
A Brief History of Just-In-Time

JOHN AYCOCK

University of Calgary

Software systems have been using “just-in-time” compilation (JIT) techniques since the
1960s. Broadly, JIT compilation includes any translation performed dynamically, after a
program has started execution. We examine the motivation behind JIT compilation and
constraints imposed on JIT compilation systems, and present a classification scheme for
such systems. This classification emerges as we survey forty years of JIT work, from
1960–2000.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors;
K.2 [History of Computing]: Software

General Terms: Languages, Performance

Additional Key Words and Phrases: Just-in-time compilation, dynamic compilation

1. INTRODUCTION

Those who cannot remember the past are con-
demned to repeat it.

George Santayana, 1863–1952 [Bartlett 1992]

This oft-quoted line is all too applicable
in computer science. Ideas are generated,
explored, set aside—only to be reinvented
years later. Such is the case with what
is now called “just-in-time” (JIT) or dy-
namic compilation, which refers to trans-
lation that occurs after a program begins
execution.

Strictly speaking, JIT compilation sys-
tems (“JIT systems” for short) are com-
pletely unnecessary. They are only a
means to improve the time and space ef-
ficiency of programs. After all, the central
problem JIT systems address is a solved
one: translating programming languages

This work was supported in part by a grant from the National Science and Engineering Research Council of
Canada.
Author’s address: Department of Computer Science, University of Calgary, 2500 University Dr. N. W., Calgary,
Alta., Canada T2N 1N4; email: aycock@cpsc.ucalgary.ca.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.
c©2003 ACM 0360-0300/03/0600-0097 $5.00

into a form that is executable on a target
platform.

What is translated? The scope and na-
ture of programming languages that re-
quire translation into executable form
covers a wide spectrum. Traditional pro-
gramming languages like Ada, C, and
Java are included, as well as little lan-
guages [Bentley 1988] such as regular
expressions.

Traditionally, there are two approaches
to translation: compilation and interpreta-
tion. Compilation translates one language
into another—C to assembly language, for
example—with the implication that the
translated form will be more amenable
to later execution, possibly after further
compilation stages. Interpretation elimi-
nates these intermediate steps, perform-
ing the same analyses as compilation, but
performing execution immediately.

ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp. 97–113.

98 Aycock

JIT compilation is used to gain the ben-
efits of both (static) compilation and inter-
pretation. These benefits will be brought
out in later sections, so we only summa-
rize them here:

—Compiled programs run faster, espe-
cially if they are compiled into a form
that is directly executable on the under-
lying hardware. Static compilation can
also devote an arbitrary amount of time
to program analysis and optimization.
This brings us to the primary constraint
on JIT systems: speed. A JIT system
must not cause untoward pauses in nor-
mal program execution as a result of its
operation.

—Interpreted programs are typically
smaller, if only because the represen-
tation chosen is at a higher level than
machine code, and can carry much more
semantic information implicitly.

—Interpreted programs tend to be
more portable. Assuming a machine-
independent representation, such as
high-level source code or virtual ma-
chine code, only the interpreter need be
supplied to run the program on a differ-
ent machine. (Of course, the program
still may be doing nonportable opera-
tions, but that’s a different matter.)

—Interpreters have access to run-time
information, such as input parame-
ters, control flow, and target machine
specifics. This information may change
from run to run or be unobtainable
prior to run-time. Additionally, gather-
ing some types of information about a
program before it runs may involve al-
gorithms which are undecidable using
static analysis.

To narrow our focus somewhat, we
only examine software-based JIT systems
that have a nontrivial translation aspect.
Keppel et al. [1991] eloquently built an ar-
gument for the more general case of run-
time code generation, where this latter re-
striction is removed.

Note that we use the term execution in
a broad sense—we call a program repre-
sentation executable if it can be executed
by the JIT system in any manner, either

directly as in machine code, or indirectly
using an interpreter.

2. JIT COMPILATION TECHNIQUES

Work on JIT compilation techniques often
focuses around implementation of a par-
ticular programming language. We have
followed this same division in this sec-
tion, ordering from earliest to latest where
possible.

2.1. Genesis

Self-modifying code has existed since the
earliest days of computing, but we exclude
that from consideration because there is
typically no compilation or translation as-
pect involved.

Instead, we suspect that the earliest
published work on JIT compilation was
McCarthy’s [1960] LISP paper. He men-
tioned compilation of functions into ma-
chine language, a process fast enough that
the compiler’s output needn’t be saved.
This can be seen as an inevitable result of
having programs and data share the same
notation [McCarthy 1981].

Another early published reference to
JIT compilation dates back to 1966. The
University of Michigan Executive System
for the IBM 7090 explicitly notes that the
assembler [University of Michigan 1966b,
p. 1] and loader [University of Michigan
1966a, p. 6] can be used to translate and
load during execution. (The manual’s pref-
ace says that most sections were written
before August 1965, so this likely dates
back further.)

Thompson’s [1968] paper, published in
Communications of the ACM, is frequently
cited as “early work” in modern publi-
cations. He compiled regular expressions
into IBM 7094 code in an ad hoc fashion,
code which was then executed to perform
matching.

2.2. LC2

The Language for Conversational Com-
puting, or LC2, was designed for in-
teractive programming [Mitchell et al.
1968]. Although used briefly at Carnegie-
Mellon University for teaching, LC2 was

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 99

Fig. 1 . The time-space tradeoff.

primarily an experimental language
[Mitchell 2000]. It might otherwise be
consigned to the dustbin of history, if
not for the techniques used by Mitchell
in its implementation [Mitchell 1970],
techniques that later influenced JIT
systems for Smalltalk and Self.

Mitchell observed that compiled code
can be derived from an interpreter at run-
time, simply by storing the actions per-
formed during interpretation. This only
works for code that has been executed,
however—he gave the example of an if-
then-else statement, where only the else-
part is executed. To handle such cases,
code is generated for the unexecuted part
which reinvokes the interpreter should it
ever be executed (the then-part, in the
example above).

2.3. APL

The seminal work on efficient APL
implementation is Abrams’ disserta-
tion [Abrams 1970]. Abrams concocted
two key APL optimization strategies,
which he described using the connotative
terms drag-along and beating. Drag-along
defers expression evaluation as long as
possible, gathering context information in
the hopes that a more efficient evaluation
method might become apparent; this
might now be called lazy evaluation.
Beating is the transformation of code to
reduce the amount of data manipulation
involved during expression evaluation.

Drag-along and beating relate to JIT
compilation because APL is a very dy-
namic language; types and attributes of
data objects are not, in general, known
until run-time. To fully realize these op-
timizations’ potential, their application
must be delayed until run-time informa-
tion is available.

Abrams’ “APL Machine” employed two
separate JIT compilers. The first trans-

lated APL programs into postfix code for
a D-machine,1 which maintained a buffer
of deferred instructions. The D-machine
acted as an “algebraically simplifying com-
piler” [Abrams 1970, p. 84] which would
perform drag-along and beating at run-
time, invoking an E-machine to execute
the buffered instructions when necessary.

Abrams’ work was directed toward
an architecture for efficient support of
APL, hardware support for high-level lan-
guages being a popular pursuit of the time.
Abrams never built the machine, however;
an implementation was attempted a few
years later [Schroeder and Vaughn 1973].2
The techniques were later expanded upon
by others [Miller 1977], although the ba-
sic JIT nature never changed, and were
used for the software implementation of
Hewlett-Packard’s APL\3000 [Johnston
1977; van Dyke 1977].

2.4. Mixed Code, Throw-Away Code,
and BASIC

The tradeoff between execution time and
space often underlies the argument for JIT
compilation. This tradeoff is summarized
in Figure 1. The other consideration is
that most programs spend the majority of
time executing a minority of code, based on
data from empirical studies [Knuth 1971].
Two ways to reconcile these observations
have appeared: mixed code and throw-
away compiling.

