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Natural selection shapes the regulation of metabolic enzymes
enforcing precise spatial and temporal control. It also plays a

central role in the evolution of enzymatic kinetic parameters,
including the turnover number (kcat) and the apparent binding
constants of substrates (KM), as both these parameters, together
with enzyme concentrations, affect metabolism and growth rates.
The literature usually highlights kinetically supreme enzymes
such as triosephosphate isomerase, commonly termed a “perfect
enzyme”.1,2 What, however, are the kinetic parameters of the
“average enzyme”? Are most enzymes similarly “perfect”, and if
not, why? Here we describe a global view of enzyme parameters
with the aim of highlighting the forces that shape the catalytic
efficiency of enzymes.

A large body of literature discusses the complex interplay
among the various parameters of enzymatic catalysis,3�9 yet the
selective pressures that shaped these parameters remain largely
unclear. While traditionally kcat/KM was thought to be an
optimized quantity,4,8�10 other alternatives were proposed.1,11,12

For example, KM values may have evolved to match physiological
substrate concentrations,13 while a substrate-saturated enzyme is
expected to maximize kcat and to be insensitive to KM.

8,14

There are also several known physicochemical constraints
that set boundaries to kinetic parameters.15,16 For example,
theoretical limitations suggest that kcat is unlikely to be higher

than 106�107 s�1.6,17 Furthermore, the apparent second-order
rate for a diffusion-limited enzyme-catalyzed reaction with a
single low-molecular mass substrate (kcat/KM) cannot exceed
∼108�109 s�1 M�1.18,19 The activation energy of the reaction,
as reflected in the uncatalyzed rate, also comprises a barrier: the
enzymatic acceleration of an extremely slow reaction, even by
many orders of magnitude, may still result in a relatively slow
catalyzed rate.5 The overall thermodynamics of a reaction adds
further limits. The Haldane relationship20 states a dependency
between the kcat/KM of the forward (F) and backward (B)
reactions, such that Keq = (kcat/KM)F/(kcat/KM)B, where Keq is
the reaction’s equilibrium constant. Therefore, even when kcat/
KM in the favorable direction is diffusion-limited, kcat/KM for the
unfavorable direction would be far lower than this limit.

Although there are no obvious limitations on KM, previous
studies have demonstrated that physicochemical properties
of ligands and substrates correlate with their binding affinities
(KS) toward receptors and enzymes.9 One example is the
octanol�water partition coefficient (LogP), the ratio of concen-
trations of a compound partitioning between a hydrophobic
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ABSTRACT: The kinetic parameters of enzymes are key to understanding the rate
and specificity of most biological processes. Although specific trends are frequently
studied for individual enzymes, global trends are rarely addressed. We performed an
analysis of kcat and KM values of several thousand enzymes collected from the
literature. We found that the “average enzyme” exhibits a kcat of ∼10 s�1 and a kcat/
KM of∼105 s�1 M�1, much below the diffusion limit and the characteristic textbook
portrayal of kinetically superior enzymes. Why do most enzymes exhibit moderate
catalytic efficiencies? Maximal rates may not evolve in cases where weaker selection
pressures are expected. We find, for example, that enzymes operating in secondary
metabolism are, on average, ∼30-fold slower than those of central metabolism. We
also find indications that the physicochemical properties of substrates affect the
kinetic parameters. Specifically, low molecular mass and hydrophobicity appear to
limit KM optimization. In accordance, substitution with phosphate, CoA, or other
large modifiers considerably lowers the KM values of enzymes utilizing the substituted substrates. It therefore appears that both
evolutionary selection pressures and physicochemical constraints shape the kinetic parameters of enzymes. It also seems likely that
the catalytic efficiency of some enzymes toward their natural substrates could be increased in many cases by natural or laboratory
evolution.
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phase and a water phase. This indicator of hydrophobicity was
found to correlate with the binding energy of certain substrates
toward their enzymes.21�24 In addition, previous studies found a
correlation between the molecular mass of ligands and their
receptor binding affinities.25,26 However, while binding of ligands
to receptors is a relatively simple process, theKM is amacroscopic
value affected by microscopic rates that relate to substrate
binding but also to enzymatic catalysis.

