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Abstract

With a high demand for increasingly diverse chemicals, as well as sustainable synthesis for many existing
chemicals, the chemical industry is increasingly looking to biosynthesis. The majority of biosynthesis
examples of useful chemicals are either native metabolites made by an organism or the heterologous
expression of known metabolic pathways into a more amenable host. For chemicals that no known
biosynthetic route exists, engineers are increasingly relying on automated computational algorithms, as
described here, to identify potential metabolic pathways. In this chapter, we review a broad range of
approaches to predict novel metabolic pathways. Broadly, these can rely on biochemical databases to
assemble known reactions into a new pathway or rely on generalized biochemical rules to predict unob-
served enzymatic reactions that are likely feasible. Many programs are freely available and immediately
useable by non-computationally experienced scientists.

Key words: Metabolic network, Metabolic pathway design, Heterologous pathways, Enzyme
database searching

1. Introduction

Our twenty-first century society has an increasing demand for a
range of chemicals, from fuels (1) to polymeric precursors (2, 3) to
drug and drug precursors (4–6), to name a few. Not only do we
need these compounds (some of which are increasingly complex) in
increasing quantities, but we also need to produce these com-
pounds sustainably, minimizing the emission of toxic contaminates,
suspected climate-change agents, and reduce the energy associated
with production and purification. (7).

Biosynthesis of these compounds is well positioned to meet this
need, as biological systems can synthesize complex molecules in
high yield in moderate (i.e., aqueous, ambient temperature, and
pressure) reaction conditions (8). The capture and redirection of
existing metabolic pathways toward the production of industrially
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useful compounds constitutes one of the many options available to
us for the development of sustainable biofuel energy and for the
reduction in environmental wastes from chemical processing.

However, many of the needed chemicals are not made by any
organism. How then do we harness the exquisite capabilities of
biology but make compounds that have not been made in nature
before? The answer most likely lies in the massive amount of avail-
able biochemical information (9, 10). This information is far too
complex for manual design of new pathways, as has been the major
strategy to date. Rather, computational approaches to design new
metabolic pathways have risen (11, 12). Here, we review several
recent computational tools, all focusing on this very problem—
taking large-scale biochemical data and using it to better inform
the design of synthetic metabolic pathways in unicellular organisms.
We present ten software programs, describing a wide range of
functionalities and approaches to the question of engineering reac-
tion pathways (Table 1). We note that this collection is not a defini-
tive list and other flavors of metabolic pathway design can be found.

1.1. Biochemical Data

Sources: The Kyoto

Encyclopedia of Genes

and Genomes

To design a metabolic pathway, one first needs a source of bio-
chemical data. The Kyoto Encyclopedia of Genes and Genomes
(KEGG), an online database of biochemical reactions and their
corresponding enzymes and genes, is one of the largest repositories
of continuously updated, verified metabolic data available (13, 14).
Because it is such a large database, it is a critical resource for
scientists and engineers interested in exploiting biochemistry, and
from the perspective of computational tools in this chapter, KEGG
very often serves as the source for all available metabolism to incor-
porate into organism models or to use in potentially novel path-
ways. Thoughmost of the programs are capable of linking up to any
metabolic database, KEGG is almost always the one used.

1.2. Strategies for

Finding Pathways

The main obstacle to pathway discovery is that of complexity, both
from the large amount of metabolic reaction data (e.g., KEGG) and
from the complex state of the organism. Online databases contain
intractable amounts of enzyme/reaction information for a human
to determine a pathway, and the search is complicated by the
inherent interconnectedness of cellular metabolism.

The two main classes overcome the issue of complexity in a
different way. Graph theory-based approaches perform analysis on
the reaction databases directly. Biochemical data is broken down
into edges and nodes. Most commonly compounds are nodes and
reactions are edges, but this can vary depending on the approach.
Finding paths is then a matter of following the different routes of
the graph and trying to get from the starting compound to the
product. Instead of using the data of online databases directly, rule-
based methods generalize those reactions into reaction rules and
use those rules to map out reaction paths to and from different
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compounds. In a way, rule-based methods distill the online data-
base information down and use it to create their own, more focused
reaction databases focused on the starting/target compounds. By
capturing the observed chemistry in these rules, the algorithm can
predict new compounds and pathways that are not found in KEGG.

