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The large-scale organization of metabolic networks
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In a cell or microorganism the processes that generate mass, energy, information transfer, and

cell fate specification are seamlessly integrated through a complex network of various cellular

constituents and reactions 1. However, despite the key role these networks play in sustaining

various cellular functions, their large-scale structure is essentially unknown. Here we present

the first systematic comparative mathematical analysis of the metabolic networks of 43

organisms representing all three domains of life. We show that, despite significant variances in

their individual constituents and pathways, these metabolic networks display the same

topologic scaling properties demonstrating striking similarities to the inherent organization of

complex non-biological systems 2. This suggests that the metabolic organization is not only

identical for all living organisms, but complies with the design principles of robust and error-

tolerant scale-free networks 2-5, and may represent a common blueprint for the large-scale

organization of interactions among all cellular constituents.

An important goal in biology is to uncover the fundamental design principles that provide the

common underlying structure and function in all cells and microorganisms 6-13. For example, it is

increasingly appreciated that the robustness of various cellular processes is rooted in the dynamic

interactions among its many constituents 14-16, such as proteins, DNA, RNA, and small molecules.

Recent scientific developments improve our ability to identify the design principles that integrate these

interactions into a complex system. Large-scale sequencing projects have not only provided complete

sequence information for a number of genomes, but also allowed the development of integrated

pathway-genome databases 17-19 that provide organism-specific connectivity maps of metabolic- and,
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to a lesser extent, various other cellular networks. Yet, due to the large number and the diversity of the

constituents and reactions forming such networks, these maps are extremely complex, offering only

limited insight into the organizational principles of these systems. Our ability to address in quantitative

terms the structure of these cellular networks, however, has benefited from recent advances in

understanding the generic properties of complex networks 2.

Until recently, complex networks have been modeled using the classical random network theory

introduced by Erdös and Rényi (ER) 20, 21. The ER model assumes that each pair of nodes (i.e.,

constituents) in the network is connected randomly with probability p, leading to a statistically

homogeneous network, in which, despite the fundamental randomness of the model, most nodes have

the same number of links, 〈k〉 (Fig. 1a). In particular, the connectivity follows a Poisson distribution

strongly peaked at 〈k〉 (Fig. 1b), implying that the probability to find a highly connected node decays

exponentially (i.e. P(k) ~ e-k  for k » 〈k〉). On the other hand, recent empirical studies on the structure of

the World-Wide Web 22, Internet 23, and social networks 2 have reported serious deviations from this

random structure, demonstrating that these systems are described by scale-free networks 2 (Fig. 1c),

for which P(k) follows a power-law, i.e. P(k) ~ k-γ (Fig. 1d).  Unlike exponential networks, scale-free

networks are extremely heterogeneous, their topology being dominated by a few highly connected

nodes (hubs) which link the rest of the less connected nodes to the system (Fig. 1c). Since the

distinction between the scale-free and exponential networks emerges as a result of simple dynamical

principles 24, 25, understanding the large-scale structure of cellular networks can provide not only

valuable and perhaps universal structural information, but could also lead to a better understanding of

the dynamical processes that generated these networks. In this respect the emergence of power law

distribution is intimately linked to the growth of the network in which new nodes are preferentially

attached to already established nodes 2, a property that is also thought to characterize the evolution of

biological systems 1.
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To begin to address the large-scale structural organization of cellular networks, we have examined

the topologic properties of the core metabolic network of 43 different organisms based on data

deposited in the WIT database 19. This integrated pathway-genome database predicts the existence of

a given metabolic pathway based on the annotated genome of an organism combined with firmly

established data from the biochemical literature. As 18 of the 43 organisms deposited in the database

are not yet fully sequenced, and a substantial portion of the identified ORFs are functionally

unassigned, the list of enzymes, and consequently the list of substrates and reactions (see Table 1 in

Supplementary Material 26), will certainly be expanded in the future. Nevertheless, this publicly

available database represents our current best approximation for the metabolic pathways in 43

organisms and provides sufficient data for their unambiguous statistical analysis (see Methods and

Supplementary Material 26).