Mixed code refers to the implementa-
tion of a program as a mixture of native
code and interpreted code, proposed in-
dependently by Dakin and Poole [1973]
and Dawson [1973]. The frequently ex-
ecuted parts of the program would be

1 Presumably D stood for Deferral or Drag-Along.
2 In the end, Litton Industries (Schroeder and
Vaughn’s employer) never built the machine
[Mauriello 2000].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

100 Aycock

in native code, the infrequently executed
parts interpreted, hopefully yielding a
smaller memory footprint with little or no
impact on speed. A fine-grained mixture is
implied: implementing the program with
interpreted code and the libraries with na-
tive code would not constitute mixed code.

A further twist to the mixed code ap-
proach involved customizing the inter-
preter [Pittman 1987]. Instead of mixing
native code into the program, the na-
tive code manifests itself as special vir-
tual machine instructions; the program is
then compiled entirely into virtual ma-
chine code.

The basic idea of mixed code, switch-
ing between different types of executable
code, is still applicable to JIT systems, al-
though few researchers at the time ad-
vocated generating the machine code at
run-time. Keeping both a compiler and an
interpreter in memory at run-time may
have been considered too costly on the ma-
chines of the day, negating any program
size tradeoff.

The case against mixed code comes from
software engineering [Brown 1976]. Even
assuming that the majority of code will be
shared between the interpreter and com-
piler, there are still two disparate pieces
of code (the interpreter proper and the
compiler’s code generator) which must be
maintained and exhibit identical behavior.

(Proponents of partial evaluation, or
program specialization, will note that this
is a specious argument in some sense, be-
cause a compiler can be thought of as a
specialized interpreter [Jones et al. 1993].
However, the use of partial evaluation
techniques is not currently widespread.)

This brings us to the second man-
ner of reconciliation: throw-away compil-
ing [Brown 1976]. This was presented
purely as a space optimization: instead
of static compilation, parts of a program
could be compiled dynamically on an as-
needed basis. Upon exhausting memory,
some or all of the compiled code could be
thrown away; the code would be regener-
ated later if necessary.

BASIC was the testbed for throw-
away compilation. Brown [1976] essen-
tially characterized the technique as a

good way to address the time-space trade-
off; Hammond [1977] was somewhat more
adamant, claiming throw-away compila-
tion to be superior except when memory
is tight.

A good discussion of mixed code and
throw-away compiling may be found
in Brown [1990].

2.5. FORTRAN

Some of the first work on JIT systems
where programs automatically optimize
their “hot spots” at run-time was due to
Hansen [1974].3 He addressed three im-
portant questions:

(1) What code should be optimized?
Hansen chose a simple, low-cost
frequency model, maintaining a
frequency-of-execution counter for
each block of code (we use the generic
term block to describe a unit of
code; the exact nature of a block is
immaterial for our purposes).

(2) When should the code be optimized?
The frequency counters served a sec-
ond rôle: crossing a threshold value
made the associated block of code a
candidate for the next “level” of op-
timization, as described below. “Su-
pervisor” code was invoked between
blocks, which would assess the coun-
ters, perform optimization if necessary,
and transfer control to the next block
of code. The latter operation could be a
direct call, or interpreter invocation—
mixed code was supported by Hansen’s
design.

(3) How should the code be optimized?
A set of conventional machine-
independent and machine-dependent
optimizations were chosen and or-
dered, so a block might first be opti-
mized by constant folding, by common
subexpression elimination the second

3 Dawson [1973] mentioned a 1967 report by Barbieri
and Morrissey where a program begins execution in
interpreted form, and frequently executed parts “can
be converted to machine code.” However, it is not clear
if the conversion to machine code occurred at run-
time. Unfortunately, we have not been able to obtain
the cited work as of this writing.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 101

time optimization occurs, by code
motion the third time, and so on.
Hansen [1974] observed that this
scheme limits the amount of time
taken at any given optimization point
(especially important if the frequency
model proves to be incorrect), as
well as allowing optimizations to be
incrementally added to the compiler.

Programs using the resulting Adap-
tive FORTRAN system reportedly were
not always faster than their statically
compiled-and-optimized counterparts, but
performed better overall.

Returning again to mixed code, Ng and
Cantoni [1976] implemented a variant of
FORTRAN using this technique. Their
system could compile functions at run-
time into “pseudo-instructions,” probably
a tokenized form of the source code rather
than a lower-level virtual machine code.
The pseudo-instructions would then be
interpreted. They claimed that run-time
compilation was useful for some applica-
tions and avoided a slow compile-link pro-
cess. They did not produce mixed code
at run-time; their use of the term re-
ferred to the ability to have statically
compiled FORTRAN programs call their
pseudo-instruction interpreter automati-
cally when needed via linker trickery.

2.6. Smalltalk

Smalltalk source code is compiled into vir-
tual machine code when new methods are
added to a class [Goldberg and Robson
1985]. The performance of naı̈ve Smalltalk
implementations left something to be de-
sired, however.

Rather than attack the performance
problem with hardware, Deutsch and
Schiffman [1984] made key optimizations
in software. The observation behind this
was that they could pick the most efficient
representation for information, so long as
conversion between representations hap-
pened automatically and transparently to
the user.

JIT conversion of virtual machine code
to native code was one of the optimiza-
tion techniques they used, a process they

likened to macro-expansion. Procedures
were compiled to native code lazily, when
execution entered the procedure; the na-
tive code was cached for later use. Their
system was linked to memory manage-
ment in that native code would never be
paged out, just thrown away and regener-
ated later if necessary.

In turn, Deutsch and Schiffman [1984]
credited the dynamic translation idea to
Rau [1978]. Rau was concerned with “uni-
versal host machines” which would ex-
ecute a variety of high-level languages
well (compared to, say, a specialized APL
machine). He proposed dynamic trans-
lation to microcode at the granularity
of single virtual machine instructions.
A hardware cache, the dynamic transla-
tion buffer, would store completed transla-
tions; a cache miss would signify a missing
translation, and fault to a dynamic trans-
lation routine.

2.7. Self

The Self programming language [Ungar
and Smith 1987; Smith and Ungar 1995],
in contrast to many of the other lan-
guages mentioned in this section, is pri-
marily a research vehicle. Self is in many
ways influenced by Smalltalk, in that
both are pure object-oriented languages—
everything is an object. But Self eschews
classes in favor of prototypes, and oth-
erwise attempts to unify a number of
concepts. Every action is dynamic and
changeable, and even basic operations,
like local variable access, require invoca-
tion of a method. To further complicate
matters, Self is a dynamically-typed lan-
guage, meaning that the types of identi-
fiers are not known until run-time.

Self ’s unusual design makes efficient
implementation difficult. This resulted in
the development of the most aggressive,
ambitious JIT compilation and optimiza-
tion up to that time. The Self group
noted three distinct generations of com-
piler [Hölzle 1994], an organization we fol-
low below; in all cases, the compiler was
invoked dynamically upon a method’s in-
vocation, as in Deutsch and Schiffman’s
[1984] Smalltalk system.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

102 Aycock

2.7.1. First Generation. Almost all the op-
timization techniques employed by Self
compilers dealt with type information, and
transforming a program in such a way
that some certainty could be had about the
types of identifiers. Only a few techniques
had a direct relationship with JIT compi-
lation, however.

Chief among these, in the first-
generation Self compiler, was customiza-
tion [Chambers et al. 1989; Chambers and
Ungar 1989; Chambers 1992]. Instead
of dynamically compiling a method into
native code that would work for any
invocation of the method, the compiler
produced a version of the method that
was customized to that particular con-
text. Much more type information was
available to the JIT compiler compared
to static compilation, and by exploiting
this fact the resulting code was much
more efficient. While method calls from
similar contexts could share customized
code, “overcustomization” could still
consume a lot of memory at run-time;
ways to combat this problem were later
studied [Dieckmann and Hölzle 1997].

2.7.2. Second Generation. The second-
generation Self compiler extended one
of the program transformation tech-
niques used by its predecessor, and
computed much better type information
for loops [Chambers and Ungar 1990;
Chambers 1992].

