
COMP 150-CCPCOMP 150-CCP
Concurrent ProgrammingConcurrent Programming

Lecture 16:
Thread Safety in Java

Dr. Richard S. Hall
 rickhall@cs.tufts.edu

Concurrent programming – March 13, 2008

ReferenceReference

The content of this lecture is based on Chapter 2 of
the Java Concurrency in Practice book by

Brian Goetz.

Java and ConcurrencyJava and Concurrency

● Threads are everywhere in Java
 JVM housekeeping (e.g., garbage collection,

finalization)
 Main thread for running application
 AWT & Swing threads for events
 Timer class for deferred tasks
 Component frameworks such as Servlets and RMI

create pools of threads

● In Java your application is likely to be multi-
threaded whether you know it or not

 Thus, you have to be familiar with concurrency and
thread safety

State ManagementState Management

● Concurrent programming is not really about
threads or locks, these are simply mechanisms

● At its core, it is about managing access to
state, particularly shared, mutable state

 In Java, this state is the data fields of objects
 An object's state encompasses any data that can affect

its externally visible behavior

Need for Thread SafetyNeed for Thread Safety

● Depends on whether object will be accessed from
multiple threads

 This is a property of how the object will be used, not
what it does

● If multiple threads can access an object and one
of them might write to it, then they all must
coordinate access using synchronization

 There are no special situations where this rule does
not apply

Achieving Thread SafetyAchieving Thread Safety

● If multiple threads access the same mutable state
variable without appropriate synchronization,
then your program is broken

Achieving Thread SafetyAchieving Thread Safety

● If multiple threads access the same mutable state
variable without appropriate synchronization,
then your program is broken

● There are three ways to fix it
 Don't share the state variable across threads
 Make the state variable immutable
 Use synchronization whenever accessing the state

variable

Achieving Thread SafetyAchieving Thread Safety

● If multiple threads access the same mutable state
variable without appropriate synchronization,
then your program is broken

● There are three ways to fix it
 Don't share the state variable across threads
 Make the state variable immutable
 Use synchronization whenever accessing the state

variable

● None of these are necessarily as easy as they may
sound

Thread-Safe ClassesThread-Safe Classes

● A class is thread safe when it continues to
behave correctly when accessed from multiple
threads

Thread-Safe ClassesThread-Safe Classes

● A class is thread safe when it continues to
behave correctly when accessed from multiple
threads

 Regardless of scheduling or interleaving of execution

Thread-Safe ClassesThread-Safe Classes

● A class is thread safe when it continues to
behave correctly when accessed from multiple
threads

 Regardless of scheduling or interleaving of execution
 No set of operations performed sequentially or

concurrently on instances of thread-safe classes can
cause an instance to be in an invalid state

Thread-Safe ClassesThread-Safe Classes

● A class is thread safe when it continues to
behave correctly when accessed from multiple
threads

 Regardless of scheduling or interleaving of execution
 No set of operations performed sequentially or

concurrently on instances of thread-safe classes can
cause an instance to be in an invalid state

 Any needed synchronization is encapsulated in the
class so that clients need not provide their own

▴ The concept of a thread-safe class only makes sense if the
class fully encapsulates its state

 Likewise for the entire body of code that comprises a thread-safe
program

Thread-Safe Class vs ProgramThread-Safe Class vs Program

● Is a thread-safe program simply a program
constructed of thread-safe classes?

Thread-Safe Class vs ProgramThread-Safe Class vs Program

● Is a thread-safe program simply a program
constructed of thread-safe classes?

 No
▴ All thread-safe classes can still result in non-thread-safe

programs
▴ A thread-safe program may use non-thread-safe classes

Thread-Safety ExampleThread-Safety Example

public class StatelessFactorizer implements Servlet {
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp, factors);
 }
}

● Stateless factorizing servlet

Thread-Safety ExampleThread-Safety Example

public class StatelessFactorizer implements Servlet {
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp, factors);
 }
}

● Stateless factorizing servlet

Has no fields and refer-
ences no fields from other
classes; everything is on
the stack. Therefore, it is

thread safe.