2. Computational
Pathway Discovery
Tools

2.1. Rule-Based Tools

A significant difference between rule-based methods and the other
types discussed in this chapter lies in the ability to predict novel
chemistry. While other methods can only reorganize known reac-
tions and compounds, rule-based methods use those same data-
bases to generalize biochemistry in terms of independent reaction
rules. These rules are used to generate their own databases of
reactions. The rule-based systems are an approach that bridges
the often overlapping fields of metabolic engineering and synthetic
biology through the inclusion of novel biochemistry into pathway
discovery. These chemistries may be indicative of unidentified enzy-
matic activities or may provide potential targets for protein engi-
neering to alter substrate specificity. An illustrative example of rule
creation, as well as the rule’s application to generate novel chemis-
try, is shown in Fig. 1.

Here, we will review the Biochemical Network Integrated
Computational Explorer (BNICE), KEGG PathPred system, and
the University of Minnesota Biodegradation and Biocatalysis Data-
base’s Pathway Prediction System (UM-PPS).

2.1.1. Biochemical Network

Integrated Computational

Explorer

The Biochemical Network Integrated Computational Explorer
(BNICE) is a rule-based system which can carry out both analysis
and synthesis: Analytical tools focus on finding all paths among
known metabolites, while synthesis tools allow for the identifica-
tion of novel intermediate compounds and reactions (15).

Inputs and Operation BNICE consists of four modules: NetGen, thermodynamics, path-
way, and thermodynamics-based metabolic flux analysis (TMFA).
NetGen predicts enzymatic reactions and products based on
generalized reaction rules, and its output serves as the input data
for the rest of the program’s features. Thermodynamics, pathway,
and TMFA are all pruning, or analytical, modules written to take
the initial network of NetGen and further analyze it to identify
desired reactions and pathways from the initial pool.

Chemical reactions are reproduced by files called operators,
which are used to predict enzymatic reactions. These operators
have been hand distilled from enzymatic databases, like KEGG
and the University of Minnesota Biodegradation/Biocatalysis
Database (UM-BBD). Operators are named and generalized

8 Computational Tools for Guided Discovery and Engineering of Metabolic Pathways 127



according to their enzyme commission (EC) classification numbers.
Rather than operators describing the chemistry and the specific
substrate, the operator creation focuses on generalizing enzymatic
reactions that contain the same first three EC digits and thus
involve very similar chemistry, but could use different substrates.

Reactions in NetGen are simulated with a bond–electron
matrix (BEM). Required reaction sites are defined in the individual
operator files in a symmetricN � Nmatrix, whereN is the number
of atoms required in the reaction site. The elements of the matrix
represent the bond order between overlapping rows and columns
(e.g., a number 2 in an element of row O and column C would
describe a double bond between a specific carbon and specific
oxygen atom in the molecule). Having used the BEM to describe
the required reaction site, the operator files then use an identically
sized matrix with positive and negative integers to describe the
making/breaking of bonds. The operators are able to cover a
large spread of potential chemistries, all based on known biochemi-
cal transformations.

To generate its networks, BNICE requires an input of starting
compounds, a list of operators to use in the network creation, and
the number of generations to run. The pruning modules explained
in the next section use output from NetGen.

Fig. 1. An example of the rule-distillation process used in rule-based methods. Three reactions with very similar
chemistries are compared, and the representative structures are used to describe the chemistry. This can then be applied
to a novel substrate to potentially predict biochemistry.
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Search Algorithm Running BNICE for many generations can easily lead to a reaction
network of hundreds of thousands of reactions. For this reason, we
have developed the pathway, thermodynamics, and TMFAmodules
to take the large networks, remove undesired reactions, and provide
additional useful information about the simulated biology to pro-
vide direction for potential experimental implementation.

Beginning from a starting compound, NetGen scans possible
operators that can act on the start compound and generates a new
pool of molecules based on the operators’ chemistries. This can run
for several generations to create many possible reactions. Work can
also be done in retrosynthetic analysis, working backward from a
product using retrosynthesis operators, which are operators with
reversed directions of the initially defined chemistry (reactions that
are considered physiologically reversible are handled similarly, but
with both directions included in the full operator pool).