This Self compiler’s output was indeed
faster than that of the first generation,
but it came at a price. The compiler ran
15 to 35 times more slowly on bench-
marks [Chambers and Ungar 1990, 1991],
to the point where many users refused to
use the new compiler [Hölzle 1994]!

Modifications were made to the respon-
sible algorithms to speed up compila-
tion [Chambers and Ungar 1991]. One
such modification was called deferred com-
pilation of uncommon cases.4 The compiler

4 In Chambers’ thesis, this is referred to as “lazy
compilation of uncommon branches,” an idea he
attributes to a suggestion by John Maloney in
1989 [Chambers 1992, p. 123]. However, this is the
same technique used in Mitchell [1970], albeit for
different reasons.

is informed that certain events, such as
arithmetic overflow, are unlikely to occur.
That being the case, no code is generated
for these uncommon cases; a stub is left
in the code instead, which will invoke the
compiler again if necessary. The practi-
cal result of this is that the code for un-
common cases need not be analyzed upon
initial compilation, saving a substantial
amount of time.5

Ungar et al. [1992] gave a good presen-
tation of optimization techniques used in
Self and the resulting performance in the
first- and second-generation compilers.

2.7.3. Third Generation. The third-
generation Self compiler attacked the
issue of slow compilation at a much more
fundamental level. The Self compiler
was part of an interactive, graphical
programming environment; executing the
compiler on-the-fly resulted in a notice-
able pause in execution. Hölzle argued
that measuring pauses in execution for
JIT compilation by timing the amount
of time the compiler took to run was
deceptive, and not representative of the
user’s experience [Hölzle 1994; Hölzle
and Ungar 1994b]. Two invocations of the
compiler could be separated by a brief
spurt of program execution, but would
be perceived as one long pause by the
user. Hölzle compensated by considering
temporally related groups of pauses, or
“pause clusters,” rather than individual
compilation pauses.

As for the compiler itself, compi-
lation time was reduced—or at least
spread out—by using adaptive optimiza-
tion, similar to Hansen’s [1974] FOR-
TRAN work. Initial method compilation
was performed by a fast, nonoptimizing
compiler; frequency-of-invocation coun-
ters were kept for each method to de-
termine when recompilation should oc-
cur [Hölzle 1994; Hölzle and Ungar 1994a,
1994b]. Hölzle makes an interesting com-
ment on this mechanism:

. . . in the course of our experiments we discov-
ered that the trigger mechanism (“when”) is

5 This technique can be applied to dynamic compila-
tion of exception handling code [Lee et al. 2000].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 103

much less important for good recompilation
results than the selection mechanism (“what”).
[Hölzle 1994, p. 38]6

This may come from the slightly coun-
terintuitive notion that the best candi-
date for recompilation is not necessarily
the method whose counter triggered the
recompilation. Object-oriented program-
ming style tends to encourage short meth-
ods; a better choice may be to (re)optimize
the method’s caller and incorporate the
frequently invoked method inline [Hölzle
and Ungar 1994b].

Adaptive optimization adds the compli-
cation that a modified method may already
be executing, and have information (such
as an activation record on the stack) that
depends on the previous version of the
modified method [Hölzle 1994]; this must
be taken into consideration.7

The Self compiler’s JIT optimization
was assisted by the introduction of “type
feedback” [Hölzle 1994; Hölzle and Ungar
1994a]. As a program executed, type infor-
mation was gathered by the run-time sys-
tem, a straightforward process. This type
information would then be available if and
when recompilation occurred, permitting
more aggressive optimization. Informa-
tion gleaned using type feedback was later
shown to be comparable with, and perhaps
complementary to, information from static
type inference [Agesen and Hölzle 1995;
Agesen 1996].

2.8. Slim Binaries and Oberon

One problem with software distribution
and maintenance is the heterogeneous
computing environment in which soft-
ware runs: different computer architec-
tures require different binary executables.
Even within a single line of backward-
compatible processors, many variations in
capability can exist; a program statically

6 The same comment, with slightly different wording,
also appears in Hölzle and Ungar [1994a, p. 328].
7 Hansen’s work in 1974 could ignore this possibility;
the FORTRAN of the time did not allow recursion,
and so activation records and a stack were unneces-
sary [Sebesta 1999].

compiled for the least-common denomina-
tor of processor may not take full advan-
tage of the processor on which it eventu-
ally executes.

In his doctoral work, Franz ad-
dressed these problems using “slim
binaries” [Franz 1994; Franz and Kistler
1997]. A slim binary contains a high-level,
machine-independent representation8

of a program module. When a module
is loaded, executable code is generated
for it on-the-fly, which can presumably
tailor itself to the run-time environment.
Franz, and later Kistler, claimed that
generating code for an entire module at
once was often superior to the method-
at-a-time strategy used by Smalltalk
and Self, in terms of the resulting code
performance [Franz 1994; Kistler 1999].

Fast code generation was critical to the
slim binary approach. Data structures
were delicately arranged to facilitate this;
generated code that could be reused was
noted and copied if needed later, rather
than being regenerated [Franz 1994].

Franz implemented slim binaries for
the Oberon system, which allows dynamic
loading of modules [Wirth and Gutknecht
1989]. Loading and generating code for a
slim binary was not faster than loading a
traditional binary [Franz 1994; Franz and
Kistler 1997], but Franz argued that this
would eventually be the case as the speed
discrepancy between processors and in-
put/output (I/O) devices increased [Franz
1994].

Using slim binaries as a starting point,
Kistler’s [1999] work investigated “contin-
uous” run-time optimization, where parts
of an executing program can be optimized
ad infinitum. He contrasted this to the
adaptive optimization used in Self, where
optimization of methods would eventually
cease.

Of course, reoptimization is only useful
if a new, better, solution can be obtained;
this implies that continuous optimization
is best suited to optimizations whose in-
put varies over time with the program’s

8 This representation is an abstract syntax tree, to
be precise.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

104 Aycock

execution.9 Accordingly, Kistler looked at
cache optimizations—rearranging fields
in a structure dynamically to optimize
a program’s data-access patterns [Kistler
1999; Kistler and Franz 1999]—and a dy-
namic version of trace scheduling, which
optimizes based on information about
a program’s control flow during execu-
tion [Kistler 1999].

The continuous optimizer itself executes
in the background, as a separate low-
priority thread which executes only dur-
ing a program’s idle time [Kistler 1997,
1999]. Kistler used a more sophisticated
metric than straightforward counters to
determine when to optimize, and observed
that deciding what to optimize is highly
optimization-specific [Kistler 1999].

An idea similar to continuous optimiza-
tion has been implemented for Scheme.
Burger [1997] dynamically reordered code
blocks using profile information, to im-
prove code locality and hardware branch
prediction. His scheme relied on the (copy-
ing) garbage collector to locate pointers
to old versions of a function, and update
them to point to the newer version. This
dynamic recompilation process could be
repeated any number of times [Burger
1997, page 70].

2.9. Templates, ML, and C

ML and C make strange bedfellows, but
the same approach has been taken to dy-
namic compilation in both. This approach
is called staged compilation, where compi-
lation of a single program is divided into
two stages: static and dynamic compila-
tion. Prior to run-time, a static compiler
compiles “templates,” essentially building
blocks which are pieced together at run-
time by the dynamic compiler, which may
also place run-time values into holes left in
the templates. Typically these templates
are specified by user annotations, al-
though some work has been done on deriv-
ing them automatically [Mock et al. 1999].

9 Although, making the general case for run-time op-
timization, he discussed intermodule optimizations
where this is not the case [Kistler 1997].

As just described, template-based sys-
tems arguably do not fit our description of
JIT compilers, since there would appear to
be no nontrivial translation aspect. How-
ever, templates may be encoded in a form
which requires run-time translation be-
fore execution, or the dynamic compiler
may perform run-time optimizations after
connecting the templates.