Thread-Safety ExampleThread-Safety Example

public class StatelessFactorizer implements Servlet {
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp, factors);
 }
}

● Stateless factorizing servlet

Stateless objects are al-
ways thread safe.

Thread-Safety ExampleThread-Safety Example

public class CountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

● Stateful factorizing servlet
 Keeps track of how many times it has been invoked

Thread-Safety ExampleThread-Safety Example

public class CountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

● Stateful factorizing servlet
 Keeps track of how many times it has been invoked

This would work fine with
in a single-threaded pro-
gram, but not in a multi-
threaded one...this is sus-
ceptible to lost updates.

Thread-Safety ExampleThread-Safety Example

public class CountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

● Stateful factorizing servlet
 Keeps track of how many times it has been invoked

This is a read-modify-
write race condition.

Race ConditionsRace Conditions

● A race condition is the possibility of incorrect
results due to timing of execution

Race ConditionsRace Conditions

● A race condition is the possibility of incorrect
results due to timing of execution

● Most common form is check-then-act
 A stale observation is used to determine what to do

next
▴ We've seen this in our homework where we have used

individually atomic actions to test and the perform some
action

Race ConditionsRace Conditions

● A race condition is the possibility of incorrect
results due to timing of execution

● Most common form is check-then-act
 A stale observation is used to determine what to do

next
▴ We've seen this in our homework where we have used

individually atomic actions to test and the perform some
action

● Similar to what happens in real-life if you try to
meet someone...

 Need to have some agreed upon protocol

Race Condition ExampleRace Condition Example

public class LazyInit {
 private ExpensiveObject instance = null;

 public ExpensiveObject getInstance() {
 if (instance == null)
 instance = new ExpensiveObject();
 return instance;
 }
}

● Lazy initialization

Race Condition ExampleRace Condition Example

public class LazyInit {
 private ExpensiveObject instance = null;

 public ExpensiveObject getInstance() {
 if (instance == null)
 instance = new ExpensiveObject();
 return instance;
 }
}

● Lazy initialization

Unfortunate timing could
result in this method re-

turning different in-
stances.

Compound ActionsCompound Actions

● Read-modify-write and check-then-act operation
sequences are compound actions

 To ensure thread safety, all constituent actions must
be performed atomically

● An operation or sequence of operations is
atomic if it is indivisible relative to other
operations on the same state

 i.e., other threads see it as either happening
completely or not at all.

Thread-Safety ExampleThread-Safety Example

public class CountingFactorizer implements Servlet {
 private final AtomicLong count = new AtomicLong(0);

 public long getCount() { return count.get(); }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count.incrementAndGet();
 encodeIntoResponse(resp, factors);
 }
}

● Modified stateful factorizing servlet
 Keeps track of how many times it has been invoked

Thread-Safety ExampleThread-Safety Example

public class CountingFactorizer implements Servlet {
 private final AtomicLong count = new AtomicLong(0);

 public long getCount() { return count.get(); }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count.incrementAndGet();
 encodeIntoResponse(resp, factors);
 }
}

● Modified stateful factorizing servlet
 Keeps track of how many times it has been invoked

Since this uses a thread-safe
AtomicLong type from

java.util.concurrent.atomic,
the class is once again thread safe.

Thread-Safety ExampleThread-Safety Example

public class CountingFactorizer implements Servlet {
 private final AtomicLong count = new AtomicLong(0);

 public long getCount() { return count.get(); }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count.incrementAndGet();
 encodeIntoResponse(resp, factors);
 }
}

● Modified stateful factorizing servlet
 Keeps track of how many times it has been invoked

AtomicLong provides
an atomic read-modify-

write operation for incre-
menting the value.