Besides the physicochemical considerations, it was also sug-
gested that the evolution of enzyme efficiency is dependent on
the enzyme’s function within the organism and specificmetabolic
context.1 Several cases were found to support this suggestion
(e.g., ref 27). On the other hand, it appears that for many
enzymes, significant reductions in rate have no effect, and only
relatively large reductions in catalytic efficiency hamper organis-
mal fitness (ref 28 and references cited therein). Thus, although it
is presumed that both evolutionary selection pressures and
physicochemical constrains affect enzymes, the effects of these
two factors on enzyme kinetic parameters are currently unclear.

Here we present a global analysis of the kinetic parameters of
enzymes. We aim to highlight global factors shaping kinetic
parameters of enzymes rather than to discuss specific case
studies. To allow such a global analysis, we have mined the
Brenda29 and KEGG30 databases. The Brenda database contains
the kinetic parameters for thousands of enzymes and substrates
collected from the literature. Using the KEGG database, we
distinguished the parameters for the natural substrates of these
enzymes from those of non-native, promiscuous substrates
(Supporting Information). In this way, we could separately
analyze the kinetic parameters for the natural substrates, avoiding
biases from other parameters. Such a distinction has not
been made in previously published distributions of kinetic
parameters.29,31 The KEGG database has also allowed us to
assign a metabolic pathway for each reaction. Our final data set
contained ∼5000 unique reactions, utilizing ∼2500 unique
enzymes and ∼1500 unique substrates (Table 1 and Figure S1
of the Supporting Information). The entire data set of the kinetic
parameters is given in the Supporting Information.

As expected, such a data set of published kinetic parameters
has considerable variability and noise as shown in Table S1 and

discussed in detail in the Supporting Information. This can be
attributed to varying measurement conditions, such as pH, tem-
perature, ionic strength, and the concentrations of metals and
cofactors, as well as differences in experimental methodologies,
and inconsistencies between the values in the original papers and
the values entered in the Brenda database (Supporting In-
formation). Further, most parameters in the literature are mea-
sured in vitro, which can be considerably different from those
measured in vivo.32,33 These differences can be as great as 3 orders
of magnitude.32 It will be worthwhile to revisit our results as more
in vivo data become available. However, it is unlikely that such
differences will account for the systematic trends we observe. In
addition, temperature significantly affects the kinetic parameters;34

on average, kcat doubles from 25 to 37 �C (Figure S2 of the
Supporting Information). However, we tested such effects and
found that none of the trends described below results from a
systematic bias in assay temperatures (or pH values).

Overall, the noisy nature of the data collected from the
literature limits the resolution of any global analysis and thus
limits the study to prominent differences consistently observed in
large samples. Moreover, certain subgroups of enzymes might
display specific behavior not evident in other groups, thereby
masking global trends. Nevertheless, as discussed below, a global
analysis does uncover several general trends that underlie kinetic
parameters.

’THE AVERAGE ENZYME IS FAR FROM KINETIC
PERFECTION

The median turnover number for the entire data set of
enzymes and natural substrates is ∼10 s�1 (Figure 1A), where
most kcat values (∼60%) are in the range of 1�100 s�1. These
rates are orders of magnitude slower than the textbook examples
of fast enzymes [e.g., carbonic anhydrase (Figure 1A)], let alone
compared to the theoretical limit of 106�107 s�1.6,17 The
median kcat/KM is ∼105 M�1 s�1 (Figure 1B), where most
kcat/KM values (∼60%) lie in the range of 103�106 M�1 s�1,
orders of magnitude below the diffusion limit. Although pooling
all enzymes to one distribution is conceptually problematic, this
provides a unique perspective for a comparison of enzymes. For
example, Rubisco, the central carbon fixation enzyme, is usually
considered to be a slow and inefficient enzyme.35 However,
Figure 1 suggests that it actually possesses rather average kinetic
parameters.

When considering the maximal kcat/KM of each enzyme, the
median kcat/KM is only 5-fold higher (∼5 � 105 M�1 s�1),
suggesting that constraints imposed by the Haldane relationship,
and the multisubstrate reactions of enzymes, only partially
explain why many enzymes operate far from the theoretical
kinetic limits.

