiers in mind
 - They don’t have qualifiers in their type annotations
 - In particular, functions don’t list qualifiers for their arguments
- Because it’s less work for the programmer
 - ...but it’s harder to understand when a program doesn’t type check
First Problem: Subsumption Rule

\[
G \vdash e : q \quad q \leq q'
\]

\[
G \vdash e : q'
\]

• We’re allowed to apply this rule at any time
 - Makes it hard to develop a deterministic algorithm
 - Type checking is not *syntax driven*

• Fortunately, we don’t have that many choices
 - For each expression \(e \), we need to decide
 • Do we apply the “regular” rule for \(e \)?
 • Or do we apply subsumption (how many times)?
Getting Rid of Subsumption

• Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 – Proof: Transitivity of \leq

• So now we need only apply subsumption once after each expression
Getting Rid of Subsumption (cont’d)

- We can get rid of the separate subsumption rule
 - Incorporate it directly into the other rules

\[
G \vdash e_1 : q_t' \rightarrow Q q_t'' \quad G \vdash e_2 : q_t
\]

\[
q_t1 \leq q_t' \quad Q' \leq Q \quad q_t'' \leq q_t2
\]

\[
G \vdash e_1 : q_t1 \rightarrow Q q_t2
\]

\[
q_t \leq q_t1
\]

\[
G \vdash e_2 : q_t1
\]

\[
G \vdash e_1 e_2 : q_t2
\]
Getting Rid of Subsumption (cont’d)

1. Fold e_2 subsumption into rule

\[
\begin{align*}
G \vdash e_1 : q_t' &\rightarrow Q' q_t'' \\
q_t1 \leq q_t' &\leq Q' \leq Q \leq q_t'' \leq q_t2 \\
G \vdash e_1 : q_t1 &\rightarrow Q q_t2 \\
G \vdash e_2 : q_t &\rightarrow q_t \leq q_t1 \\
G \vdash e_1 \ e_2 : q_t2
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

- 2. Fold e_1 subsumption into rule

\[
qt_1 \leq qt' \quad Q' \leq Q \quad qt'' \leq qt_2
\]

\[
G \mid-- e_1 : qt' \rightarrow^{Q'} qt'' \quad G \mid-- e_2 : qt \quad qt \leq qt_1
\]

\[
G \mid-- e_1 \ e_2 : qt_2
\]
Getting Rid of Subsumption (cont’d)

• 3. We don’t use Q, so remove that constraint

$q_{t1} \leq q_{t'} \quad q_{t''} \leq q_{t2}$

$G \vdash e_1 : q_{t'} \rightarrow Q' q_{t''} \quad G \vdash e_2 : q_{t} \quad q_{t} \leq q_{t1}$

$G \vdash e_1 e_2 : q_{t2}$
Getting Rid of Subsumption (cont’d)

• 4. Apply transitivity of ≤
 - Remove intermediate qt1

\[
\begin{align*}
qt'' & \leq qt2 \\
G |-- e1 : qt' & \rightarrow^{Q'} qt'' & G |-- e2 : qt & qt \leq qt' \\
\hline
G |-- e1 e2 : qt2
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

5. We’re going to apply subsumption afterward, so no need to weaken \(q^t'' \)

\[
\begin{align*}
G & \vdash e_1 : q^t' \rightarrow Q' \quad q^t'' \\
G & \vdash e_2 : q^t \quad q^t \leq q^t' \\
G & \vdash e_1 \ e_2 : q^t''
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

• We apply the same reasoning to the other rules
 - We’re left with a purely syntax-directed system

• Good! Now we’re half-way to an algorithm
Second Problem: Assumptions

• Let’s take a look at the rule for functions:

\[
G, f : qt1 \rightarrow^Q qt2, x : qt1 \mid-- e : qt2' \quad qt2' \leq qt2
\]

\[
G \mid-- \text{fun } f^Q (x : qt1) : qt2 = e : qt1 \rightarrow^Q qt2
\]

• There’s a problem with applying this rule
 - We’re assuming that we’re given the argument type \(qt1 \) and the result type \(qt2 \)
 - But in the problem statement, we said we only have annotations and checks
Unkowns in Qualifier Inference