Thread-Safety ExampleThread-Safety Example

public class CountingFactorizer implements Servlet {
 private final AtomicLong count = new AtomicLong(0);

 public long getCount() { return count.get(); }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count.incrementAndGet();
 encodeIntoResponse(resp, factors);
 }
}

● Modified stateful factorizing servlet
 Keeps track of how many times it has been invoked

Advice:
Where practical, use exist-
ing thread-safe objects to

manage your state.

Side Note: AtomicLongSide Note: AtomicLong

● AtomicLong replaces a long/Long
 get() - Gets the current value.

 set(long newValue) - Sets to the given value.

 lazySet(long newValue) - Eventually sets to the given value.

 compareAndSet(long expect, long update) - Atomically sets the
value to the given updated value if the current value == the expected value.

 weakCompareAndSet(long expect, long update) - Atomically sets
the value to the given updated value if the current value == the expected value.

 getAndAdd(long delta) - Atomically adds the given value to the current
value.

 getAndDecrement() - Atomically decrements by one the current value.

 getAndIncrement() - Atomically increments by one the current value.

 getAndSet(long newValue) - Atomically sets to the given value and returns
the old value.

 addAndGet(long delta) - Atomically adds the given value to the current
value.

 incrementAndGet() - Atomically increments by one the current value.

 decrementAndGet() - Atomically decrements by one the current value.

Thread-Safety ExampleThread-Safety Example

public class CachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber
 = new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors
 = new AtomicReference<BigInteger[]>();

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get()))
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp, factors);
 }
 }
}

● Caching factorizing servlet
 Remembers last result

Thread-Safety ExampleThread-Safety Example

public class CachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber
 = new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors
 = new AtomicReference<BigInteger[]>();

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get()))
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp, factors);
 }
 }
}

● Caching factorizing servlet
 Remembers last result

Even though our two
references are atomic,

they are not independent.

Thread-Safety ExampleThread-Safety Example

public class CachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber
 = new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors
 = new AtomicReference<BigInteger[]>();

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get()))
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp, factors);
 }
 }
}

● Caching factorizing servlet
 Remembers last result

Thus, dependent opera-
tions on them must be

done atomically...

Thread-Safety ExampleThread-Safety Example

public class CachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber
 = new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors
 = new AtomicReference<BigInteger[]>();

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get()))
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp, factors);
 }
 }
}

● Caching factorizing servlet
 Remembers last result

And here too.

Thread-Safety ExampleThread-Safety Example

public class CachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber
 = new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors
 = new AtomicReference<BigInteger[]>();

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get()))
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp, factors);
 }
 }
}

● Caching factorizing servlet
 Remembers last result

Thus, this class is not
thread safe.

Side Note: AtomicReference<V>Side Note: AtomicReference<V>

● AtomicReference<V> can be used in place
of a reference to an object

 get() - Gets the current value.

 set(V newValue) - Sets to the given value.

 lazySet(V newValue) - Eventually sets to the given
value.

 getAndSet(V newValue) - Atomically sets to the given
value and returns the old value.

 compareAndSet(V expect, V update) - Atomically
sets the value to the given updated value if the current value ==
the expected value.

 weakCompareAndSet(V expect, V update) -
Atomically sets the value to the given updated value if the
current value == the expected value.

Intrinsic LocksIntrinsic Locks

● Java offers built-in locking to enforce atomicity
via the synchronized block

 One lock associated with each object instance
 A synchronized block is comprised of

▴ An object reference that is used as the lock
▴ A block of code that is guarded by the lock

 Only one thread at any given time can be inside of a
block guarded by a given lock (i.e, mutual exclusion)

▴ The lock is acquired/released by the thread on entry/exit
 It may be blocked to wait to acquire the lock

 Although each object has a lock, that lock can be used
for any purpose

▴ Not necessarily related to the object itself
▴ Possibly spanning many objects

Intrinsic LocksIntrinsic Locks

● A lock associated with an object does not restrict
access to the object's state

 It only restricts multiple threads from acquiring the
lock at the same time

 Having a built-in object lock is only a convenience so
that we don't have to explicitly create locks

● Encapsulation with an appropriate locking
protocol is the only way to restrict access to an
object's state

Intrinsic LocksIntrinsic Locks

public class Foo {
 public synchronized void bar() {
 ...
 }
}

Is equivalent to:

public class Foo {
 public void bar() {
 synchronized (this) {
 ...
 }
 }
}

Intrinsic LocksIntrinsic Locks

public class Foo {
 public synchronized void bar() {
 ...
 }
}

Is equivalent to:

public class Foo {
 public void bar() {
 synchronized (this) {
 ...
 }
 }
}

Why might you do this
instead?