We note that previous studies have shown that not all
diffusion-controlled reactions operate at kcat/KM values of
108�109 M�1 s�1. The kinetic parameters for some enzymes
could be limited by the rate of substrate�enzyme encounter, as
suggested by the viscosity dependence of kcat/KM, although they
display kcat/KM values in the range of 106 M�1 s�1.36�40 In such
cases, the low kcat/KM values may reflect the recruitment of a rare
enzyme conformation that mediates catalytically productive
binding.38,40

The median KM is∼100 μM (Figure 1C), where∼60% of all
KM values are in the range of 10�1000 μM. The distribution of
KM values implies an empirical constraint for theKMofmetabolic

Table 1. Data Extracted for Our Analysisa

filter

no. of KM

values

no. of kcat
values

KM and

kcat

Brenda, all data 92516 36021

Brenda, removing mutants 76591 25157

Brenda, acting on KEGG natural substrates 31162 6530

unique reactions

(enzyme�substrate pairs)

5194 1942 1882

unique enzymes 2588 1176 1128

unique substrates 1612 834 804
a Each of the first three rows corresponds to the kinetic parameters
downloaded from the Brenda website and filtered as described in the
Supporting Information. Briefly, in the first step, parameters referring to
mutant enzymes were discarded; in the second step, only parameters
that refer to the natural substrate, as indicated by the KEGG database,
were included. The last three rows correspond to the amount of unique
parameters available after all the filtration steps. The last column gives
the number of reactions, enzymes, and substrates for which bothKM and
kcat are available.
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enzymes toward their substrates, where the vast majority of
enzymes (>99%) do not exhibit KM values below 0.1 μM. Such a
low KM characterizes, for example, the glycolysis enzymes
glyceraldehyde-3-phosphate dehydrogenase and phosphoglyce-
rate kinase utilizing the substrate 1,3-bisphosphoglycerate, the
cellular concentration of which is ∼0.1 μM.16

’SELECTIVE PRESSURES MOLD ENZYME KINETICS

Why do most enzymes operate far from the theoretical limits
of kcat and kcat/KM? We hypothesize that evolutionary pressures
play a key role in shaping enzyme parameters; that is, maximal
rates have not evolved in cases where a particular enzyme’s rate is
not expected to be under stringent selection. To assess the role of
selection, we analyzed enzymes that operate at different contexts
and examined whether they display significantly different kinetic
parameters. We found only a small, yet measureable, effect of
the host organism on the kinetics of enzymes (Figure S3 of the
Supporting Information). Regardless of the host organism, the
metabolic context of an enzyme appears to affect its kinetics
considerably as discussed below.
Central Metabolism Enzymes Exhibit Higher kcat and kcat/

KM Values Than Secondary Metabolism Enzymes. We as-
signed each enzyme�substrate pair to the metabolic modules in
which it participates on the basis of the categorization in the
KEGG database (Supporting Information). We classified all
modules into four primary groups: central-CE (carbohydrate
energy) metabolism, involving the main carbon and energy flow;
central-AFN (amino acids, fatty acids, and nucleotide) metabo-
lism; intermediate metabolism, including the biosynthesis and
degradation of various common cellular components, such as
cofactors and coenzymes; and secondary metabolism, related to
metabolites that are produced in specific cells or tissues, under
specific conditions and/or in relatively limited quantities (see
Table 2 for the classifications of example metabolic pathways and
Table S2 of the Supporting Information for the full list).
As illustrated in Figure 2A, enzyme�substrate pairs associated

with central metabolic groups tend to have higher turnover
numbers than intermediate and secondary ones. The median

kcat of reactions associated with central-CE metabolism (79 s�1)
is ∼30-fold higher than that of the reactions associated with
secondary metabolism (2.5 s�1). Enzymes associated with
central-CE metabolism also exhibit an average kcat/KM value
∼6-fold higher than those of intermediate and secondary meta-
bolism (Figure 2B).
These trends were reproducible even when considering only

enzymes from specific functional or structural groups and when
analyzing enzymes from Escherichia coli, Saccharomyces cerevisiae,
and humans separately (Figure S4 of the Supporting In-
formation). As the molecular masses of substrates affect their
KM values (discussed below), we also compared substrates within
a certain molecular mass range and obtained similar results.
We suggest that these differences may be due to enzymes

