In Class Exercises – Axiomatic Semantics

1. Classify the following Hoare triples as valid or invalid, and explain why briefly. Examples:

- \(\{ \text{true} \} \ x := x \ast x \ \{ x \geq 0 \} \) VALID; \(x^2 \) is always \(\geq 0 \).
- \(\{ x \geq 0 \} \ x := x - 1 \ \{ x \geq 0 \} \) INVALID: If \(x = 0 \) at the start of the program, then \(x \geq 0 \) but \(x - 1 < 0 \).

(a) \(\{ \text{true} \} \ x := 3 \ \{ x = 4 \} \)
(b) \(\{ \text{true} \} \ x := 3 \ \{ \text{false} \} \)
(c) \(\{ \text{false} \} \ x := 3 \ \{ \text{false} \} \)
(d) \(\{ x > y \land x > 0 \} \ y := x + y \ \{ y > 0 \} \)
(e) \(\{ y > x \land x > 0 \} \ x := x + y \ \{ x > y \} \)
(f) \(\{ x = 3 \} \text{ while odd}(x) \text{ do skip} \ \{ \text{true} \} \)
(g) \(\{ x \text{ is even} \} \text{ while odd}(x) \text{ do skip} \ \{ \text{true} \} \)
(h) \(\{ \text{false} \} \text{ while odd}(x) \text{ do skip} \ \{ x \text{ is even} \} \)

2. Use the assignment rule to find a precondition \(Q \) that makes each triple valid.

(a) \(\{ Q \} \ x := x \ast 3 \ \{ x = 15 \} \)
(b) \(\{ Q \} \ x := 14 \ \{ x = 14 \} \)
(c) \(\{ Q \} \ r := r - 1 \ \{ r^3 + \sin(r) - 12 = 4 \} \)
(d) \(\{ Q \} \ y := y + 1; x := x + a[y] \ \{ x = \sum_{k=1}^{y} a[k] \} \)

3. Fill in the blanks with the appropriate assertions to come up with \(Q \). Use the pairs of blank lines to show uses of the consequence rule (i.e., to show simplifications).

\[
Q:\quad \underline{\quad}\quad \\
\text{if } w = z \text{ then begin} \\
\quad \underline{\quad}\quad \underline{\quad}\quad \\
w := 4; \\
\quad \underline{\quad}\quad \underline{\quad}\quad \\
z := z + 2 \\
\text{end else begin} \\
\quad \underline{\quad}\quad \underline{\quad}\quad \\
z := w \ast z; \\
\quad \underline{\quad}\quad \underline{\quad}\quad \\
w := 2 \ast w \\
\text{end} \\
\{ z = 5 \ast w \}
4. To prove the loop

{\text{pre } Q} \\
\text{Initialization} \\
{\text{inv } P} \\
\text{while } B \text{ do } S; \\
{\text{post } R}

correct, we use the following steps:

- Prove \{Q\} Initialization \{P\} is valid
- Prove P is invariant: \{P \land B\} S \{P\}
- Prove that if the loop stops, R holds: \(P \land \neg B \Rightarrow R\)
- Prove bound function \(t\) decreases with each iteration.
- Prove that if there are iterations left then \(t > 0\): \(P \land B \Rightarrow t > 0\)

Prove the following loop correct:

\{0 < n\} \\
i := 1; \\
{\text{inv } P}: \ (0 < i \leq n) \land (i \text{ is a power of 2}) \\
{\text{bound function}}: \ n - i \\
\text{while } 2 \times i \leq n \text{ do } i := i \times 2; \\
\{(0 < i \leq n < 2 \times i) \land (i \text{ is a power of 2})\}

5. We can also go the other way: Given a precondition, invariant, and postcondition, we can develop a corresponding loop using the following procedure:

- Find a loop guard \(B\). (“When are we done?”)
- Find initialization to establish invariant \(P\).
- Guess bound function \(t\) and find ways to decrease it. (Make sure it meets the requirements listed in the first section.)
- Ensure that \(P\) is reestablished.

Write a program that, given \(n\), calculates

\[
F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{if } n > 1
\end{cases}
\]

Given the following specification:

\{\text{pre } Q: \ n > 0\} \\
\{\text{inv } P: \ 1 \leq i \leq n \land a = F_i \land b = F_{i-1}\} \\
\{\text{post } R: \ a = F_n\}