• We’ve got regular type annotations for functions
 – (We could even get away without these…)

\[
G, f : ? \rightarrow Q ?, x : ? \mid -- e : qt2' \quad qt2' \leq qt2
\]

\[
G \mid -- \text{fun } f^Q (x : t1): t2 = e : qt1 \rightarrow Q qt2
\]

• How do we pick the qualifiers for \(f \)?
 – We generate fresh, unknown qualifier variables and then solve for them
Adding Fresh Qualifiers

• We’ll add qualifier variables a, b, c, \ldots to our set of qualifiers
 - (Letters closer to p, q, r will stand for constants)
• Define $\text{fresh} : \mathcal{T} \rightarrow \text{qt}$ as
 - $\text{fresh}($int$) = \text{int}^a$
 - $\text{fresh}($bool$) = \text{bool}^a$
 - $\text{fresh}($ref$^Q \mathcal{T}) = \text{ref}^a \text{fresh}(\mathcal{T})$
 - $\text{fresh}(\mathcal{T}_1 \rightarrow \mathcal{T}_2) = \text{fresh}(\mathcal{T}_1) \rightarrow^a \text{fresh}(\mathcal{T}_2)$
 - Where a is fresh
Rule for Functions

\[qt1 = \text{fresh}(t1) \quad qt2 = \text{fresh}(t2) \]
\[G, f: qt1 \to^Q qt2, x:qt1 \mid e : qt2' \quad qt2' \leq qt2 \]
\[G \mid \text{fun } f^Q (x:t1):t2 = e : qt1 \to^Q qt2 \]
A Picture of Fresh Qualifiers

\[\text{ptr(tainted char)} \]

\[\alpha \text{ ptr} \]

\[\text{tainted char} \]

\[\text{int } \rightarrow \text{user ptr(int)} \]

\[\alpha_0 \rightarrow \]

\[\alpha_1 \text{ int} \quad \alpha_2 \text{ ptr} \]

\[\text{user int} \]
Where Are We?

• A syntax-directed system
 - For each expression, clear which rule to apply

• Constant qualifiers

• Variable qualifiers
 - Want to find a valid assignment to constant qualifiers

• Constraints $q_t \leq q_{t'}$ and $Q \leq Q'$
 - These restrict our use of qualifiers
 - These will limit solutions for qualifier variables
Qualifier Inference Algorithm

1. Apply syntax-directed type inference rules
 - This generates fresh unknowns and constraints among the unknowns

2. Solve the constraints
 - Either compute a solution
 - Or fail, if there is no solution
 - Implies the program has a type error
 - Implies the program may have a security vulnerability
Solving Constraints: Step 1

• Constraints of the form $q^t \leq q^{t'}$ and $Q \leq Q'$
 - $q^t ::= \text{int}^Q | \text{bool}^Q | q^t \rightarrow^Q q^t | \text{ref}^Q q^t$

• Solve by simplifying
 - Can read solution off of simplified constraints

• We’ll present algorithm as a rewrite system
 - $S \Rightarrow S'$ means constraints S rewrite to (simpler) constraints S'
Solving Constraints: Step 1

- \(S + \{ \text{int}^Q \leq \text{int}^{Q'} \} \Rightarrow S + \{ Q \leq Q' \} \)
- \(S + \{ \text{bool}^Q \leq \text{bool}^{Q'} \} \Rightarrow S + \{ Q \leq Q' \} \)
- \(S + \{ qt1 \rightarrow^Q qt2 \leq qt1' \rightarrow^{Q'} qt2' \} \Rightarrow \)
 \(S + \{ qt1' \leq qt1 \} + \{ qt2 \leq qt2' \} + \{ Q \leq Q' \} \)
- \(S + \{ \text{ref}^Q qt1 \leq \text{ref}^{Q'} qt2 \} \Rightarrow \)
 \(S + \{ qt1 \leq qt2 \} + \{ qt2 \leq qt1 \} + \{ Q \leq Q' \} \)
- \(S + \{ \text{mismatched constructors} \} \Rightarrow \text{error} \)
 - Can’t happen if program correct w.r.t. std types
Solving Constraints: Step 2