As we illustrate in Fig. 1e, we have first established a graph theoretic representation of the

biochemical reactions taking place in a given metabolic network. In this representation, a metabolic

network is built up of nodes, which are the substrates that are connected to one another through links,

which are the actual metabolic reactions. The physical entity of the link is the temporary educt-educt

complex itself, in which enzymes provide the catalytic scaffolds for the reactions yielding products,

which in turn can become educts for subsequent reactions. This representation allows us to

systematically investigate and quantify the topologic properties of various metabolic networks using the

tools of graph theory and statistical mechanics 21.  Our first goal was to identify the structure of the

metabolic networks, i.e., to establish if their topology is best described by the inherently random and

uniform exponential model 21 (Fig. 1a and b), or the highly heterogeneous scale-free model 2 (Fig. 1c

and d). As illustrated in Fig. 2, our results convincingly indicate that the probability that a given

substrate participates in k reactions follows a power-law distribution, i.e., metabolic networks belong to

the class of scale-free networks. Since under physiological conditions a large number of biochemical

reactions (links) in a metabolic network are preferentially catalyzed in one direction (i.e., the links are
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directed), for each node we distinguish between incoming and outgoing links (Fig. 1e). For instance, in

E. coli  the probability that a substrate participates as an educt in k metabolic reactions follows P(k) ~

k-γin, with γin = 2.2, and the probability that a given substrate is produced by k different metabolic

reactions follows a similar distribution, with γout = 2.2 (Fig. 2b). We find that scale-free networks describe

the metabolic networks in all organisms in all three domains of life (Fig. 2a-c) 26, indicating the generic

nature of this structural organization (Fig. 2d).

A general feature of many complex networks is their small-world character 27, i.e., any two nodes in

the system can be connected by relatively short paths along existing links. In metabolic networks these

paths correspond to the biochemical pathway connecting two substrates (Fig. 3a). The degree of

interconnectivity of a metabolic network can be characterized by the network diameter, defined as the

shortest biochemical pathway averaged over all pairs of substrates. For all non-biological networks

examined to date the average connectivity of a node is fixed, which implies that the diameter of a

network increases logarithmically with the addition of new nodes 2, 27, 28. For metabolic networks this

implies that a more complex bacterium with higher number of enzymes and substrates, such as E. coli,

would have a larger diameter than a simpler bacterium, such as M. genitalium. In contrast, we find that

the diameter of the metabolic network is the same for all 43 organisms, irrespective of the number of

substrates found in the given species (Fig. 3b). This is surprising and unprecedented, and is possible

only if with increasing organism complexity individual substrates are increasingly connected in order to

maintain a relatively constant metabolic network diameter. Indeed, we find that the average number of

reactions in which a certain substrate participates increases with the number of substrates found within

the given organism (Fig. 3c and d).

An important consequence of the power-law connectivity distribution is that a few hubs dominate

the overall connectivity of the network (Fig. 1c), and upon the sequential removal of the most-

connected nodes the diameter of the network rises sharply, the network eventually disintegrating into

isolated clusters that are no longer functional. Yet, scale-free networks also demonstrate unexpected
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robustness against random errors 5. To examine if metabolic networks display a similar error tolerance

we performed computer simulations on the metabolic network of the bacterium, E. coli. Upon removal

of the most connected substrates the diameter increases rapidly, illustrating the special role these

metabolites play in maintaining a constant metabolic network diameter (Fig. 3e). However, when

randomly chosen M substrates were removed, -mimicking the consequence of random mutations of

catalyzing enzymes-, the average distance between the remaining nodes was not affected, indicating a

striking insensitivity to random errors. Indeed, in-silico and in-vivo mutagenesis studies indicate a

remarkable fault tolerance upon removal of a substantial number of metabolic enzymes from the E. coli

metabolic network 29. Of note, data similar to that shown in Fig. 3e have been obtained for all

investigated organisms, without detectable correlations with their evolutionary position.