operating in central metabolism being under stronger selective
pressures to increase their rates. A rate maximization of central
metabolism enzymes is sensible considering the average high flux
these enzymes sustain in vivo. High fluxes enforce the production
of many enzyme molecules, a costly process that imposes a
significant pressure for improved kinetic parameters that may
reduce the amount of enzymes needed and hence alleviate the cost.
The selection pressure might be weaker in enzymes functioning in
secondary metabolism, either because the overall contribution of
these enzymes to organismal fitness is limited or because they
operate only under specific conditions or for short periods of time
and at relatively low fluxes. Low fluxes can be maintained with
relatively low enzyme levels that do not impose a considerable
pressure on the kinetic parameters and can be satisfied by
moderate kcat or kcat/KM values. Alternatively, for secondary
metabolism enzymes, the selection pressure might not be to
increase the catalytic rate but rather to optimize the regulation,
control, and localization within a specific context. Finally, it could
also be that for a significant fraction of secondary metabolism
enzymes, substrates are not correctly assigned, resulting in lower
reported parameter values for the so-called natural substrates.
The differences in kcat values between the metabolic groups are

more prominent than the differences in the kcat/KM value. This
finding is in line with central metabolism enzymes being under strong
selection for higher fluxes and the theoretical view of the evolution of

Figure 1. Distributions of kinetic parameters: (A) kcat values (N = 1942), (B) kcat/KM values (N = 1882), and (C) KM values (N = 5194). Only values
referring to natural substrates were included in the distributions (Supporting Information). Green and magenta lines correspond to the distributions of
the kinetic values of prokaryotic and eukaryotic enzymes, respectively. The location of several well-studied enzymes is highlighted: ACE, acetylcholine
esterase; CAN, carbonic anhydrase; CCP, cytochrome c peroxidase; FUM, fumarase; Rubisco, ribulose-1,5-bisphosphate carboxylase oxygenase; SOD,
superoxide dismutase; TIM, triosephosphate isomerase.
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the maximal rate, suggesting that an enzyme, under a constant kcat/
KM, is expected to increase its kcat at the expense of KM.

9

’PROPERTIES OF REACTIONS AND REACTANTS
CONSTRAIN ENZYME KINETICS

Evolutionary pressures have their limits and cannot improve
the kinetics of an enzyme ad infinitum. In the introduction, we
reviewed several global constraints imposed on enzymatic cata-
lysis. Here we ask whether we can obtain a deeper understanding
of the constraints imposed by the reaction and/or reactants’
nature.

While a full consideration of the effects of the reaction
characteristics on its kinetics is beyond the scope of this review,
we note that different EC classes are characterized by signifi-
cantly different distributions of kcat values (Figure S5 of the
Supporting Information). For example, isomerases (EC 5.X.X.X)
exhibit a median kcat of 33.5 s�1, an order of magnitude higher
than that of ligases (EC 6.X.X.X), with a median kcat of 3.7 s

�1. It
is possible that the different mechanisms and activation energy
barriers of different reaction classes may correlate with the

catalyzed rates, but at present, the available data do not allow a
systematic exploration of these mechanistic issues. We do
observe, however, an effect of the number of substrates involved
in a reaction on the KM for these substrates; the higher the
number of substrates, the lower theKM for each substrate (Figure
S6 of the Supporting Information). This observationmight result
from the fact that as the number of substrates increases, lowerKM

values are required to obtain the same concentration of the
enzyme�substrate complex; catalysis of a single substrate begins
with the formation of a binary E 3 S complex, of a two-substrate
reaction with a ternary complex, etc.
For Small Substrates, KM Decreases with Increasing Sub-

strate Molecular Mass and Hydrophobicity. The binding of

Figure 2. Enzymes operating within different metabolic groups have
significantly different kcat and kcat/KM values. (A) Distribution of kcat
values for enzyme�substrate pairs belonging to different metabolic
contexts. All distributions are significantly different with a p value of
<0.0005 (rank-sum test), except for intermediate versus secondary
metabolisms (p < 0.05). (B) Distribution of kcat/KM values for en-
zyme�substrate pairs belonging to different metabolic contexts. Cen-
tral-CE (carbohydrate and energy) metabolism has significantly higher
kcat/KM values than all other metabolic groups [p < 0.0005 (rank-sum
test)]. Abbreviations: CE, carbon and energy; AFN, amino acids, fatty
acids, and nucleotides. Numbers in parentheses represent the numbers
of enzyme�substrate pairs included in each set.