• Our type system is called a structural subtyping system
 - If qt ≤ qt', then qt and qt' have the same shape
• When we’re done with step 1, we’re left with constraints of the form Q ≤ Q'
 - Where either of Q, Q' may be an unknown
 - This is called an atomic subtyping system
 - That’s because qualifiers don’t have any “structure”
Constraint Generation

\[\text{ptr(int) } f(x : \text{int}) = \{ \ldots \} \quad y := f(z) \]
Constraints as Graphs

\[\alpha_0 \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha_9 \rightarrow \alpha_3 \rightarrow \alpha_5 \rightarrow \alpha_4 \rightarrow \alpha_7 \rightarrow \alpha_6 \rightarrow \alpha_8 \]

untainted

\[\alpha_6 \leq \alpha_1 \]
\[\alpha_2 \leq \alpha_4 \]
\[\alpha_3 = \alpha_5 \]

\[
\cdot
\cdot
\cdot
\]

tainted
Some Bad News

• Solving atomic subtyping constraints is NP-hard in the general case

• The problem comes up with some really weird partial orders
But That’s OK

• These partial orders don’t seem to come up in practice
 - Not very natural

• Most qualifier partial orders have one of two desirable properties:
 - They either always have least upper bounds or greatest lower bounds for any pair of qualifiers
Lubs and Glbs

• lub = Least upper bound
 - p lub q = r such that
 • p ≤ r and q ≤ r
 • If p ≤ s and q ≤ s, then r ≤ s

• glb = Greatest lower bound, defined dually

• lub and glb may not exist
Lattices

• A lattice is a partial order such that lubs and glbs always exist

• If Q is a lattice, it turns out we can use a really simple algorithm to check satisfiability of constraints over Q
Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?
Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?

untainted

\(\alpha_6 \leq \alpha_1 \)
\(\alpha_2 \leq \alpha_4 \)
\(\alpha_3 = \alpha_5 \)
\(\ldots \)

\(\alpha_7 \)
\(\alpha_8 \)
\(\alpha_9 \)
Satisfiability via Graph Reachability

tainted ≤ α₆ ≤ α₁ ≤ α₃ ≤ α₅ ≤ α₇ ≤ untainted

untainted

α₆ ≤ α₁
α₂ ≤ α₄
α₃ = α₅
...
...

tainted
Satisfiability in Linear Time

- Initial program of size n
 - Fixed set of qualifiers tainted, untainted, ...

- Constraint generation yields $O(n)$ constraints
 - Recursive abstract syntax tree walk

- Graph reachability takes $O(n)$ time
 - Works for semi-lattices, discrete p.o., products
Limitations of Subtyping

- Subtyping gives us a kind of *polymorphism*
 - A *polymorphic* type represents multiple types
 - In a subtyping system, qt represents qt and all of qt’s subtypes

- As we saw, this flexibility helps make the analysis more precise
 - But it isn’t always enough...
Limitations of Subtype Polymorphism

• Consider tainted and untainted again
 - untainted \leq tainted

• Let’s look at the identity function
 - fun id (x:int):int = x

• What qualified types can we infer for id?
Types for id

- fun id (x:int):int = x (ignoring int, qual on id)
 - tainted → tainted
 - Fine but untainted data passed in becomes tainted
 - untainted → untainted
 - Fine but can’t pass in tainted data
 - untainted → tainted
 - Not too useful
 - tainted → untainted
 - Impossible
Function Calls and Context-Sensitivity

- All calls to `strdup` conflated
 - Monomorphic or context-insensitive

```c
char *strdup(char *str) {
    // return a copy of str
}
char *a = strdup(tainted_string);
char *b = strdup(untainted_string);
```
What's Happening Here?