Since the large-scale architecture of the metabolic network rests on the most highly connected

substrates, we need to address whether the same substrates act as hubs in all organisms, or if there

are major organism-specific differences in the identity of the most connected substrates. When we rank

order all the substrates in a given organism based on the number of links they have (Table 1)26, we find

that the ranking of the most connected substrates is practically identical for all 43 organisms. Also, only

~4% of all substrates that are found in all 43 organisms are present in all species. These substrates

represent the most highly connected substrates found in any individual organism, indicating the generic

utilization of the same substrates by each species. In contrast, species-specific differences among

various organisms emerge for less connected substrates. To quantify this observation, we examined

the standard deviation (σr) of the rank for substrates that are present in all 43 organisms. As shown in

Fig. 3f, we find that σr increases with the average rank order, 〈r〉, implying that the most connected

substrates have a relatively fixed position in the rank order, but the ranking of less connected

substrates is increasingly species-specific. Thus, the large-scale structure of the metabolic network is

identical for all 43 species, being dominated by the same highly connected substrates, while less

connected substrates preferentially serve as educt or product of species-specific enzymatic activities.
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The contemporary topology of a metabolic network reflects a long evolutionary process molded in

general for a robust response towards internal defects and environmental fluctuations and in particular

to the ecological niche the specific organism occupies. As a result, one expects that these networks are

far from being random, and our data demonstrate that the large-scale structural organization of

metabolic networks is indeed highly similar to that of robust and error-tolerant networks 2, 5. The

uniform network topology observed in all 43 organisms strongly suggests that, irrespective of their

individual building blocks or species-specific reaction pathways, the large-scale structure of metabolic

networks is identical in all living organisms, in which the same highly connected substrates may provide

the connections between modules responsible for distinct metabolic functions 1.

A unique feature of metabolic networks, as opposed to that seen in non-biological scale-free

networks, is the apparent conservation of the network diameter in all living organisms. Within the

special characteristics of living systems this attribute may represent an additional survival and growth

advantage, since a larger diameter would attenuate the organism’s ability to efficiently respond to

external changes or internal errors. For example, should the concentration of a substrate suddenly

diminish due to mutation in its main catalyzing enzyme, offsetting the changes would involve the

activation of longer alternative biochemical pathways, and consequently the synthesis of more new

enzymes, than within a smaller metabolic network diameter.

But how generic these principles are for other cellular networks (e.g., information transfer, cell

cycle)? While the current mathematical tools do not allow unambiguous statistical analysis of the

topology of other networks due to their relatively small size, our preliminary analysis suggest that

connectivity distribution of non-metabolic pathways also follows a power-law distribution, indicating that

cellular networks as a whole are scale-free networks. Therefore, the evolutionary selection of a robust

and error tolerant architecture may characterize all cellular networks, for which the scale-free topology

with a conserved network diameter appears to provide an optimal structural organization.
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Methods

Database preparation: For our analyses of core cellular metabolisms we used the “Intermediate metabolism and

Bioenergetics” portions of the WIT database 19 (http://igweb.integratedgenomics.com/IGwit/), that predicts the

existence of a metabolic pathway in an organism based on its annotated genome (i.e., on the presence of the

presumed open reading frame (ORF) of an enzyme that catalyzes a given metabolic reaction), in combination

with firmly established data from the biochemical literature. As of December 1999, this database provides

description for 6 archaea, 32 bacteria and 5 eukaryota. The downloaded data were manually rechecked,

removing synonyms and substrates without defined chemical identity.

Construction of metabolic network matrices: Biochemical reactions described within a WIT database are

composed of substrates and enzymes connected by directed links. For each reaction, educts and products were

considered as nodes connected to the temporary educt-educt complexes and associated enzymes. Bi-directional

reactions were considered separately. For a given organism with N substrates, E enzymes and R intermediate

complexes the full stochiometric interactions were compiled into an (N+E+R) × (N+E+R) matrix, generated

separately for each of the 43 organisms.

Connectivity distribution  [P(k)]: Substrates generated by a biochemical reaction are products, and are

characterized by incoming links pointing to them. For each substrate we have determined kin, and prepared a

histogram for each organism, providing how many substrates have exactly kin =0,1,…. Dividing each point of the

histogram with the total number of substrates in the organism provided P(kin), or the probability that a substrate

has kin incoming links. Substrates that participate as educts in a reaction have outgoing links. We have performed

the analysis described above for kin, determining the number of outgoing links (kout) for each substrate. To reduce

noise logarithmic binning was applied.