Given this initial biochemical network, pathway or thermody-
namics can be used to uncover connections between pairs of desired
compounds and approximate the thermodynamic changes of the
reactions of interest. Pathway performs a basic depth-first search for
linear pathways between the user-defined start and end points of the
pathway given a maximum path length. Thermodynamics uses a
group contribution method (GCM) to approximate DGr across a
reaction from changes in substructures (16), which have been
assigned individual DGf values. Using these two modules, thermo-
dynamically favorable pathways of reasonable length are culled from
the network. Lastly, to help choose from those proposed paths,
TMFA can be used with each set of reactions to find those with
the highest product yield, highest biomass, or other bioprocessing
benchmarks. TMFA performs a flux balance analysis (FBA) of the
effects frompathway integration into an organismalmodel, but with
thermodynamic constraints on fluxes to better inform metabolism-
scale effects of the pathway (17). FBA analyzes an organismal model
and calculates maximum product yields as well as altered biomass
rates that result from the introduction of heterologous reactions
(see the OptStrain section for more details of FBA). In TMFA,
metabolite activities are found, and optimal starting metabolite
concentrations are suggested based on the thermodynamics.

Pathway Evaluation

and System Validation

BNICE has been successfully applied to specialty chemical produc-
tion (18), biodegradation of xenobiotics and environmental toxins
(19), amino acid synthesis pathways (15), and biofuel production
(20). Successes in these projects have independently reproduced
known biological pathways and predicted novel biosynthesis routes
that were already implemented in industrial settings. BNICE can be
applied to a wide range of applications—novel chemistry predic-
tion, native pathway discovery, and alternative pathway discovery.
The program is written in C++ and can be run on Windows or
Unix systems.
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2.1.2. Cho Systems

Framework

Cho et al. have implemented the BEM strategy of the BNICE
algorithm and have extended it in several useful ways (21). Cho’s
algorithm is focused on retrosynthesis and has included modules
for using chemical similarity, both for entire molecules and for
substructures of a molecule, a group contribution thermodynamic
analysis, pathway distance, and organism reaction specificity to help
improve the selection of potentially useful pathways. Cho’s algo-
rithm has successfully predicted pathways for the synthesis of iso-
butanol, butyryl-CoA, and, like BNICE, 3-hydroxypropanoate.

2.1.3. PathPred PathPred (22) is a system that utilizes the KEGG RPAIR and RDM
databases, an atom-mapping rule-like system that uses KEGG’s
own data to break down reactions into reaction pairs with smaller
rule descriptors for proposing novel metabolic pathways.

Inputs and Operation The RPAIR database simplifies the reactions of the KEGG database
and classifies reactions by reaction rules similar to BNICE, which
are termed RDM patterns (for (R)eaction center atoms, (D)ifferent
atoms, or (M)atched atoms, described below). The collection of
these RDM patterns, and the reactant–product pairs described by
the rules, is the KEGG RPAIR database (23). Reactants and pro-
ducts are compared and matched into reaction pairs based on a
chemical similarity approach before a manual curation ensures
proper pairing.

To create the RDM patterns, paired structures are compared
and the overlapping substructures identified. The R atoms are those
in the overlap region but on the border, hence where the reaction
occurs. The D atoms are those bound to the R atoms but not in the
overlap region. TheM atoms are those bound to the R atoms in the
overlap region. The RDM patterns describe how these three atom
types change across a reaction pair and are meant to fully describe
the chemistry performed in that pair (24). There are several RPAIR
types that distinguish between different reaction pairings: main,
cofac, trans, ligase, and leave pairs. PathPred utilizes only the RDM
patterns from main pairs, which describe the pairings meant to be
the focus of a particular reaction.

When the RPAIR database was first published (22), there were
7,091 reactant pairs described by 2,205 RDM patterns, with the
bulk of those RDM patterns (64 %) each describing a single reac-
tion pair.

Search Algorithm PathPred predicts pathways from an observed clustering of RDM
patterns to certain classes of metabolism (25). When running
PathPred, the user must choose a type of metabolism—xenobiotic
degradation or biosynthesis of secondary plant metabolites. By
choosing a specific class, the program will use the associated
RDM patterns. This allows for more reasonable computation
times and more accurate predictions.
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After selecting the type of desired prediction, the user inputs
several starting parameters and is able to start a run of PathPred.
Depending on the approach, either a starting compound or final
compound is required (catabolism and anabolism, respectively),
and additional data about chemical similarity thresholds and the
number of prediction cycles can be set as well. After loading the
compound, the PathPred algorithm analyzes the compound. First,
it performs a similarity comparison between the input compound
and the full database of KEGG compounds, looking for potential
matches within a user-set threshold similarity value. Next, PathPred
searches through all of the RDMs of those matched compounds
and finds all RDMs that are applicable to the initial input com-
pound. Third, the starting compound is subjected to the RDM
transformations for those that matched the structural require-
ments. These last two steps are repeated until all transformations
have been exhausted, at which point the compounds generated will
be used in the first step, and the whole process is repeated for
however many prediction cycles the user has specified.