Intrinsic LocksIntrinsic Locks

public class Foo {
 public synchronized void bar() {
 ...
 }
}

Is equivalent to:

public class Foo {
 public void bar() {
 synchronized (this) {
 ...
 }
 }
}

To provide more fine-
grained locking.

Intrinsic LocksIntrinsic Locks

public class Foo {
 public synchronized void bar() {
 ...
 }

 public void woz() {
 ...
 }
}

● Assuming Foo is thread safe, what can we
assume about bar() and woz()?

Intrinsic LocksIntrinsic Locks

public class Foo {
 public synchronized void bar() {
 ...
 }

 public void woz() {
 ...
 }
}

● Assuming Foo is thread safe, what can we
assume about bar() and woz()?

Perhaps that the woz()
method does not access

shared state...

Intrinsic LocksIntrinsic Locks

public class Foo {
 public synchronized void bar() {
 ...
 }

 public void woz() {
 ...
 }
}

● Assuming Foo is thread safe, what can we
assume about bar() and woz()?

Or that woz() has more
fine-grained locking...

Intrinsic LocksIntrinsic Locks

public class Foo {
 public synchronized void bar() {
 ...
 }

 public void woz() {
 ...
 }
}

● Assuming Foo is thread safe, what can we
assume about bar() and woz()?

At a minimum, we know
that more than one

thread can enter woz()
and thus the Foo in-

stance at a given time.

Intrinsic LocksIntrinsic Locks

public class Foo {
 public Foo(String s) { ... }
 public void foo() {
 synchronized (s) {
 ...
 }
 }
}

public class Bar {
 public Bar(String s) { ... }
 public void bar() {
 synchronized (s) {
 ...
 }
 }
}

● How does sharing locks across objects work?

...
String s = new String(“l”);
Foo f = new Foo(s);
Bar b = new Bar(s);
...

Intrinsic LocksIntrinsic Locks

public class Foo {
 public Foo(String s) { ... }
 public void foo() {
 synchronized (s) {
 ...
 }
 }
}

public class Bar {
 public Bar(String s) { ... }
 public void bar() {
 synchronized (s) {
 ...
 }
 }
}

● How does sharing locks across objects work?

...
String s = new String(“l”);
Foo f = new Foo(s);
Bar b = new Bar(s);
...

As you would expect,
only one thread can be ex-
ecuting inside the guarded

code blocks of Foo or
Bar at a given time.

Thread-Safety ExampleThread-Safety Example

public class CachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber
 = new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors
 = new AtomicReference<BigInteger[]>();

 public synchronized void service(
 ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get()))
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp, factors);
 }
 }
}

● Modified caching factorizing servlet
 Remembers last result

Thread-Safety ExampleThread-Safety Example

public class CachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber
 = new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors
 = new AtomicReference<BigInteger[]>();

 public synchronized void service(
 ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get()))
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp, factors);
 }
 }
}

● Modified caching factorizing servlet
 Remembers last result

This does achieve thread
safety, but it no longer

allows concurrent execu-
tion; thus, its perfor-

mance is worse.