Biochemical pathway lengths  [Π(l)]: For all pairs of substrates, the shortest biochemical pathway, Π(l) (i.e., the

smallest number of reactions by which one can reach substrate B from substrate A) were determined using a

burning algorithm. From Π(l) we determined the diameter, D = ∑∑ ΠΠ⋅
ll

lll )()( , which represents the

average path length between any two substrates.
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Substrate ranking  [ <r>o , σ(r) ]: Substrates present in all 43 organisms (i.e., a total of 51 substrates) were ranked

based on the number of links each had in each organisms, having considered incoming and outgoing links

separately (r =1 were assigned for the substrate with the largest number of connections, and r =2 for second most

connected one, etc.). This way for each substrate a well-defined r  value in each organism was defined. The

average rank <r>o for each substrate was determined by averaging r over the 43 organisms. We also determined

the standard deviation, σ(r) = <r2>o - <r>o

2 for all 51 substrates present in all organisms.

Analysis of the effect of database errors: Of the 43 organisms whose metabolic network we have analyzed the

genome of 25 has been completely sequenced (5 Archaea, 18 Bacteria, 2 Eukaryotes), while the remaining 18

are only partially sequenced. Therefore two major sources of possible errors in the database could affect our

analysis: (a) the erroneous annotation of enzymes and consequently, biochemical reactions; for the organisms

with completely sequenced genomes this is the likely source of error. (b) reactions and pathways missing from the

database; for organisms with incompletely sequenced genomes both (a) and (b) are of potential source of error.

We investigated the effect of database errors on the validity of our findings, the results being presented in the

Supplementary Material 26, indicating that the results offered in this paper are robust to these errors.
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FIGURE LEGENDS

Figure 1

(a) Representative structure of the network generated by the classical random network model of Erdös
and Rényi. (b) The network connectivity can be characterized by probability, P(k), that a node has k
links. For a random network P(k) is strongly peaked at k = 〈k〉 and decays exponentially for large k (i.e.
P(k) ~ e-k  for k » 〈k〉 and k « 〈k〉). (c) In the scale-free network most nodes have only a few links, but a
few nodes, called hubs (red), have a very large number of links. (d) P(k) for a scale-free network has no
well-defined peak, and for large k, it decays as a power-law, P(k) ~ k-γ , appearing as a straight line with
slope -γ on a log-log plot. (e) A portion of the WIT DB for the bacterium, E. coli. Each substrate can be
represented as a node of the graph, linked to one another through temporary educt-educt complexes
(black boxes) from which the products emerge as new nodes (substrates). The enzymes which provide
the catalytic scaffolds for the reactions, are shown by their EC numbers.
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Figure 2

Connectivity distribution P(k) for the substrates in (a) A. fulgidus (Archae) (b) E. coli (Bacterium) (c) C.
elegans (Eukaryote), shown on a log-log plot, counting separately the incoming (IN) and outgoing links
(OUT) for each substrate, kin (kout) corresponding to the number of reactions in which a substrate
participates as a product (educt). The characteristics of the three organisms shown in a-c and the
exponents γin and γout for all organisms are given in Table 1 26. (d) The connectivity distribution averaged
over all 43 organisms.
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Figure 3

(a) The histogram of the biochemical pathway lengths, ", in the bacterium, E. coli. (b) The average path
length (diameter) for each of the 43 investigated organisms. The error bars correspond to the standard
deviation σ  ~ 〈"2〉 - 〈"〉2 as determined from Π(") (shown in (a) for E. coli).  (c) The average number of
incoming links or (d) outgoing links per node for each organism. (e) The effect of substrate removal on
the metabolic network diameter of the bacterium, E. coli. In the upper curve (∆) in an inverse order of
connectivity, the most connected substrates are removed first. In the bottom curve (�) nodes are
removed randomly. M=60 corresponds to ~8% of the total number of substrates in found in E. coli. (f)
Standard deviation of the substrate ranking (σr) as a function of the average ranking, 〈r〉o for substrates
present in all 43 investigated organisms. The horizontal axis in (b,c,d,) denotes the number of nodes in
each organism. Archaea (magenta), bacteria (green), and eukaryotes (blue) are shown in (b,c,d,f).
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