• The qualifier on x appears both covariantly and contravariantly in the type
 - We’re stuck

• We need *parametric polymorphism*
 - We want to give $\text{fun id } (x:\text{int}):\text{int} = x$ the type
 $\forall a. \text{int}^a \rightarrow \text{int}^a$
The Observation of Parametric Polymorphism

- Type inference on id yields a proof like this:

- If we just infer a type for id, no constraints will be placed on a
The Observation of Parametric Polymorphism

- We can duplicate this proof for any \(a \), in any type environment

\[
\begin{align*}
\text{id} : a & \rightarrow a \\
\text{id} : b & \rightarrow b \\
\text{id} : c & \rightarrow c \\
\text{id} : d & \rightarrow d
\end{align*}
\]
The Observation of Parametric Polymorphism

- The constraints on a only come from “outside”
The Observation of Parametric Polymorphism

- But the two uses of \textit{id} are different
 - We can inline \textit{id}
 - And compute a type with a different \textit{a} each time
Implementing Polymorphism Efficiently

• **ML-style polymorphic type inference is EXPTIME-hard**
 - In practice, it’s fine
 - Bad case can’t happen here, because we’re polymorphic only in the qualifiers
 • That’s because we’ll apply this to C

• **We need polymorphically constrained types**

 \[x : \forall a. qt \text{ where } C \]

 • For any qualifiers \(a \) where constraints \(C \) hold, \(x \) has type \(qt \)
Polymorphically Constrainted Types

• Must copy constraints at each instantiation
 - Inefficient
 - (And hard to implement)
A Better Solution: CFL Reachability

- Can reduce this to another problem
 - Equivalent to the constraint-copying formulation
 - Supports polymorphic recursion in qualifiers
 - It’s easy to implement
 - It’s efficient \(O(n^3)\)
 - Previous best algorithm \(O(n^8)\)

- Idea due to Horwitz, Reps, and Sagiv, and Rehof, Fahndrich, and Das
The Problem Restated: Unrealizable Paths

• No execution can exhibit that particular call/return sequence
Only Propagate Along Realizable Paths

- Add edge labels for calls and returns
 - Only propagate along valid paths whose returns balance calls
Instantiation Constraints

• These edges represent a new kind of constraint

$$a \leq^{+/\neg} b$$

- At use i of a polymorphic type
- Qualifier variable a
- Is instantiated to qualifier b
- Either positively or negatively (or both)

• Formally, these are semiunification constraints
 - But we won’t discuss that
Type Rules

- We’ll use Hindley-Milner style polymorphism
 - Quantifiers only appear at the outmost level
 - Quantified types only appear in the environment

\[
\begin{align*}
qt1 &= \text{fresh}(t1) \\
qt2 &= \text{fresh}(t2) \\
G, f : qt1 &\to^Q qt2, x : qt1 |-- e : qt2' & qt2' \leq qt2 \\
G |-- \text{fun } f^Q (x : t1) : t2 = e : qt1 &\to^Q qt2
\end{align*}
\]

* This is not quite the right rule, yet...
Type Rules

\[qt = G(f) \quad qt' = \text{fresh}(qt) \quad qt \leq +i \ qt' \]

\[G \vdash f_i : qt' \]

- Implicit: Only apply to function names (f)
- Each has a label i
- \text{fresh}(qt) generates type like qt but with fresh quals
 - *This is not quite the right rule yet...
Resolving Instantiation Constraints

• Just like subtyping, reduce to only qualifiers
 - \(S + \{ \text{int}^Q \leq \text{pi} \text{int}^{Q'} \} \Rightarrow S + \{ Q \leq \text{pi} Q' \} \)
 • p stands for either + or -
 - ...
 - \(S + \{ qt1 \rightarrow^Q qt2 \leq \text{pi} qt1' \rightarrow^{Q'} qt2' \} \Rightarrow \)
 \(S + \{ qt1 \leq (-p)i qt1' \} + \{ qt2 \leq \text{pi} qt2 \} + \{ Q \leq \text{pi} Q' \} \)
 • Here -(+) is - and -(-) is +
Instantiation Constraints as Graphs

- Three kinds of edges
 - $Q \leq Q'$ becomes
 \[Q \rightarrow Q' \]
 - $Q \leq +i Q'$ becomes
 \[Q \xrightarrow{(i)} Q' \]
 - $Q \leq -i Q'$ becomes
 \[Q \leftarrow Q' \]
fun idpair (x:int*int):int*int = x in
 fun f y = idpair (3^q, 4^p) in
 let z = snd (f 2 0)
Two Observations

• We are doing constraint copying
 - Notice the edge from b to d got “copied” to p to f
 • We didn’t draw the transitive edge, but we could have

• This algorithm can be made demand-driven
 - We only need to worry about paths from constant qualifiers
 - Good implications for scalability in practice
CFL Reachability