Table 2. Classification of Several Example Metabolic
Pathwaysa

metabolic groups example of pathways

primary metabolism�CE

(carbohydrate and energy)

glycolysis/gluconeogenesis

pentose phosphate pathway

citrate cycle (TCA cycle)

carbon fixation in photosynthetic organisms

pyruvate metabolism

glyoxylate and dicarboxylate metabolism

etc.

primary metabolism�AFN

(amino acids, fatty acids,

and nucleotides)

glycine, serine, and threonine

biosynthesis and metabolism

phenylalanine, tyrosine, and

tryptophan biosynthesis and metabolism

cysteine and methionine biosynthesis

and metabolism

fatty acid biosynthesis

purine metabolism

pyrimidine metabolism

etc.

intermediate metabolism pantothenate and CoA biosynthesis

ubiquinone and other quinone biosynthesis

glutathione metabolism

biotin metabolism

folate biosynthesis

thiamine metabolism

etc.

secondary metabolism flavonoid biosynthesis

taurine and hypotaurine metabolism

phenylpropanoid biosynthesis

bile acid biosynthesis

caffeine metabolism

retinol metabolism

etc.
aThe full list, containing the classification of 300 metabolic modules, is
given in Table 2 of the Supporting Information.
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ligands to receptors is usually described by the dissociation
constant, KS, which can be measured and interpreted as a sum
of contributions of different chemical bonds.25,26 In contrast, the
interpretation of the apparent dissociation constant of an en-
zyme�substrate complex, KM, actually represents a complex
function of both the dissociation constant of a substrate (i.e., its
binding affinity, orKS) and its catalytic turnover rate. In reactions
of a complex mechanism, KM is affected by various microscopic
rates that do not necessarily relate to the binding of a single
substrate. KM is expected to approximate KS only for reactions
with a very simple mechanism and when the rate of catalysis is
significantly slower than the rate of substrate association and
dissociation.9 Still, the existence of a significant correlation
between various physicochemical properties of substrates and
their KM values might indicate that these properties are global
contributors to the interaction between substrates and enzymes,
and their effects are manifested in spite of the mechanistic
complexities mentioned above.
We identify two physicochemical properties that significantly

correlate with KM (Table S3 of the Supporting Information):
molecular mass and hydrophobicity. As shown in Figure 3A, KM

decreases, on average, by almost 2 orders of magnitude with an
increasing molecular mass up to∼350Da (themolecular mass of
AMP). For molecular masses of >350 Da, we observed no
correlation between molecular mass and KM, and the median
KM for >350 Da substrates (∼40 μM) is considerably lower than
the median for all substrates (∼100 μM). Hence, the data
indicate a limitation on the binding affinity of small substrates,
as observed for the binding of ligands to macromolecular
targets.25,26 We find that affinity increases with an increasing
number of non-hydrogen atoms, although with a lower contribu-
tion per atom as compared to ligands25,26 (Supporting In-
formation), and only up to molecular masses of e 350 Da.
While the potential for increasing the affinity for large substrates
might exist, the evolutionary pressure might not be significant

enough to drive KM beneath an average value of ∼40 μM for
most enzymes. Alternatively, a trade-off betweenKM and kcat may
restrict the improvement of the former.9

For small substrates (e350 Da), the KM values also decrease
∼100-fold with an increasing LogP (Figure 3B). Molecular mass
and LogP are not correlated with one another (Table S3 of the
Supporting Information), and hence, their correlation with KM is
independent. Indeed, a regression of KM using both parameters
yielded an almost additive correlation (R2 = 0.31). Considering
the noisy nature of the data set, and the fact that KM does not
directly representKS, we find it noteworthy that almost one-third
of the variability in KM can be explained by two substrate
properties. It suggests that molecular mass and hydrophobicity
might significantly limit the kinetic parameters and affect the
observed parameter distributions.
In line with previous studies, we interpret the correlations