Predicted pathways and reactions are ranked according to two
different scoring schemes: reaction and pathway scores. The reac-
tion score is a similarity index measure of how structurally close the
compound input into the first step is to the compound that the
RDM pattern is designed to act on. The pathway score is an average
of the reaction scores contained within it. Compounds at the end of
pathways with high pathway scores are targeted for the repeated
prediction cycles.

Pathway Evaluation

and System Validation

In their paper introducing the program, the authors of PathPred
used their system to predict one biodegradation (1,2,3,4-
tetrachlorobenzene to glycolate) and one biosynthesis (delphinidin
to gentiodelphin) process, one each for the two different available
sets of RDM patterns (22). The biodegradation exercise matched
a documented path from the UM-BBD and found several other
paths. The biosynthesis found several paths but not the known
biological route, as a necessary RDM pattern was not a main pair
and thus neglected from the process. More recently, PathPred was
also successfully used to predict plant biosynthesis of fraxidin
from umbelliferon (26) with several intermediary compounds
known to be present in the Saposhnikovia root, a known biological
source.

PathPred is freely available online through the KEGGdatabase at
the following address: http://www.genome.jp/tools/pathpred/. At
the time of publication, PathPred was available in version 1.13.

2.1.4. University

of Minnesota Pathway

Prediction System

The University of Minnesota has developed one of the premier
biodegradation databases, the UM-BBD. With this plethora of
information, they have also taken steps to create a predictive
biodegradation software program, which they have called the
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University of Minnesota Pathway Prediction System (UM-PPS)
(27). The program has been publicly available since late 2002/
early 2003 and has seen continual development since its release,
which we detail here.

Inputs and Operation The actual use of the program is very straightforward and consists
of only a few starting steps. First, the user inputs a starting com-
pound through either a MarvinDraw applet or a SMILES string.
The user is initially also given the option to limit the search to
aerobic reactions. PPS then will generate and display the network in
a short directed acyclic graph.

Search Algorithm One of the original issues with the UM-PPS was that it required
informed user intervention for each step. This required some
knowledge of microbial biodegradation preferences in order to
choose proper steps in generating a pathway. To overcome this,
the software developers have implemented five network control
features which capture much of the expert knowledge that was
previously required, which they call “metabolic logic entries”:
absolute aerobic likelihood, immediate feature, relative reasoning,
super rules, and variable aerobic likelihood. Full details about these
features can be found elsewhere (28–30).

The core of UM-PPS is based on the distillation of the chemis-
tries contained within the UM-BBD. The program uses generalized
reaction rules, which they have termed biotransformation rules
(btrules), that represent a large portion of the chemistries found
on the database.

Using the chemistry of the UM-BBD, the authors of UM-PPS
currently have 250 btrules for pathway prediction. These btrules
are all designed to recognize and react with 50 predefined func-
tional groups that have been distilled from the available reactions
and are common across many xenobiotic metabolic reactions.
When searching for potential reaction candidates, UM-PPS first
performs a selection step, where btrules are matched to potential
reactive sites, and then the reactions are carried out in the biotrans-
formation step. Reaction rules are designed to be as generalized as
possible, as long as the actual chemistry or known metabolism does
not prevent this.

The UM-PPS and btrules are not written to describe any
individual bacterium. The reactions contained within the UM-
BBD (and the subsequent generalized btrules) are described
based on known environmental degradation. The reactions in the
database come from a wide variety of organisms and environmental
observations. This is justified because of “increasing evidence that
[xenobiotic degradation] is often consortial” (27). The UM-PPS is
written with the intent of predicting whole-scale breakdown of
xenobiotics, not necessarily the breakdowns occurring within a
specific microbe. It is important to keep this in mind if using this
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tool for metabolic engineering purposes, as btrule steps from
different organisms may necessitate engineering beyond the intro-
duction of proteins to a host cell.