• We’re trying to find paths through the graph whose edges are a language in some grammar
 - Called the CFL Reachability problem
 - Computable in cubic time
CFL Reachability Grammar

\[S ::= P \quad N \]
\[P ::= M \quad P \]
\[\quad | \quad)_i P \quad \text{for any } i \]
\[\quad | \quad \text{empty} \]
\[N ::= M \quad N \]
\[\quad | \quad (i \quad N \quad \text{for any } i \]
\[\quad | \quad \text{empty} \]
\[M ::= (i \quad M \quad)_i \quad \text{for any } i \]
\[\quad | \quad M \quad M \]
\[\quad | \quad d \quad \text{regular subtyping edge} \]
\[\quad | \quad \text{empty} \]

- Paths may have \textit{unmatched} but not \textit{mismatched} parens
Global Variables

• Consider the following identity function
 \[
 \text{fun id}(x:\text{int}):\text{int} = z := x; !z
 \]
 - Here \(z \) is a global variable

• Typing of \text{id}, roughly speaking:

\[
\begin{align*}
 \text{id} : a & \rightarrow b \\
 z & \rightarrow b \\
 a & \rightarrow b
\end{align*}
\]
Global Variables

- Suppose we instantiate and apply id to q inside of a function

- And then another function returns z

- Uh oh! $(1)^2$ is not a valid flow path

 - But q may certainly pop out at d
Thou Shalt Not Quantify a Global Type (Qualifier) Variable

• We violated a basic rule of polymorphism
 - We generalized a variable free in the environment
 - In effect, we duplicated z at each instantiation

• Solution: Don’t do that!
Our Example Again

- We want anything flowing into z, on any path, to flow out in any way
 - Add a self-loop to z that consumes any mismatched parens
Typing Rules, Fixed

- Track unquantifiable vars at generalization

qt1 = fresh(t1) qt2 = fresh(t2)
G, f: (qt1 \rightarrow^Q qt2, v), x:qt1 |-- e : qt2' qt2' \leq qt2
v = free vars of G

G |-- fun f^Q (x:t1):t2 = e : (qt1 \rightarrow^Q qt2, v)
Typing Rules, Fixed

- Add self-loops at instantiation

\[(qt, v) = G(f) \quad qt' = \text{fresh}(qt) \quad qt \leq +i \ qt' \]

\[v \leq +i \ v \quad v \leq -i \ v\]

\[G \mid -- \ f_i : qt'\]
Efficiency

• Constraint generation yields $O(n)$ constraints
 - Same as before
 - Important for scalability
• Context-free language reachability is $O(n^3)$
 - But a few tricks make it practical (not much slowdown in analysis times)
• For more details, see
 - Rehof + Fahndrich, POPL’01
Security via Type Qualifiers: The Icky Stuff in C
Introduction

• That’s all the theory behind this system
 - More complicated system: flow-sensitive qualifiers
 - Not going to cover that here
 • (Haven’t applied it to security)

• Suppose we want to apply this to a language like C
 - It doesn’t quite look like MinML!
Local Variables in C

- The first (easiest) problem: C doesn’t use `ref`
 - It has `malloc` for memory on the heap
 - But local variables on the stack are also updateable:
    ```c
    void foo(int x) {
      int y;
      y = x + 3;
      y++;  
      x = 42;
    }
    ```

- The C types aren’t quite enough
 - `3 : int`, but can’t update 3!
L-Types and R-Types

- C hides important information:
 - Variables behave different in l- and r-positions
 - l = left-hand-side of assignment, r = rhs
 - On lhs of assignment, x refers to location x
 - On rhs of assignment, x refers to contents of location x
Mapping to MinML

- Variables will have ref types:
 - $x : \text{ref}_Q \langle \text{contents type} \rangle$
 - Parameters as well, but r-types in fn sigs

- On rhs of assignment, add deref of variables

```plaintext
void foo(int x) {
  int y;
  y = x + 3;
y++;
x = 42;
}
```
```plaintext
foo (x:int):void =
  let x = ref x in
  let y = ref 0 in
  y := (!x) + 3;
y := (!y) + 1;
x := 42
```
Multiple Files

• Most applications have multiple source code files
• If we do inference on one file without the others, won’t get complete information:

```c
extern int t;
x = t;
```

```c
$tainted\ int\ t = 0;
```

- Problem: In left file, we’re assuming t may have any qualifier (we make a fresh variable)
Multiple Files: Solution #1

• Don’t analyze programs with multiple files!