Templates have been applied to (sub-
sets of) ML [Leone and Lee 1994; Lee
and Leone 1996; Wickline et al. 1998].
They have also been used for run-time spe-
cialization of C [Consel and Noël 1996;
Marlet et al. 1999], as well as dynamic
extensions of C [Auslander et al. 1996;
Engler et al. 1996; Poletto et al. 1997].
One system, Dynamo,10 proposed to per-
form staged compilation and dynamic op-
timization for Scheme and Java, as well as
for ML [Leone and Dybvig 1997].

Templates aside, ML may be dynami-
cally compiled anyway. In Cardelli’s de-
scription of his ML compiler, he noted:

[Compilation] is repeated for every definition or
expression typed by the user. . . or fetched from
an external file. Because of the interactive use
of the compiler, the compilation of small phrases
must be virtually instantaneous. [Cardelli 1984,
p. 209]

2.10. Erlang

Erlang is a functional language, designed
for use in large, soft real-time systems
such as telecommunications equipment
[Armstrong 1997]. Johansson et al. [2000]
described the implementation of a JIT
compiler for Erlang, HiPE, designed to ad-
dress performance problems.

As a recently designed system without
historical baggage, HiPE stands out in
that the user must explicitly invoke the
JIT compiler. The rationale for this is that
it gives the user a fine degree of control
over the performance/code space tradeoff
that mixed code offers [Johansson et al.
2000].

HiPE exercises considerable care when
performing “mode-switches” back and

10 A name collision: Leone and Dybvig’s “Dynamo” is
different from the “Dynamo” of Bala et al. [1999].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 105

forth between native and interpreted code.
Mode-switches may be needed at the obvi-
ous locations—calls and returns—as well
as for thrown exceptions. Their calls use
the mode of the caller rather than the
mode of the called code; this is in con-
trast to techniques used for mixed code
in Lisp (Gabriel and Masinter [1985] dis-
cussed mixed code calls in Lisp and their
performance implications).

2.11. Specialization and O’Caml

O’Caml is another functional language,
and can be considered a dialect of ML
[Rémy et al. 1999]. The O’Caml inter-
preter has been the focus of run-time spe-
cialization work.

Piumarta and Riccardi [1998] special-
ized the interpreter’s instructions to the
program being run, in a limited way.11

They first dynamically translated inter-
preted bytecodes into direct threaded
code [Bell 1973], then dynamically com-
bined blocks of instructions together into
new “macro opcodes,” modifying the code
to use the new instructions. This reduced
the overhead of instruction dispatch, and
yielded opportunities for optimization in
macro opcodes which would not have been
possible if the instructions had been sepa-
rate (although they did not perform such
optimizations). As presented, their tech-
nique did not take dynamic execution
paths into account, and they noted that it
is best suited to low-level instruction sets,
where dispatch time is a relatively large
factor in performance.

A more general approach to run-time
specialization was taken by Thibault et al.
[2000]. They applied their program spe-
cializer, Tempo [Consel et al. 1998], to the
Java virtual machine and the O’Caml in-
terpreter at run-time. They noted:

While the speedup obtained by specialization
is significant, it does not compete with results
obtained with hand-written off-line or run-time
compilers. [Thibault et al. 2000, p. 170]

11 Thibault et al. [2000] provided an alternative view
on Piumarta and Riccardi’s work with respect to
specialization.

But later in the paper they stated that

. . .program specialization is entering relative
maturity. [Thibault et al. 2000, p. 175]

This may be taken to imply that, at least
for the time being, program specialization
may not be as fruitful as other approaches
to dynamic compilation and optimization.

2.12. Prolog

Prolog systems dynamically compile, too,
although the execution model of Pro-
log necessitates use of specialized tech-
niques. Van Roy [1994] gave an outstand-
ing, detailed survey of the area. One of
SICStus Prolog’s native code compilers,
which could be invoked and have its out-
put loaded dynamically, was described in
Haygood [1994].

2.13. Simulation, Binary Translation,
and Machine Code

Simulation is the process of running na-
tive executable machine code for one ar-
chitecture on another architecture.12 How
does this relate to JIT compilation? One
of the techniques for simulation is bi-
nary translation; in particular, we focus on
dynamic binary translation that involves
translating from one machine code to an-
other at run-time. Typically, binary trans-
lators are highly specialized with respect
to source and target; research on retar-
getable and “resourceable” binary trans-
lators is still in its infancy [Ung and
Cifuentes 2000]. Altman et al. [2000b]
have a good discussion of the challenges
involved in binary translation, and Cmelik
and Keppel [1994] compared pre-1995
simulation systems in detail. Rather than
duplicating their work, we will take a
higher-level view.

May [1987] proposed that simulators
could be categorized by their implementa-
tion technique into three generations. To

12 We use the term simulate in preference to emulate
as the latter has the connotation that hardware is
heavily involved in the process. However, some liter-
ature uses the words interchangeably.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

106 Aycock

this, we add a fourth generation to char-
acterize more recent work.

(1) First-generation simulators were
interpreters, which would simply
interpret each source instruction as
needed. As might be expected, these
tended to exhibit poor performance
due to interpretation overhead.

(2) Second-generation simulators dynam-
ically translated source instructions
into target instruction one at a time,
caching the translations for later use.

(3) Third-generation simulators impro-
ved upon the performance of second-
generation simulators by dynamically
translating entire blocks of source in-
structions at a time. This introduces
new questions as to what should be
translated. Most such systems trans-
lated either basic blocks of code or
extended basic blocks [Cmelik and
Keppel 1994], reflecting the static
control flow of the source program.
Other static translation units are pos-
sible: one anomalous system, DAISY,
performed page-at-a-time translations
from PowerPC to VLIW instructions
[Ebcioğlu and Altman 1996, 1997].

(4) What we call fourth-generation
simulators expand upon the third-
generation by dynamically translating
paths, or traces. A path reflects the
control flow exhibited by the source
program at run-time, a dynamic in-
stead of a static unit of translation.
The most recent work on binary trans-
lation is concentrated on this type of
system.

Fourth-generation simulators are pre-
dominant in recent literature [Bala et al.
1999; Chen et al. 2000; Deaver et al. 1999;
Gschwind et al. 2000; Klaiber 2000; Zheng
and Thompson 2000]. The structure of
these is fairly similar:

(1) Profiled execution. The simulator’s
effort should be concentrated on “hot”
areas of code that are frequently exe-
cuted. For example, initialization code
that is executed only once should not
be translated or optimized. To deter-

mine which execution paths are hot,
the source program is executed in some
manner and profile information is
gathered. Time invested in doing this
is assumed to be recouped eventually.

When source and target architec-
tures are dissimilar, or the source ar-
chitecture is uncomplicated (such as
a reduced instruction set computer
(RISC) processor) then interpretation
of the source program is typically
employed to execute the source pro-
gram [Bala et al. 1999; Gschwind et al.
2000; Transmeta Corporation 2001;
Zheng and Thompson 2000]. The al-
ternative approach, direct execution, is
best summed up by Rosenblum et al.
[1995, p. 36]:

By far the fastest simulator of the CPU,
MMU, and memory system of an SGI mul-
tiprocessor is an SGI multiprocessor.

In other words, when the source and
target architectures are the same, as
in the case where the goal is dynamic
optimization of a source program, the
source program can be executed di-
rectly by the central processing unit
(CPU). The simulator regains control
periodically as a result of appropri-
ately modifying the source program
[Chen et al. 2000] or by less di-
rect means such as interrupts [Gorton
2001].

(2) Hot path detection. In lieu of hard-
ware support, hot paths may be de-
tected by keeping counters to record
frequency of execution [Zheng and
Thompson 2000], or by watching for
code that is structurally likely to be
hot, like the target of a backward
branch [Bala et al. 1999]. With hard-
ware support, the program’s program
counter can be sampled at intervals to
detect hot spots [Deaver et al. 1999].

Some other considerations are that
paths may be strategically excluded if
they are too expensive or difficult to
translate [Zheng and Thompson 2000],
and choosing good stopping points for
paths can be as important as choos-
ing good starting points in terms

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 107

of keeping a manageable number of
traces [Gschwind et al. 2000].