betweenKM andmolecular mass and LogP as contributions from
van der Waals forces and the hydrophobic effect.25 All other
substrate properties, such as charge and hydrogen bond donors
and acceptors, either did not show an effect onKM or kcat or were
correlated with molecular mass and LogP (Table S3 of the
Supporting Information). Therefore, although hydrogen bond-
ing and electrostatic interactions clearly play an important role in
substrate binding, their contribution could not be globally
detected.
Some EC classes show a strong correlation between KM

and molecular mass and LogP, suggesting an ability to predict
parameter values as shown in Figure 3C. For other EC classes,
the correlations are very weak (Figure 3C). Although we find
only a minor global correlation between kcat and KM (R2 = 0.09),
the correlation between these parameters displays a similar
EC dependent contingency (Figure S1 of the Supporting
Information). The EC classes that display strong correlations
seem to have a rather simple catalytic mechanism that corre-
sponds to the Michaelis�Menten formalism. In such cases, the

Figure 3. Correlations ofKM and substrate molecular mass and LogP. (A and B) The cyan area corresponds to the standard error around themean value
of a window centered at each X value (Supporting Information). The insets display the distribution of all the points. (A) Two regimes are noted:
molecular mass of <350 Da, where the correlation between KM and molecular mass was found to be negative (R2 = 0.13; p < 10�6; slope =�6� 10�3

Da�1) (Supporting Information), and molecular mass of >350 Da, where KM values plateau at∼40 μM. (B) KM vs LogP. Only small substrates (<350
Da) were used for this analysis (R2 = 0.24; p < 10�6; slope = 0.25� LogP�1) (Supporting Information). (C) Correlations between the predicted KM,
according to a substrate molecular mass and LogP, and the reported KM values for several EC classes: 1.1.1.X (R2 = 0.46), oxidoreductases, acting on the
CH�OH group of donors, with NADþ or NADPþ as the acceptor; 2.4.1.X (R2 = 0.52), hexosyltransferases; 3.5.1.X (R2 = 0.11), hydrolases, acting on
carbon�nitrogen bonds, other than peptide bonds, in linear amides; and 1.14.13.X (R2 ∼ 0), oxygenases, acting on two donors, where NADH or
NADPH is one donor, and incorporating one atom of oxygen into the other donor.
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apparent effective kinetic constants correspond more directly to
the steps in the reaction axis, andKM largely reflects the substrate
binding affinity (KS).

48 In contrast, EC classes, such as mono-
oxygenases (EC 1.14.13.X), that are characterized by low corre-
lations seem to have complex, multistage mechanisms in which
the apparent KM is highly removed from KS.

9

None of the substrate properties we examined correlated with
kcat (Table S3 of the Supporting Information).
Large Substrate Modifiers Decrease KM. It was previously

shown that noncovalent interactions between an enzyme and the
CoA moiety of a substrate stabilize the reaction’s ground state
and bring about an approximately 10-fold increase in kcat/KM.

49

We wanted to test whether this phenomenon is general. We
therefore compared the KM values of enzymes utilizing substi-
tuted and unsubstituted substrates. We analyzed modifiers of
different sizes for which we were able to obtain sufficient data.
The large modifiers analyzed were CoA and NDP (UDP, CDP,
etc.), and the small to medium modifiers analyzed were the
phosphoryl group, pentoses (ribose, arabinose, etc.), and the
N-substituted methyl and acetyl groups.
It appears that substitution with large modifiers, NDP and

CoA, significantly decreases KM, by median factors of 19 and 5,
respectively (Figure S7 of the Supporting Information) (p <
10�3). Of the small to medium modifiers, only the phosphoryl
group significantly decreased KM, by median factors of almost 4
(p < 10�3) (Figure S7).
Thus, apart from chemically activating their substrates, modi-

fiers might have a common functionality in enhancing the affinity
of enzymes for the substituted substrates. For example, a micro-
molar KM range for acetate (molecular mass of 60 Da) and
propionate (molecular mass of 74 Da) might be desirable for
certain enzymes, but difficult to achieve because of the lack of a
sufficiently large interaction surface for such small a substrate.
Indeed, the KM values for these substrates lie in the range of
1�10 mM, whereas the KM values for the respective CoA-
substituted substrates are in the range of 1�100 μM, indicating
a decrease of ∼2 orders of magnitude upon CoA substitution.
The cellular concentrations of acetate and propionate are in the
range of 1 μM to 1 mM.13 Thus, enzymes that accept these small
substrates operate below the KM and hence significantly below
their maximal rate. In contrast, enzymes accepting the acyl-CoA
derivatives of these substrates operate within the KM range and
hence are nearly substrate-saturated (the effect of substitution
with CoA is further discussed in the Supporting Information).