Intrinsic LocksIntrinsic Locks

● Would the following code deadlock?

public class Widget {
 public synchronized void doSomething() {
 ...
 }
}

public class LoggingWidget extends Widget {
 public synchronized void doSomething() {
 System.out.println("Calling doSomething");
 super.doSomething();
 }
}

Intrinsic LocksIntrinsic Locks

● Would the following code deadlock?

public class Widget {
 public synchronized void doSomething() {
 ...
 }
}

public class LoggingWidget extends Widget {
 public synchronized void doSomething() {
 System.out.println("Calling doSomething");
 super.doSomething();
 }
}

No, because intrinsic
locks are reentrant.

Intrinsic LocksIntrinsic Locks

● Intrinsic locks are acquired per thread, not per
invocation

 Semaphores are acquired per invocation, for example

Intrinsic LocksIntrinsic Locks

● Intrinsic locks are acquired per thread, not per
invocation

 Semaphores are acquired per invocation, for example

● Essentially, Java remembers the thread that owns
a lock and keeps a lock counter

 The counter value for unheld locks is zero
 Each time a given thread acquires a lock, it increments

the counter
▴ Likewise, it decrements the counter each time it exits a

synchronized block until it reaches zero and the lock is freed

Intrinsic LocksIntrinsic Locks

● Intrinsic locks are acquired per thread, not per
invocation

 Semaphores are acquired per invocation, for example

● Essentially, Java remembers the thread that owns
a lock and keeps a lock counter

 The counter value for unheld locks is zero
 Each time a given thread acquires a lock, it increments

the counter
▴ Likewise, it decrements the counter each time it exits a

synchronized block until it reaches zero and the lock is freed

● Reentrancy facilitates encapsulation of locking
behavior and simplifies development object-
oriented concurrent code

Locking Rules of ThumbLocking Rules of Thumb

● Compound actions on shared state must be made
atomic (i.e., read-modify-write, check-then-act)

Locking Rules of ThumbLocking Rules of Thumb

● Compound actions on shared state must be made
atomic (i.e., read-modify-write, check-then-act)

 Combining individually atomic actions does not result
in an atomic action

Locking Rules of ThumbLocking Rules of Thumb

● Compound actions on shared state must be made
atomic (i.e., read-modify-write, check-then-act)

 Combining individually atomic actions does not result
in an atomic action

● All access to shared state must be synchronized,
not just modifications

Locking Rules of ThumbLocking Rules of Thumb

● Compound actions on shared state must be made
atomic (i.e., read-modify-write, check-then-act)

 Combining individually atomic actions does not result
in an atomic action

● All access to shared state must be synchronized,
not just modifications

 Use same lock wherever a specific variable is accessed
▴ Variable is considered to be guarded by the specific lock
▴ Also true if multiple variables make up a single invariant

 You should clearly document which locks are used to
guard which state

Locking Rules of ThumbLocking Rules of Thumb

● Compound actions on shared state must be made
atomic (i.e., read-modify-write, check-then-act)

 Combining individually atomic actions does not result
in an atomic action

● All access to shared state must be synchronized,
not just modifications

 Use same lock wherever a specific variable is accessed
▴ Variable is considered to be guarded by the specific lock
▴ Also true if multiple variables make up a single invariant

 You should clearly document which locks are used to
guard which state

● Only guard mutable state that is potentially
accessed by multiple threads

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking
 Too little could result in invalidate states

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking
 Too little could result in invalidate states
 Too much could result in deadlock

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking
 Too little could result in invalidate states
 Too much could result in deadlock
 Too coarse grained could result in poor performance

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking
 Too little could result in invalidate states
 Too much could result in deadlock
 Too coarse grained could result in poor performance
 Too fine grained increases complexity and could also

result in poor performance

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking
 Too little could result in invalidate states
 Too much could result in deadlock
 Too coarse grained could result in poor performance
 Too fine grained increases complexity and could also

result in poor performance

● Prefer simplicity over performance
 Optimize later, if necessary

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking
 Too little could result in invalidate states
 Too much could result in deadlock
 Too coarse grained could result in poor performance
 Too fine grained increases complexity and could also

result in poor performance

● Prefer simplicity over performance
 Optimize later, if necessary

● Avoid holding locks during lengthy computations

Locking Rules of ThumbLocking Rules of Thumb

● Need right amount of locking
 Too little could result in invalidate states
 Too much could result in deadlock
 Too coarse grained could result in poor performance
 Too fine grained increases complexity and could also

result in poor performance

● Prefer simplicity over performance
 Optimize later, if necessary

● Avoid holding locks during lengthy computations
● Avoid calling external code while holding locks