(3) Code generation and optimization.
Once a hot path has been noted, the
simulator will translate it into code
for the target architecture, or perhaps
optimize the code. The correctness of
the translation is always at issue, and
some empirical verification techniques
are discussed in [Zheng and Thompson
2000].

(4) “Bail-out” mechanism. In the case of
dynamic optimization systems (where
the source and target architectures are
the same), there is the potential for
a negative impact on the source pro-
gram’s performance. A bail-out mech-
anism [Bala et al. 1999] heuristically
tries to detect such a problem and re-
vert back to the source program’s di-
rect execution; this can be spotted, for
example, by monitoring the stability of
the working set of paths. Such a mech-
anism can also be used to avoid han-
dling complicated cases.

Another recurring theme in recent
binary translation work is the issue of
hardware support for binary translation,
especially for translating code for legacy
architectures into VLIW code. This has
attracted interest because VLIW archi-
tectures promise legacy architecture
implementations which have higher per-
formance, greater instruction-level paral-
lelism [Ebcioğlu and Altman 1996, 1997],
higher clock rates [Altman et al. 2000a;
Gschwind et al. 2000], and lower power
requirements [Klaiber 2000]. Binary
translation work in these processors is
still done by software at run-time, and is
thus still dynamic binary translation, al-
though occasionally packaged under more
fanciful names to enrapture venture capi-
talists [Geppert and Perry 2000]. The key
idea in these systems is that, for efficiency,
the target VLIW should provide a super-
set of the source architecture [Ebcioğlu
and Altman 1997]; these extra resources,
unseen by the source program, can be used
by the binary translator for aggressive
optimizations or to simulate troublesome
aspects of the source architecture.

2.14. Java

Java is implemented by static compila-
tion to bytecode instructions for the Java
virtual machine, or JVM. Early JVMs
were only interpreters, resulting in less-
than-stellar performance:

Interpreting bytecodes is slow. [Cramer et al.
1997, p. 37]

Java isn’t just slow, it’s really slow, surprisingly
slow. [Tyma 1998, p. 41]

Regardless of how vitriolic the expres-
sion, the message was that Java programs
had to run faster, and the primary means
looked to for accomplishing this was JIT
compilation of Java bytecodes. Indeed,
Java brought the term just-in-time into
common use in computing literature.13

Unquestionably, the pressure for fast Java
implementations spurred a renaissance in
JIT research; at no other time in history
has such concentrated time and money
been invested in it.

An early view of Java JIT compilation
was given by Cramer et al. [1997], who
were engineers at Sun Microsystems, the
progenitor of Java. They made the ob-
servation that there is an upper bound
on the speedup achievable by JIT compi-
lation, noting that interpretation proper
only accounted for 68% of execution time
in a profile they ran. They also advocated
the direct use of JVM bytecodes, a stack-
based instruction set, as an intermedi-
ate representation for JIT compilation and
optimization. In retrospect, this is a mi-
nority viewpoint; most later work, includ-
ing Sun’s own [Sun Microsystems 2001],
invariably began by converting JVM
code into a register-based intermediate
representation.

The interesting trend in Java JIT
work [Adl-Tabatabai et al. 1998; Bik et al.
1999; Burke et al. 1999; Cierniak and
Li 1997; Ishizaki et al. 1999; Krall and
Grafl 1997; Krall 1998; Yang et al. 1999]
is the implicit assumption that mere

13 Gosling [2001] pointed out that the term just-
in-time was borrowed from manufacturing terminol-
ogy, and traced his own use of the term back to about
1993.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

108 Aycock

translation from bytecode to native code is
not enough: code optimization is necessary
too. At the same time, this work recognizes
that traditional optimization techniques
are expensive, and looks for modifica-
tions to optimization algorithms that
strike a balance between speed of algo-
rithm execution and speed of the resulting
code.

There have also been approaches to
Java JIT compilation besides the usual
interpret-first-optimize-later. A compile-
only strategy, with no interpreter whatso-
ever, was adopted by Burke et al. [1999],
who also implemented their system in
Java; improvements to their JIT directly
benefited their system. Agesen [1997]
translated JVM bytecodes into Self code,
to leverage optimizations already exist-
ing in the Self compiler. Annotations were
tried by Azevedo et al. [1999] to shift the
effort of code optimization prior to run-
time: information needed for efficient JIT
optimization was precomputed and tagged
on to bytecode as annotations, which were
then used by the JIT system to assist its
work. Finally, Plezbert and Cytron [1997]
proposed and evaluated the idea of “con-
tinuous compilation” for Java in which
an interpreter and compiler would exe-
cute concurrently, preferably on separate
processors.14

3. CLASSIFICATION OF JIT SYSTEMS

In the course of surveying JIT work, some
common attributes emerged. We propose
that JIT systems can be classified accord-
ing to three properties:

(1) Invocation. A JIT compiler is explic-
itly invoked if the user must take some
action to cause compilation at run-
time. An implicitly invoked JIT com-
piler is transparent to the user.

(2) Executability. JIT systems typically
involve two languages: a source lan-
guage to translate from, and a tar-
get language to translate to (although

14 As opposed to the ongoing optimization of Kistler’s
[2001] “continuous optimization,” only compilation
occurred concurrently using “continuous compila-
tion,” and only happened once.

these languages can be the same, if
the JIT system is only performing op-
timization on-the-fly). We call a JIT
system monoexecutable if it can only
execute one of these languages, and
polyexecutable if can execute more
than one. Polyexecutable JIT systems
have the luxury of deciding when com-
piler invocation is warranted, since ei-
ther program representation can be
used.

(3) Concurrency. This property charac-
terizes how the JIT compiler executes,
relative to the program itself. If pro-
gram execution pauses under its own
volition to permit compilation, it is not
concurrent; the JIT compiler in this
case may be invoked via subroutine
call, message transmission, or transfer
of control to a coroutine. In contrast, a
concurrent JIT compiler can operate as
the program executes concurrently: in
a separate thread or process, even on a
different processor.

JIT systems that function in hard real
time may constitute a fourth classifying
property, but there seems to be little re-
search in the area at present; it is un-
clear if hard real-time constraints pose
any unique problems to JIT systems.

Some trends are apparent. For instance,
implicitly invoked JIT compilers are defi-
nitely predominant in recent work. Exe-
cutability varies from system to system,
but this is more an issue of design than
an issue of JIT technology. Work on con-
current JIT compilers is currently only be-
ginning, and will likely increase in impor-
tance as processor technology evolves.

4. TOOLS FOR JIT COMPILATION

General, portable tools for JIT compilation
that help with the dynamic generation of
binary code did not appear until relatively
recently. To varying degrees, these toolkits
address three issues:

(1) Binary code generation. As argued
in Ramsey and Fernández [1995],
emitting binary code such as machine
language is a situation rife with oppor-
tunities for error. There are associated

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 109

Table 1. Comparison of JIT Toolkits

Binary code Cache Abstract
Source generation coherence Execution interface Input

Engler [1996] • • • • ad hoc
Engler and Proebsting [1994] • • • • tree
Fraser and Proebsting [1999] • • • • postfix
Keppel [1991] • • • n/a
Ramsey and Fernández [1995] • ad hoc

Note: n/a=not applicable.

bookkeeping tasks too: information
may not yet be available upon initial
code generation, like the location of for-
ward branch targets. Once discovered,
the information must be backpatched
into the appropriate locations.

(2) Cache coherence. CPU speed ad-
vances have far outstripped mem-
ory speed advances in recent years
[Hennessy and Patterson 1996]. To
compensate, modern CPUs incorpo-
rate a small, fast cache memory, the
contents of which may get temporar-
ily out of sync with main memory.
When dynamically generating code,
care must be taken to ensure that the
cache contents reflect code written to
main memory before execution is at-
tempted. The situation is even more
complicated when several CPUs share
a single memory. Keppel [1991] gave a
detailed discussion.

(3) Execution. The hardware or operat-
ing system may impose restrictions
which limit where executable code
may reside. For example, memory ear-
marked for data may not allow ex-
ecution (i.e., instruction fetches) by
default, meaning that code could be
generated into the data memory, but
not executed without platform-specific
wrangling. Again, refer to Keppel
[1991].