’ IMPLICATIONS

Most enzymes are characterized by kinetic parameters that are
much lower than textbook examples and the commonly pre-
sented constraint of the diffusion rate. We propose two possible
underlying explanations for this phenomenon, one involving
different intensities of selection for rate maximization and the
other related to physicochemical constraints. Both explanations
impact our understanding of the evolution of enzymatic para-
meters and suggest that within certain physicochemical con-
straints, the catalytic efficiency of many enzymes toward their
native substrates could potentially be increased by natural or
laboratory evolution.

We found indications for both proposals, but laboratory
evolution experiments will be needed to test these suggestions
in an unambiguous manner. For example, in contrast to very
large improvements observed in directed evolution toward

promiscuous substrates and reactions (up to 106-fold), attempts
to improve the catalytic efficiency of Rubisco toward its natural
substrate and reaction resulted in relatively small improve-
ments,50,51 suggesting that this enzyme operates close to the
theoretical maximal efficiency.52 To counter the Rubisco exam-
ple, it might be of interest to try to improve a secondary
metabolism enzyme whose catalytic efficiency with its natural
substrate and reaction is suggested to be far from optimized.

The identification of the natural substrate and reaction
comprises a challenge for secondary metabolism enzymes. For
many of those, substrates with only moderate catalytic efficien-
cies are identified in vitro, and the validation of their in vivo
function remains elusive. For many such enzymes, the real
substrate and reaction are yet to be discovered. However, we
consider it unlikely that this explanation fully accounts for the
trends we observe across hundreds of enzymes. Our global
analysis therefore suggests that for secondary metabolism en-
zymes, kcat/KM values that are <10�5 M�1 s�1 and kcat values
lower than 10 s�1 are the norm. Indeed, low kcat/KM values in the
range of 103 M�1 s�1, or even lower, together with broad
substrate specificity, are commonly seen in plant secondary
metabolism enzymes.41�47

This global view of kinetic parameters has implications with
respect to enzyme engineering and design. The benchmark for
success in this field has been kinetic parameters and rate
accelerations that are comparable to those of natural enzymes,53

but as one can see in Figure 1, the catalytic efficiencies of natural
enzymes span more than 5 orders of magnitude. Designed and/
or engineered enzymes begin to reach kcat/KM values of g104

(for a recent example, see ref 54). Whereas these values are
orders of magnitude from the enzymes' top league (kcat/KM g
108M�1 s�1), they are not so far from that of the average enzyme
(kcat/KM ∼ 105 M�1 s�1). Rate accelerations, and how inher-
ently activated the reaction is, are other important comparison
points, but from a biological point of view, catalytic efficiency is
the most relevant parameter.

The kinetic parameters analyzed here are also relevant for
metabolic engineering. In recent years, this field has advanced
from the heterologuous expression of individual enzymes to the
construction of complex metabolic pathways that combine
several enzymes from different origins.55�58 In many cases, more
than one solution for a given metabolic goal exists, and each of
these solutions employs a different set of enzymes.59 The global
analysis of kinetic parameters suggests that choosing enzymes
that normally operate in central metabolic contexts is more likely
to yield higher fluxes, a property that is a key for most metabolic
engineering enterprises. Further, it might be beneficial to use
pathways that employ substituted substrates (e.g., with phos-
phoryl or CoA modifiers) to ensure saturation and hence
higher rates.