Pathway Evaluation

and System Validation

UM-PPS was validated in three ways upon publication (27). The
program was able to recreate 72 % of the documented reactions of
the UM-BBD at the time and gave at least one known pathway for
98 % of all UM-BBD compounds. It also reproduced five out of six
biodegradation pathways as predicted by biodegradation experts
for non-UM-BBD compounds. As an in vivo verification, three
compounds predicted to release ammonia were successfully used
as nitrogen sources in three cultures of soil-sampled bacteria.

UM-PPS has also been benchmarked against KEGG PathPred
(discussed previously in this chapter) for biodegrative prediction
(28). Not only did the UM-BBD perform equally or better for all
tested compounds when compared to PathPred, but it also cor-
rectly predicted 81 % of the biodegradation routes.

The UM-PPS is freely available online for all users at the
following link: http://umbbd.msi.umn.edu/predict/. The UM-
BBD parent site offers all of the information about the btrules,
use of PPS, all of the documented reactions on the site, and which
btrules correspond to those reactions.

2.2. Graph-Based Tools:

Probabilistic

Approaches

Graph-based approaches find optimal or nonnative paths between
substrates and products from a preexisting reaction network. There
are many potential pools of reactions for these tools. In addition to
the already discussed KEGG database, other options are MetaCyc
(31), the UM-BBD (32), and organismal models (e.g., the Escher-
ichia coli iAF1260 model, (33)). Graph theory approaches take
these large databases of metabolites and reactions and break them
up into nodes and edges, where edges are directed arrows connect-
ing individual nodes as illustrated in Fig. 2. Due to limitations in
computational power and available time, the complexity of these
massive reaction databases makes it intractable to search through
every possible connection. For a breadth or depth-first search, the
worst-case computational time is O(|V| + |E|) (34) which, in the
case of our biological networks, is a function of the total number of
available nodes. For a pathway of length d in a network with
an average node connectivity of b edges, the time will then be
O(bd) which can rapidly become overly complex in the large,
interconnected databases (e.g., KEGG).

Probabilistic analysis looks at a network and makes a decision
about which edge to follow in a network, based on a probability
weighting heuristic, which can vary with the individual program’s
approach. The two presented methods here also utilize biological
models for the ranking of pathways. The two programs that we
have chosen to describe are Probabilistic Pathway Construction
(35) and DESHARKY (36).
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2.2.1. Probabilistic Pathway

Construction

One option for pathway analysis of large reaction database networks
is Probabilistic Pathway Construction (PPC). PPC utilizes a proba-
bilistic graph-based search method to take large metabolic net-
works and find the most relevant pathways between two targeted
compounds, searching for nonnative biosynthesis pathways. After
discovering potential novel metabolic pathways, PPC then uses
FBA to calculate the maximum yields of the desired product
through all proposed pathways, subject to a biomass production
constraint of 80% of that of the wild-type model.

Inputs and Operation PPC requires three inputs: the biosynthesis product, a multi-
organism reaction database to search (e.g., KEGG), and an organ-
ismal model for the expression host for FBA. The multi-organism
database provides PPC potential production routes, while the
organismal model gives PPC a list of native metabolites that can
serve as potential pathway starting points.

Search Algorithm PPC uses a modified depth-first graph search method to find path-
way connections. A depth-first network search proceeds in steps
going to nodes of deeper generations. When the search hits a stop
signal (a node with no further edges or a search depth limit), it
backtracks a step and proceeds to the next unexplored node.

Fig. 2. Illustration of generalized graph-based analysis. (a) A depth-first analysis of a graphical tree. The checkerboard and
wave nodes are the starting and target compounds, respectively. The arrow numbers illustrate the search with a maximum
depth of 2. (b) Another graphical illustration demonstrating connectivity of nodes. The gray circle has a high connectivity,
while the striped one a low connectivity. Gray could likely be a currency compound like NADH.
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When all edge searches from a given node have been exhausted, the
program will retreat additional steps until it encounters novel edges
to explore (Fig. 2a).

In PPC, molecules are treated as nodes and reactions leading to
those nodes as edges. The program first looks to the designated
biosynthesis product for all reactions resulting in its synthesis. It
then uses a probabilistic selection to choose a reaction step. Having
selected a reaction that produces the product of interest, PPC then
looks to the starting substrates of that reaction and sets those as the
new products, searching for reactions to those molecules with the
same probabilistic scoring.

The research group tested probabilistic preferences for high
connected nodes, low connected nodes, and for no inherent bias
for connectivity (uniform) (Fig. 2b). In their work, the authors
found that the best results were obtained with uniform connectivity.