Only the first issue is relevant for JIT
compilation to interpreted virtual ma-
chine code—interpreters don’t directly ex-
ecute the code they interpret—but there is
no reason why JIT compilation tools can-
not be useful for generation of nonnative
code as well.

Table I gives a comparison of the
toolkits. In addition to indicating how
well the toolkits support the three areas
above, we have added two extra cate-
gories. First, an abstract interface is one
that is architecture-independent. Use of
a toolkit’s abstract interface implies that
very little, if any, of the user’s code
needs modification in order to use a
new platform. The drawbacks are that
architecture-dependent operations like
register allocation may be difficult, and
the mapping from abstract to actual ma-
chine may be suboptimal, such as a map-
ping from RISC abstraction to complex in-
struction set computer (CISC) machinery.

Second, input refers to the structure, if
any, of the input expected by the toolkit.
With respect to JIT compilation, more
complicated input structures take more
time and space for the user to produce and
the toolkit to consume [Engler 1996].

Using a tool may solve some prob-
lems but introduce others. Tools for bi-
nary code generation help avoid many
errors compared to manually emitting bi-
nary code. These tools, however, require
detailed knowledge of binary instruction
formats whose specification may itself be
prone to error. Engler and Hsieh [2000]
presented a “metatool” that can automat-
ically derive these instruction encodings
by repeatedly querying the existing sys-
tem assembler with varying inputs.

5. CONCLUSION

Dynamic, or just-in-time, compilation is
an old implementation technique with
a fragmented history. By collecting this
historical information together, we hope to
shorten the voyage of rediscovery.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

110 Aycock

ACKNOWLEDGMENTS

Thanks to Nigel Horspool, Shannon Jaeger, and Mike
Zastre, who proofread and commented on drafts of
this paper. Comments from the anonymous refer-
ees helped improve the presentation as well. Also,
thanks to Rick Gorton, James Gosling, Thomas
Kistler, Ralph Mauriello, and Jim Mitchell for
supplying historical information and clarifications.
Evelyn Duesterwald’s PLDI 2000 tutorial notes were
helpful in preparing Section 2.9.

REFERENCES

ABRAMS, P. S. 1970. An APL machine. Ph.D. disser-
tation. Stanford University, Stanford, CA. Also,
Stanford Linear Accelerator Center (SLAC)
Rep. 114.

ADL-TABATABAI, A.-R., CIERNIAK, M., LUEH, G.-Y.,
PARIKH, V. M., AND STICHNOTH, J. M. 1998. Fast,
effective code generation in a just-in-time Java
compiler. In PLDI ’98. 280–290.

AGESEN, O. 1996. Concrete type inference: Deliv-
ering object-oriented applications. Ph.D. disser-
tation. Stanford University, Stanford, CA. Also
Tech. Rep. SMLI TR-96-52, Sun Microsystems,
Santa Clara, CA (Jan. 1996).

AGESEN, O. 1997. Design and implementation of
Pep, a Java just-in-time translator. Theor. Prac.
Obj. Syst. 3, 2, 127–155.

AGESEN, O. AND HÖLZLE, U. 1995. Type feedback
vs. concrete type inference: A comparison of op-
timization techniques for object-oriented lan-
guages. In Proceedings of OOPSLA ’95. 91–107.

ALTMAN, E., GSCHWIND, M., SATHAYE, S., KOSONOCKY, S.,
BRIGHT, A., FRITTS, J., LEDAK, P., APPENZELLER, D.,
AGRICOLA, C., AND FILAN, Z. 2000a. BOA: The
architecture of a binary translation processor.
Tech. Rep. RC 21665, IBM Research Division,
Yorktown Heights, NY.

ALTMAN, E. R., KAELI, D., AND SHEFFER, Y. 2000b.
Welcome to the opportunities of binary transla-
tion. IEEE Comput. 33, 3 (March), 40–45.

ARMSTRONG, J. 1997. The development of Erlang.
In Proceedings of ICFP ’97 (1997). 196–203.

AUSLANDER, J., PHILIPOSE, M., CHAMBERS, C., EGGERS,
S. J., AND BERSHAD, B. N. 1996. Fast, effective
dynamic compilation. In Proceedings of PLDI
’96. 149–159.

AZEVEDO, A., NICOLAU, A., AND HUMMEL, J. 1999.
Java annotation-aware just-in-time (AJIT) com-
pilation system. In Proceedings of JAVA ’99.
142–151.

BALA, V., DUESTERWALD, E., AND BANERJIA, S. 1999.
Transparent dynamic optimization. Tech. Rep.
HPL-1999-77, Hewlett-Packard, Polo Alto, CA.

BARTLETT, J. 1992. Familiar Quotations (16th ed.).
J. Kaplan, Ed. Little, Brown and Company,
Boston, MA.

BELL, J. R. 1973. Threaded code. Commun.
ACM 16, 6 (June), 370–372.

BENTLEY, J. 1988. Little languages. In More Pro-
gramming Pearls. Addison-Wesley, Reading,
MA, 83–100.

BIK, A. J. C., GIRKAR, M., AND HAGHIGHAT, M. R.
1999. Experiences with Java JIT optimization.
In Innovative Architecture for Future Genera-
tion High-Performance Processors and Systems.
IEEE Computer Society Press, Los Alamitos,
CA, 87–94.

BROWN, P. J. 1976. Throw-away compiling.
Softw.—Pract. Exp. 6, 423–434.

BROWN, P. J. 1990. Writing Interactive Compilers
and Interpreters. Wiley, New York, NY.

BURGER, R. G. 1997. Efficient compilation and
profile-driven dynamic recompilation in
scheme. Ph.D. dissertation, Indiana University,
Bloomington, IN.

BURKE, M. G., CHOI, J.-D., FINK, S., GROVE, D., HIND, M.,
SARKAR, V., SERRANO, M. J., SREEDHAR, V. C., AND

SRINIVASAN, H. 1999. The Jalapeño dynamic
optimizing compiler for Java. In Proceedings of
JAVA ’99. 129–141.

CARDELLI, L. 1984. Compiling a functional lan-
guage. In 1984 Symposium on Lisp and Func-
tional Programming. 208–217.

CHAMBERS, C. 1992. The design and implemen-
tation of the self compiler, an optimizing
compiler for object-oriented programming lan-
guages. Ph.D. dissertation. Stanford University,
Stanford, CA.

CHAMBERS, C. AND UNGAR, D. 1989. Customiza-
tion: optimizing compiler technology for Self,
a dynamically-typed object-oriented program-
ming language. In Proceedings of PLDI ’89. 146–
160.

CHAMBERS, C. AND UNGAR, D. 1990. Iterative type
analysis and extended message splitting: Op-
timizing dynamically-typed object-oriented pro-
grams. In Proceedings of PLDI ’90. 150–164.

CHAMBERS, C. AND UNGAR, D. 1991. Making pure
object-oriented languages practical. In Proceed-
ings of OOPSLA ’91. 1–15.

CHAMBERS, C., UNGAR, D., AND LEE, E. 1989. An ef-
ficient implementation of Self, a dynamically-
typed object-oriented programming language
based on prototypes. In Proceedings of OOPSLA
’89. 49–70.

CHEN, W.-K., LERNER, S., CHAIKEN, R., AND GILLIES,
D. M. 2000. Mojo: a dynamic optimization
system. In Proceedings of the Third ACM Work-
shop on Feedback-Directed and Dynamic Opti-
mization (FDDO-3, Dec. 2000).

CIERNIAK, M. AND LI, W. 1997. Briki: an optimizing
Java compiler. In Proceedings of IEEE COMP-
CON ’97. 179–184.

CMELIK, B. AND KEPPEL, D. 1994. Shade: A fast
instruction-set simulator for execution profiling.
In Proceedings of the 1994 Conference on Mea-
surement and Modeling of Computer Systems.
128–137.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 111

CONSEL, C., HORNOF, L., MARLET, R., MULLER, G.,
THIBAULT, S., VOLANSCHI, E.-N., LAWALL, J.,
AND NOYÉ, J. 1998. Tempo: Specializing sys-
tems applications and beyond. ACM Comput.
Surv. 30, 3 (Sept.), 5pp.