The trends shaping the kinetic parameters can be helpful in
establishing and analyzing metabolic models. These trends can
further be used to reinterpret the evolutionary objectives as-
sumed by some of these models. For example, optimality analysis
previously suggested that under the assumptions of an evolu-
tionary pressure to increase flux, and of an upper limit on the total
enzyme concentrations, enzymes with more control over the
metabolic flux are expected to be present in higher concentra-
tions compared to those with weaker control.16,60 It is possible to
expand such an analysis to account for the observed trends in the
values of kcat. Our observation that kcat values remain far below
their theoretical limits and that not all enzyme groups are
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optimized to the same extent led us to construct a model with an
effective cost term on the increase of kcat, arising from the
decreasing probability of finding a mutant with higher kcat values
(Supporting Information). Just as enzyme concentrations in-
crease until the benefit and cost balance each other, kcat values
increase until the possibility of achieving even larger kcat values
becomes improbable. Our model suggests that a strong selective
pressure, resulting from strong control over the metabolic flux
and from the cost of producing many enzyme copies, can push a
kcat value further into the low-probability range of higher values,
while a weaker selective pressure would result in lower kcat values.
The full model, including a detailed discussion of its strengths
and limitations, is given in the Supporting Information.

’OPEN QUESTIONS

The global examination of kinetic parameters raises several
key questions. First, it is apparent that different EC classes display
significantly different behaviors concerning the relationship
between kinetic parameters and the physicochemical substrate
properties. These differences can be attributed to noise but may
also be related to different catalytic mechanisms. In any case, the
issue of specific correlations deserves a deeper and more thor-
ough analysis, while considering individual enzyme classes. More
specifically, the global data indicate only a minor correlation
between kcat and KM and thus fail to indicate a clear trade-off
between these parameters. However, analysis of enzymatic
reactions with similar properties might reveal that this trade-off
prevails in numerous cases (e.g., ref 52).

A puzzling issue remains regarding the lack of correlation
between the substrate’s potential for hydrogen bonding (includ-
ing electrostatic interactions) and its KM value. This is in spite of
the established contribution of these interactions to the binding
energy of substrates.9 A more detailed analysis of smaller groups
of substrates possessing similar physicochemical properties
might reveal a quantitative contribution of these forces to the
binding affinity. It could also be that enzymes evolved to utilize
such interactions primarily as the transition state develops, and
the substrate’s potential for hydrogen bonding therefore con-
tributes less to KM and more to kcat values.

Another interesting observation on the global scale analyzed
here is that regardless of the microscopic mechanisms, the
median kcat/KM observed is ∼105 M�1 s�1. Given that the
diffusion rate for collisions of proteins and low-molecular mass
ligands is on the order of 108M�1 s�1, it appears that, on average,
fewer than one of 1000 substrate molecules that collide with an
enzyme undergoes catalytic conversion. Studies of enzyme
dynamics, and of single-molecule enzyme reactions, have begun
to address this question,61�63 but we are still far from under-
standing what determines the fraction of productive collisions
and why so few enzymes have evolved such that nearly every
collision is catalytically productive.

Finally, it is not clear how the in vitro-measured kcat and KM

really correlate with enzyme activity within living cells. In a highly
crowded environment,64 characterized by numerous interactions
that do not occur in the test tube, and by colocalization of
substrates and of other enzymes that either generate the target
substrate or react with the resulting product, enzymatic activity
might display features that could not be captured by the kinetic
parameters obtained in vitro.

In spite of its obvious limitations, we suggest that global anal-
yses can shed light on how evolution on the one hand and

physicochemical constrains on the other have shaped enzyme
catalysis. As more kinetic data are rapidly being gathered, meta-
bolite concentrations within living cells are becoming widely
available,13,65�69 and the means of simulating and measuring
metabolic fluxes are developing,70�72we are hopeful it will become
possible to address some of the open questions highlighted above.

’ASSOCIATED CONTENT

bS Supporting Information. The entire data set of kinetic
parameters, a detailed description of the data sets used in our
analysis and a discussion of the dependencies between the kinetic
parameters and of the reasons for the noise in the data sets, the
affiliation of metabolic modules to one of the four primary
metabolic groups, an analysis of the effect of host organisms on
the kinetics of enzymes, the effect of the physicochemical
properties on KM, the energetic contribution of each non-
hydrogen atom to binding, and the decrease in KM upon
substitution with large modifiers, the statistical tools used in
the analysis, and a mathematical model for the evolution of
suboptimal catalytic constants. This material is available free of
charge via the Internet at http://pubs.acs.org.
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