
This file can be found in /comp/150CAD/public_html/HWs/gmf/network_reader.pdf . 

The C++ library files discussed below can be found in /comp/150CAD/public_html/HWs/code . 

You will use a network reader as a library for most of the programming assignments in this course. It 

comes in two files: 

 gmf_parser.cxx has routines to read a text file containing a network description, parse them and 

call action routines from gmf_build_network.cxx. The network format is extremely simple; it is 

meant to keep things easy and let us focus on bigger issues. 

 gmf_build_network.cxx has routines that are called from gmf_parser.cxx, and which build 

network data structures. It also has routines to print them (for debug purposes) and has several 

interesting functions that can help you with your homeworks. 

 gmf.hxx contains the function declarations to make the above two files work. You should include 

it in your own files that use the network-reader library. 

The external variables and data structures from gmf.hxx are: 

 enum OpType: the types of cells in our library: e.g., NAND, LATCH. We only have simple ones! 

 Node: a structure that describes one node. Mostly, it holds the OpType of the gate driving this 

node, as well as that gate’s inputs. It also holds the node’s fanout nodes and a few other 

miscellaneous fields. 

 vector<Node> g_nodes: all of the nodes in the network. This gets built for you by the network 

reader. 

 typedef int NodePtr: a node pointer is really just an integer index into g_nodes, but we give it its 

own type to aid in clarity. 

The following functions will be useful: 

 parse_gmf (string filename): read a network-description file and build g_nodes[]. 

 void printNodes (): print out the entire network (e.g., for debugging). 

 void gen_one_gate(NodePtr np): for use in the levelized-compiled-code homework. It prints (to 

the standard output) the code for the one gate np. So if, e.g., np is the AND gate with output Q 

and inputs A, B and C, it would print “Q = A & B & C”. It does not work for flops. 

 bool op (NodePtr np): for use in the event-driven simulation homework. It looks at the value of 

the node np’s inputs and computes the value of np. E.g., with the same AND gate as above, if we 

had A=1, B=1 and C=0 then it would return false. It assumes that you store each node’s current 

value in its g_nodes[np].value field. 

 int n_input_phases(): in addition to simply describing the network, the network-description file 

also assigns each primary input a sequence of values in the Node.input_data vector. For 

simulation, this typically holds the excitation values to drive the network. For timing analysis, it 

holds primary-input arrival time. The function n_input_phases() checks to ensure that all PIs 

have the same number of values given, and returns that number. 