Thread-Safety ExampleThread-Safety Example

@ThreadSafe
public class CachedFactorizer implements Servlet {
 @GuardedBy("this") private BigInteger lastNumber, lastFactors[];
 @GuardedBy("this") private long hits, cacheHits;
 public synchronized long getHits() { return hits; }
 public synchronized double getCacheHitRatio()
 { return (double) cacheHits / (double) hits; }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized (this) {
 ++hits;
 if (i.equals(lastNumber)) {
 ++cacheHits; factors = lastFactors.clone();
 }
 }
 if (factors == null) {
 factors = factor(i);
 synchronized (this) {
 lastNumber = i; lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp, factors);
 }
}

Thread-Safety ExampleThread-Safety Example

@ThreadSafe
public class CachedFactorizer implements Servlet {
 @GuardedBy("this") private BigInteger lastNumber, lastFactors[];
 @GuardedBy("this") private long hits, cacheHits;
 public synchronized long getHits() { return hits; }
 public synchronized double getCacheHitRatio()
 { return (double) cacheHits / (double) hits; }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized (this) {
 ++hits;
 if (i.equals(lastNumber)) {
 ++cacheHits; factors = lastFactors.clone();
 }
 }
 if (factors == null) {
 factors = factor(i);
 synchronized (this) {
 lastNumber = i; lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp, factors);
 }
}

Is this class good now?

Thread-Safety ExampleThread-Safety Example

@ThreadSafe
public class CachedFactorizer implements Servlet {
 @GuardedBy("this") private BigInteger lastNumber, lastFactors[];
 @GuardedBy("this") private long hits, cacheHits;
 public synchronized long getHits() { return hits; }
 public synchronized double getCacheHitRatio()
 { return (double) cacheHits / (double) hits; }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized (this) {
 ++hits;
 if (i.equals(lastNumber)) {
 ++cacheHits; factors = lastFactors.clone();
 }
 }
 if (factors == null) {
 factors = factor(i);
 synchronized (this) {
 lastNumber = i; lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp, factors);
 }
}

Yes. The compound ac-
tions are appropriately
guarded in such a way

that still allows for con-
currency.

Thread-Safety ExampleThread-Safety Example

@ThreadSafe
public class CachedFactorizer implements Servlet {
 @GuardedBy("this") private BigInteger lastNumber, lastFactors[];
 @GuardedBy("this") private long hits, cacheHits;
 public synchronized long getHits() { return hits; }
 public synchronized double getCacheHitRatio()
 { return (double) cacheHits / (double) hits; }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized (this) {
 ++hits;
 if (i.equals(lastNumber)) {
 ++cacheHits; factors = lastFactors.clone();
 }
 }
 if (factors == null) {
 factors = factor(i);
 synchronized (this) {
 lastNumber = i; lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp, factors);
 }
}

Why do we no longer
use AtomicLong vari-

ables?

Thread-Safety ExampleThread-Safety Example

@ThreadSafe
public class CachedFactorizer implements Servlet {
 @GuardedBy("this") private BigInteger lastNumber, lastFactors[];
 @GuardedBy("this") private long hits, cacheHits;
 public synchronized long getHits() { return hits; }
 public synchronized double getCacheHitRatio()
 { return (double) cacheHits / (double) hits; }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized (this) {
 ++hits;
 if (i.equals(lastNumber)) {
 ++cacheHits; factors = lastFactors.clone();
 }
 }
 if (factors == null) {
 factors = factor(i);
 synchronized (this) {
 lastNumber = i; lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp, factors);
 }
}

Not necessary since ac-
cess is already guarded.