CONSEL, C. AND NOËL, F. 1996. A general approach
for run-time specialization and its application to
C. In Proceedings of POPL ’96. 145–156.

CRAMER, T., FRIEDMAN, R., MILLER, T., SEBERGER, D.,
WILSON, R., AND WOLCZKO, M. 1997. Compiling
Java just in time. IEEE Micro 17, 3 (May/June),
36–43.

DAKIN, R. J. AND POOLE, P. C. 1973. A mixed code
approach. The Comput. J. 16, 3, 219–222.

DAWSON, J. L. 1973. Combining interpretive code
with machine code. The Comput. J. 16, 3, 216–
219.

DEAVER, D., GORTON, R., AND RUBIN, N. 1999.
Wiggins/Redstone: An on-line program special-
izer. In Proceedings of the IEEE Hot Chips XI
Conference (Aug. 1999). IEEE Computer Society
Press, Los, Alamitos, CA.

DEUTSCH, L. P. AND SCHIFFMAN, A. M. 1984. Efficient
implementation of the Smalltalk-80 system. In
Proceedings of POPL ’84. 297–302.

DIECKMANN, S. AND HÖLZLE, U. 1997. The space
overhead of customization. Tech. Rep. TRCS
97-21. University of California, Santa Barbara,
Santa Barbara, CA.

EBCIOĞLU, K. AND ALTMAN, E. R. 1996. DAISY: Dy-
namic compilation for 100% architectural com-
patibility. Tech. Rep. RC 20538. IBM Research
Division, Yorktown Heights, NY.

EBCIOĞLU, K. AND ALTMAN, E. R. 1997. Daisy: Dy-
namic compilation for 100% architectural com-
patibility. In Proceedings of ISCA ’97. 26–37.

ENGLER, D. R. 1996. VCODE: a retargetable, ex-
tensible, very fast dynamic code generation sys-
tem. In Proceedings of PLDI ’96. 160–170.

ENGLER, D. R. AND HSIEH, W. C. 2000. DERIVE:
A tool that automatically reverse-engineers in-
struction encodings. In Proceedings of the ACM
SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization (Dynamo ’00).
12–22.

ENGLER, D. R., HSIEH, W. C., AND KAASHOEK, M. F.
1996. C: A language for high-level, efficient,
and machine-independent dynamic code gen-
eration. In Proceedings of POPL ’96. 131–
144.

ENGLER, D. R. AND PROEBSTING, T. A. 1994. DCG: An
efficient, retargetable dynamic code generation
system. In Proceedings of ASPLOS VI. 263–272.

FRANZ, M. 1994. Code-generation on-the-fly: A key
to portable software. Ph.D. dissertation. ETH
Zurich, Zurich, Switzerland.

FRANZ, M. AND KISTLER, T. 1997. Slim binaries.
Commun. ACM 40, 12 (Dec.), 87–94.

FRASER, C. W. AND PROEBSTING, T. A. 1999. Finite-
state code generation. In Proceedings of PLDI
’99. 270–280.

GABRIEL, R. P. AND MASINTER, L. M. 1985. Perfor-
mance and Evaluation of Lisp Systems. MIT
Press, Cambridge, MA.

GEPPERT, L. AND PERRY, T. S. 2000. Transmeta’s
magic show. IEEE Spectr. 37, 5 (May), 26–33.

GOLDBERG, A. AND ROBSON, D. 1985. Smalltalk-80:
The Language and its Implementation. Addison-
Wesley, Reading, MA.

GORTON, R. 2001. Private communication.
GOSLING, J. 2001. Private communication.
GSCHWIND, M., ALTMAN, E. R., SATHAYE, S., LEDAK,

P., AND APPENZELLER, D. 2000. Dynamic and
transparent binary translation. IEEE Com-
put. 33, 3, 54–59.

HAMMOND, J. 1977. BASIC—an evaluation of pro-
cessing methods and a study of some programs.
Softw.—Pract. Exp. 7, 697–711.

HANSEN, G. J. 1974. Adaptive systems for the
dynamic run-time optimization of programs.
Ph.D. dissertation. Carnegie-Mellon University,
Pittsburgh, PA.

HAYGOOD, R. C. 1994. Native code compilation in
SICStus Prolog. In Proceedings of the Eleventh
International Conference on Logic Program-
ming. 190–204.

HENNESSY, J. L. AND PATTERSON, D. A. 1996. Com-
puter Architecture: A Quantitative Approach,
2nd ed. Morgan Kaufmann, San Francisco, CA.

HÖLZLE, U. 1994. Adaptive optimization for Self:
Reconciling high performance with exploratory
programming. Ph.D. dissertation. Carnegie-
Mellon University, Pittsburgh, PA.

HÖLZLE, U. AND UNGAR, D. 1994a. Optimizing
dynamically-dispatched calls with run-time type
feedback. In Proceedings of PLDI ’94. 326–336.

HÖLZLE, U. AND UNGAR, D. 1994b. A third-
generation Self implementation: Reconciling
responsiveness with performance. In Proceed-
ings of OOPSLA ’94. 229–243.

ISHIZAKI, K., KAWAHITO, M., YASUE, T., TAKEUCHI,
M., OGASAWARA, T., SUGANUMA, T., ONODERA, T.,
KOMATSU, H., AND NAKATANI, T. 1999. Design,
implementation, and evaluation of optimiza-
tions in a just-in-time compiler. In Proceedings
of JAVA ’99. 119–128.

JOHANSSON, E., PETTERSSON, M., AND SAGONAS, K.
2000. A high performance Erlang system. In
Proceedings of PPDP ’00. 32–43.

JOHNSTON, R. L. 1977. The dynamic incremental
compiler of APL\3000. In APL ’79 Conference
Proceedings. Published in APL Quote Quad 9,
4 (June), Pt. 1, 82–87.

JONES, N. D., GOMARD, C. K., AND SESTOFT, P. 1993.
Partial Evaluation and Automatic Program Gen-
eration. Prentice Hall, Englewood Cliffs, NJ.

KEPPEL, D. 1991. A portable interface for on-
the-fly instruction space modification. In Pro-
ceedings of ASPLOS IV. 86–95.

KEPPEL, D., EGGERS, S. J., AND HENRY, R. R. 1991.
A case for runtime code generation. Tech. Rep.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

112 Aycock

91-11-04. Department of Computer Science and
Engineering, University of Washington, Seattle,
WA.

KISTLER, T. 1997. Dynamic runtime optimization.
In Proceedings of the Joint Modular Languages
Conference (JMLC ’97). 53–66.

KISTLER, T. 1999. Continuous program optimi-
zation. Ph.D. dissertation. University of
California, Irvine, Irvine, CA.

KISTLER, T. 2001. Private communication.
KISTLER, T. AND FRANZ, M. 1999. The case for

dynamic optimization: Improving memory-
hierarchy performance by continuously adapt-
ing the internal storage layout of heap objects
at run-time. Tech. Rep. 99-21 (May). Univer-
sity of California, Irvine, Irvine, CA. Revised
September, 1999.

KLAIBER, A. 2000. The technology behind Crusoe
processors. Tech. Rep. (Jan.), Transmeta Corpo-
ration, Santa Clara, CA.

KNUTH, D. E. 1971. An empirical study of Fortran
programs. Softw.—Pract. Exp. 1, 105–133.

KRALL, A. 1998. Efficient JavaVM just-in-time
compilation. In Proceedings of the 1998 In-
ternational Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’98).
205–212.

KRALL, A. AND GRAFL, R. 1997. A Java just-in-time
compiler that transcends JavaVM’s 32 bit bar-
rier. In Proceedings of PPoPP ’97 Workshop on
Java for Science and Engineering.

LEE, P. AND LEONE, M. 1996. Optimizing ML with
run-time code generation. In Proceedings of
PLDI ’96. 137–148.