• Can use CIL merger from Necula to turn a multi-file app into a single-file app
 - E.g., I have a merged version of the linux kernel, 470432 lines

• Problem: Want to present results to user
 - Hard to map information back to original source
Multiple Files: Solution #2

• Make conservative assumptions about missing files
 - E.g., anything globally exposed may be tainted

• Problem: Very conservative
 - Going to be hard to infer useful types
Multiple Files: Solution #3

• **Give tool all files at same time**
 - Whole-program analysis
• **Include files that give types to library functions**
 - In CQual, we have prelude.cq
• **Unify (or just equate) types of globals**

• **Problem:** Analysis really needs to scale
Structures (or Records): Scalability Issues

- One problem: Recursion
 - Do we allow qualifiers on different levels to differ?
    ```c
    struct list {
        int elt;
        struct list *next;
    }
    ```
 - Our choice: no (we don’t want to do shape analysis)
Structures: Scalability Issues

• Natural design point: All instances of the same `struct` share the same qualifiers
• This is what we used to do
 - Worked pretty well, especially for format-string vulnerabilities
 - Scales well to large programs (linear in program size)
• Fell down for user/kernel pointers
 - Not precise enough
Structures: Scalability Issues

- Second problem: Multiple Instances
 - Naïvely, each time we see

    ```c
    struct inode x;
    ```

 we’d like to make a copy of the type `struct inode` with fresh qualifiers

 - Structure types in C programs are often long
 - `struct inode` in the Linux kernel has 41 fields!
 - Often contain lots of nested structs

 - This won’t scale!
Multiple Structure Instances

• Instantiate \textbf{struct} types lazily

 - When we see

 \begin{verbatim}
 struct inode x;
 \end{verbatim}

 we make an empty record type for \textit{x} with a pointer to type \textbf{struct inode}

 - Each time we access a field \textit{f} of \textit{x}, we add fresh qualifiers for \textit{f} to \textit{x}’s type (if not already there)

 - When two instances of the same \textbf{struct} meet, we unify their records

 • This is a heuristic we’ve found is acceptable
Subtyping Under Pointer Types

• Recall we argued that an updateable reference behaves like an object with get and set operations

• Results in this rule:

$$Q \leq Q' \quad qt \leq qt' \quad qt' \leq qt$$

$$ref^Q qt \leq ref^{Q'} qt'$$

• What if we can’t write through reference?
Subtyping Under Pointer Types

• C has a type qualifier `const`
 - If you declare `const int *x`, then `*x = ...` not allowed

• So `const` pointers don’t have “get” method
 - Can treat `ref` as covariant

\[
Q \leq Q' \quad qt \leq qt' \quad \text{const} \leq Q' \\
\text{ref}^Q qt \leq \text{ref}^Q qt'
\]
Subtyping Under Pointer Types

• Turns out this is very useful
 - We’re tracking taintedness of strings
 - Many functions read strings without changing their contents
 - Lots of use of `const` + opportunity to add it
Presenting Inference Results
Type Casts
Experiment: Format String Vulnerabilities

- Analyzed 10 popular unix daemon programs
 - Annotations shared across applications
 - One annotated header file for standard libraries
 - Includes annotations for polymorphism
 - Critical to practical usability

- Found several known vulnerabilities
 - Including ones we didn’t know about

- User interface critical
Results: Format String Vulnerabilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Warn</th>
<th>Bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>identd-1.0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mingetty-0.9.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bftpd-1.0.11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>muh-2.05d</td>
<td>2</td>
<td>~2</td>
</tr>
<tr>
<td>cfengine-1.5.4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>imapd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ipopd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mars_nwe-0.99</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>apache-1.3.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>openssh-2.3.0p1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Experiment: User/kernel Vulnerabilities (Johnson + Wagner 04)