LEE, S., YANG, B.-S., KIM, S., PARK, S., MOON, S.-M.,
EBCIOĞLU, K., AND ALTMAN, E. 2000. Efficient
Java exception handling in just-in-time compi-
lation. In Proceedings of Java 2000. 1–8.

LEONE, M. AND DYBVIG, R. K. 1997. Dynamo:
A staged compiler architecture for dynamic
program optimization. Tech. Rep. 490. Com-
puter Science Department, Indiana University,
Bloomington, IN.

LEONE, M. AND LEE, P. 1994. Lightweight run-time
code generation. In Proceedings of the ACM
SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation. 97–
106.

MARLET, R., CONSEL, C., AND BOINOT, P. 1999. Ef-
ficient incremental run-time specialization for
free. In PLDI ’99. 281–292.

MAURIELLO, R. 2000. Private communication.
MAY, C. 1987. Mimic: A fast System/370 simula-

tor. In Proceedings of the SIGPLAN ’87 Sym-
posium on Interpreters and Interpretive Tech-
niques (June). ACM Press, New York, NY, 1–
13.

MCCARTHY, J. 1960. Recursive functions of sym-
bolic expressions and their computation by
machine, part I. Commun. ACM 3, 4, 184–
195.

MCCARTHY, J. 1981. History of LISP. In History of
Programming Languages, R. L. Wexelblat, Ed.
Academic Press, New York, NY, 173–185.

MILLER, T. C. 1977. Tentative compilation: A de-
sign for an APL compiler. In APL ’79 Conference
Proceedings. Volume 9 Published in APL Quote
Quad 9, 4 (June), Pt. 1, 88–95.

MITCHELL, J. G. 1970. The design and construction
of flexible and efficient interactive programming
systems. Ph.D. dissertation. Carnegie-Mellon
University, Pittsburgh, PA.

MITCHELL, J. G. 2000. Private communication.
MITCHELL, J. G., PERLIS, A. J., AND VAN ZOEREN,

H. R. 1968. LC2: A language for conversa-
tional computing. In Interactive Systems for Ex-
perimental Applied Mathematics, M. Klerer and
J. Reinfelds, Eds. Academic Press, New York,
NY. (Proceedings of 1967 ACM Symposium.)

MOCK, M., BERRYMAN, M., CHAMBERS, C., AND EGGERS,
S. J. 1999. Calpa: A tool for automating dy-
namic compilation. In Proceedings of the Sec-
ond ACM Workshop on Feedback-Directed and
Dynamic Optimization. 100–109.

NG, T. S. AND CANTONI, A. 1976. Run time interac-
tion with FORTRAN using mixed code. The Com-
put. J. 19, 1, 91–92.

PITTMAN, T. 1987. Two-level hybrid interpreter/
native code execution for combined space-time
program efficiency. In Proceedings of the SIG-
PLAN Symposium on Interpreters and Interpre-
tive Techniques. ACM Press, New York, NY, 150–
152.

PIUMARTA, I. AND RICCARDI, F. 1998. Optimizing di-
rect threaded code by selective inlining. In Pro-
ceedings of PLDI ’98. 291–300.

PLEZBERT, M. P. AND CYTRON, R. K. 1997. Does “just
in time” = “better late then never”? In Proceed-
ings of POPL ’97. 120–131.

POLETTO, M., ENGLER, D. R., AND KAASHOEK, M. F.
1997. tcc: A system for fast, flexible, and high-
level dynamic code generation. In Proceedings of
PLDI ’97. 109–121.

RAMSEY, N. AND FERNÁNDEZ, M. 1995. The New
Jersey machine-code toolkit. In Proceedings of
the 1995 USENIX Technical Conference. 289–
302.

RAU, B. R. 1978. Levels of representation of pro-
grams and the architecture of universal host ma-
chines. In Proceedings of the 11th Annual Micro-
programming Workshop (MICRO-11). 67–79.

RÉMY, D., LEROY, X., AND WEIS, P. 1999. Objective
Caml—a general purpose high-level program-
ming language. ERCIM News 36, 29–30.

ROSENBLUM, M., HERROD, S. A., WITCHEL, E., AND GUPTA,
A. 1995. Complete computer system simula-
tion: The SimOS approach. IEEE Parall. Distrib.
Tech. 3, 4 (Winter), 34–43.

SCHROEDER, S. C. AND VAUGHN, L. E. 1973. A high or-
der language optimal execution processor: Fast
Intent Recognition System (FIRST). In Proceed-
ings of a Symposium on High-Level-Language

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Brief History of Just-In-Time 113

Computer Architecture. Published in SIGPLAN
8, 11 (Nov.), 109–116.

SEBESTA, R. W. 1999. Concepts of Programming
Languages (4th ed.). Addison-Wesley, Reading,
MA.

SMITH, R. B. AND UNGAR, D. 1995. Programming as
an experience: The inspiration for Self. In Pro-
ceedings of ECOOP ’95.

SUN MICROSYSTEMS. 2001. The Java HotSpot vir-
tual machine. White paper. Sun Microsystems,
Santa Clara, CA.

THIBAULT, S., CONSEL, C., LAWALL, J. L., MARLET,
R., AND MULLER, G. 2000. Static and dynamic
program compilation by interpreter specializa-
tion. Higher-Order Symbol. Computat. 13, 161–
178.

THOMPSON, K. 1968. Regular expression search al-
gorithm. Commun. ACM 11, 6 (June), 419–422.

TRANSMETA CORPORATION. 2001. Code morphing
software. Available online at http://www.
transmeta.com/echnology/architecture/code
morphing.html. Transmeta Corporation, Santa
Clara, CA.

TYMA, P. 1998. Why are we using Java again?
Commun. ACM 41, 6, 38–42.

UNG, D. AND CIFUENTES, C. 2000. Machine-
adaptable dynamic binary translation. In
Proceedings of Dynamo ’00. 41–51.

UNGAR, D. AND SMITH, R. B. 1987. Self: The power of
simplicity. In Proceedings of OOPSLA ’87. 227–
242.

UNGAR, D., SMITH, R. B., CHAMBERS, C., AND HÖLZLE, U.
1992. Object, message, and performance: How

they coexist in Self. IEEE Comput. 25, 10 (Oct.),
53–64.

UNIVERSITY OF MICHIGAN. 1966a. The System
Loader. In University of Michigan Executive
System for the IBM 7090 Computer, Vol. 1.
University of Michigan, Ann Arbor, MI.

UNIVERSITY OF MICHIGAN. 1966b. The “University
of Michigan Assembly Program” (“UMAP”). In
University of Michigan Executive System for
the IBM 7090 Computer, Vol. 2. University of
Michigan, Ann Arbor, MI.

VAN DYKE, E. J. 1977. A dynamic incremental com-
piler for an interpretive language. Hewlett-
Packard J. 28, 11 (July), 17–24.

VAN ROY, P. 1994. The wonder years of sequential
Prolog implementation. J. Logic Program. 19–
20, 385–441.

WICKLINE, P., LEE, P., AND PFENNING, F. 1998. Run-
time code generation and Modal-ML. In Proceed-
ings of PLDI ’98. 224–235.

WIRTH, N. AND GUTKNECHT, J. 1989. The Oberon
system. Softw.—Pract. Exp. 19, 9 (Sep.), 857–
893.

YANG, B.-S., MOON, S.-M., PARK, S., LEE, J., LEE, S.,
PARK, J., CHUNG, Y. C., KIM, S., EBCIOĞLU, K.,
AND ALTMAN, E. 1999. LaTTe: A Java VM just-
in-time compiler with fast and efficient register
allocation. In Proceedings of the International
Conference on Parallel Architectures and Com-
pilation Techniques. 128–138. IEEE Computer
Society Press, Los Alamitos, CA.

ZHENG, C. AND THOMPSON, C. 2000. PA-RISC to
IA-64: Transparent execution, no recompilation.
IEEE Comput. 33, 3 (March), 47–52.

Received July 2002; revised March 2003; accepted February 2003

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