- In the Linux kernel, the kernel and user/mode programs share address space

- The top 1GB is reserved for the kernel
- When the kernel runs, it doesn’t need to change VM mappings
 - Just enable access to top 1GB
 - When kernel returns, prevent access to top 1GB
Tradeoffs of This Memory Model

• **Pros:**
 - Not a lot of overhead
 - Kernel has direct access to user space

• **Cons:**
 - Leaves the door open to attacks from untrusted users
 - A pain for programmers to put in checks
An Attack

- Suppose we add two new system calls
  ```c
  int x;
  void sys_setint(int *p) { memcpy(&x, p, sizeof(x)); } 
  void sys_getint(int *p) { memcpy(p, &x, sizeof(x)); } 
  ```

- Suppose a user calls `getint(buf)`
 - Well-behaved program: `buf` points to user space
 - Malicious program: `buf` points to unmapped memory
 - Malicious program: `buf` points to kernel memory
 - We’ve just written to kernel space! Oops!
Another Attack

• Can we compromise security with `setint(buf)`?
 - What if `buf` points to private kernel data?
 • E.g., file buffers
 - Result can be read with `getint`
The Solution: \texttt{copy_from_user, copy_to_user}

- Our example should be written

 \begin{verbatim}
 int x;
 void sys_setint(int *p) { copy_from_user(&x, p, sizeof(x)); }
 void sys_getint(int *p) { copy_to_user(p, &x, sizeof(x)); }
 \end{verbatim}

- These perform the required safety checks
 - Return number of bytes that couldn’t be copied
 - \texttt{from_user} pads destination with 0’s if couldn’t copy
It’s Easy to Forget These

- Pointers to kernel and user space look the same
 - That’s part of the point of the design
- Linux 2.4.20 has 129 syscalls with pointers to user space
 - All 129 of those need to use `copy_from/to`
 - The `ioctl` implementation passes user pointers to device drivers (without sanitizing them first)
- The result: Hundreds of `copy_from/_to`
 - One (small) kernel version: 389 from, 428 to
 - And there’s no checking
User/Kernel Type Qualifiers

• We can use type qualifiers to distinguish the two kinds of pointers
 - kernel -- This pointer is under kernel control
 - user -- This pointer is under user control

• Subtyping kernel < user
 - It turns out copy_from,copy_to can accept pointers to kernel space where they expect pointers to user space
Type Signatures

- We add signatures for the appropriate fns:

  ```c
  int copy_from_user(void *kernel to,
                    void *user from, int len)
  
  int memcpy(void *kernel to,
             void *kernel from, int len)
  
  int x;
  
  void sys_setint(int *user p) {
    copy_from_user(&x, p, sizeof(x)); }

  void sys_getint(int *user p) {
    memcpy(p, &x, sizeof(x)); }
  ```

 Lives in kernel

 OK

 OK

 Error
Qualifiers and Type Structure

- Consider the following example:
  ```c
  void ioctl(void *user arg) {
    struct cmd { char *datap; } c;
    copy_from_user(&c, arg, sizeof©);
    c.datap[0] = 0;    // not a good idea
  }
  ```

- The pointer `arg` comes from the user
 - So `datap` in `c` also comes from the user
 - We shouldn’t deference it without a check
Well-Formedness Constraints

- Simpler example

  ```c
  char **user p;
  ```

 - Pointer `p` is under user control
 - Therefore so is `*p`

- We want a rule like:

 - In type `ref^{user} (Q s)`, it must be that `Q \leq user`
 - This is a well-formedness condition on types
Well-Formedness Constraints

• As a type rule

\[\frac{|\text{--wf (Q' s)} \quad Q' \leq Q}{|\text{--wf ref}^Q (Q' s)} \]

 - We implicitly require all types to be well-formed

• But what about other qualifiers?
 - Not all qualifiers have these structural constraints
 - Or maybe other quals want \(Q \leq Q' \)
Well-Formedness Constraints

• Use conditional constraints

\[|--\text{wf} (Q' \ s) \quad Q \leq \text{user} \Rightarrow Q' \leq \text{user} \]
\[|--\text{wf \ ref}^Q (Q' \ s) \]

- “If \(Q \) must be \text{user}, then \(Q' \) must be also”

• Specify on a per-qualifier level whether to generate this constraint
 - Not hard to add to constraint resolution
Well-Formedness Constraints

• Similar constraints for `struct` types

\[
\text{For all } i, \quad \text{|--wf} (Q_i, s_i) \quad Q \leq \text{user} \implies Q_i \leq \text{user}
\]

\[
\text{|--wf struct}^Q (Q_1 s_1, \ldots, Q_n s_n)
\]

- Again, can specify this per-qualifier
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
    unsigned long arg) {
    ...case I2C_RDWR:
        if (copy_from_user(&rdwr_arg,
            (struct i2c_rdwr_iotcl_data *) arg,
            sizeof(rdwr_arg)))
            return -EFAULT;
        for (i = 0; i < rdwr_arg.nmsgs; i++) {
            if (copy_from_user(rdwr_pa[i].buf,
                rdwr_argmsgs[i].buf,
                rdwr_argmsgs[i].len)) {
                res = -EFAULT; break;
            }
        }
```
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                 unsigned long arg) {
    ...case I2C_RDWR:
        if (copy_from_user(&rdwr_arg,
                           (struct i2c_rdwr_iotcl_data *) arg,
                           sizeof(rdwr_arg)))
            return -EFAULT;
        for (i = 0; i < rdwr_arg.nmsgs; i++) {  
            if (copy_from_user(rdwr_pa[i].buf,
                                rdwr_arg.msgs[i].buf,
                                rdwr_pa[i].len)) {
                res = -EFAULT; break;
            }
        }
```
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
 unsigned long arg) {
 ...case I2C_RDWR:
 if (copy_from_user(&rdwr_arg,
 (struct i2c_rdwr_ioctl_data *) arg,
 sizeof(rdwr_arg)))
 return -EFAULT;
 for (i = 0; i < rdwr_arg.nmsgs; i++) {
 if (copy_from_user(rdwr_pa[i].buf,
 rdwr_argmsgs[i].buf,
 rdwr_pa[i].len)) {
 res = -EFAULT; break;
 }
 }
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                 unsigned long arg) {
    ...case I2C_RDWR:
        if (copy_from_user(&rdwr_arg,
                           (struct i2c_rdwr_ioctl_data *) arg,
                           sizeof(rdwr_arg)))
            return -EFAULT;
        for (i = 0; i < rdwr_arg.nmsgs; i++) {
            if (copy_from_user(rdwr_pa[i].buf,
                               rdwr_arg.msgs[i].buf,
                               rdwr_pa[i].len)) {
                res = -EFAULT; break;
            }
        }
    return 0;
}
```

user OK

Bad
Experimental Results

• Ran on two Linux kernels
 - 2.4.20 -- 11 bugs found
 - 2.4.23 -- 10 bugs found

• Needed to add 245 annotations
 - Copy_from/to, kmalloc, kfree, ...
 - All Linux syscalls take user args (221 calls)
 • Could have be done automagically (All begin with sys_)

• Ran both single file (unsound) and whole-kernel
 - Disabled subtyping for single file analysis
More Detailed Results

• 2.4.20, full config, single file
 - 512 raw warnings, 275 unique, 7 exploitable bugs
 • Unique = combine msgs for user qual from same line

• 2.4.23, full config, single file
 - 571 raw warnings, 264 unique, 6 exploitable bugs

• 2.4.23, default config, single file
 - 171 raw warnings, 76 unique, 1 exploitable bug

• 2.4.23, default config, whole kernel
 - 227 raw warnings, 53 unique, 4 exploitable bugs
Observations

• Quite a few false positives
 - Large code base magnifies false positive rate

• Several bugs persisted through a few kernels
 - 8 bugs found in 2.4.23 that persisted to 2.5.63
 - An unsound tool, MECA, found 2 of 8 bugs
 - ==> Soundness matters!
Observations

- Of 11 bugs in 2.4.23...
 - 9 are in device drivers
 - Good place to look for bugs!
 - Note: errors found in “core” device drivers
 - (4 bugs in PCMCIA subsystem)

- Lots of churn between kernel versions
 - Between 2.4.20 and 2.4.23
 - 7 bugs fixed
 - 5 more introduced
Conclusion

- Type qualifiers are specifications that...
 - Programmers will accept
 - Lightweight
 - Scale to large programs
 - Solve many different problems