PPC will continue to search in this manner unless it hits a
predefined maximum pathway length, it encounters a compound
that has already been included into the proposed pathway, or if the
pathway encounters a metabolite that is native to the predefined
host organism. It treats the first two cases as if it were a node with
no further edges. For the third, it records the valid pathway and
continues the search.

It is important to note that, being a system based on probabil-
ities, the program must be run through many iterations in order to
obtain an accurate representation of potential pathways. In the
group’s analysis, reliable results were returned between 500 and
1,500 iterations—the maximum yields stabilized at 500, but the
average yields increased until 1,500. These results were found
across several different types of synthesis products and the multiple
scoring mechanisms.

Pathway Evaluation and

System Validation

Having found several pathways, PPC is then able to place the paths
into the organismal model and approximate theoretical maximum
yields in an FBA analysis, which necessitates the selection of an
organism model (37).

As validation of the pathways discovered by their program, the
group looked to prior literature. While many predicted paths either
had no experimental work to be found or reported production
values not directly relatable to the maximum yield, there were
several successful pathways previously implemented by others.
These paths had been predicted independently by PPC and had
comparable yield predictions.

The PPC system has a significant advantage over exhaustive
searches in that it can save an enormous amount of time on longer
path analyses. PPC’s run-time scales linearly with respect to the
number of reactions within the multi-organism database. An
exhaustive search, however, becomes exponentially large with
respect to the maximum pathway length. PPC’s developers found
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that to find a pathway of 23 steps through an exhaustive search
would take approx. 400 years, while an identical search with PPC
took a mere 6 min. Likewise, the results of a ten-step probabilistic
search found pathways with essentially the same maximum theoret-
ical yields as the equivalent exhaustive search. However, in this
analysis, the authors have constrained themselves to a single metric
of efficacy. Future studies and experimental validation will prove if
additional metrics for successful pathway identification are neces-
sary. As will be seen throughout this chapter, there currently exist
many ideas about which metrics will accurately predict a pathway’s
success.

2.2.2. DESHARKY DESHARKY was developed to find routes of either biosynthesis
or biodegradation of compounds that are available in the KEGG
database (36). The program relies heavily on the KEGG listings
for all potential reactions to use in the pathways and uses a
relatively simple pathway search. But where DESHARKY is
unique is that it takes this a step further and uses the predicted
growth rate of an organism as an indicator of how successful a
given pathway will be in a physiological setting. This growth rate
is determined under two independent systems, which the authors
have classified as the transcriptional–translational load model and
the metabolic model.

Inputs and Operation This program contains a starter list of reactions, compounds, and
enzymes from the KEGG database. The user can customize the
simulation by updating this list, changing growth media compo-
nents, or adding metabolites into an organism. If a compound of
interest is already present within the host, then the user should
input instead a set of desired termination host compounds.

To run, the program requires host organism compound data
and the target compound. Biosynthesis will treat the target com-
pound as a product, and biodegradation will use it as a substrate.
Other adjustable parameters include number of iterations and max-
imum path length, among others.

Search Algorithm DESHARKY takes the target compound andfinds potential pathways
to/from a host organism’s metabolites to the input molecule. The
pathway discovery is done in an unweighted probabilistic manner
based on graph theory, similar to the approach taken by PPC. How-
ever, to avoid long pathways and improve convergence, each step
after the first has an additional probability to retreat one step. This
reversal probability increases with the number of forward steps that
have been taken. Because it is a probabilistic pathway determination
method, DESHARKYmust be run over many iterations (the default
is one million) in order to try and find all potential pathways. The
program assumes all reactions of KEGG are reversible to allow both
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biosynthesis and biodegradation (36). Metabolic steps with many
nonnative compounds to the host organism are also disregarded.

Pathway Evaluation

and System Validation

A significant challenge for novel pathway creation is not just finding
the pathway but also evaluating the effects of pathway implementa-
tion on the physiological state of the organism. The biological
consequences of pathways—consuming native metabolites, cyto-
toxic effects, and others—are often not evident within the pathways
themselves. DESHARKY solves this with two independent mea-
sures of the altered cellular load resulting from a nonnative path-
way: transcription–translation load and metabolic load.

Transcription–translation load estimates the negative cellular
effects resulting from the resource drain for nucleic acid and
enzyme polymerization, particularly the effects on RNA polymer-
ase and nucleotide availabilities. DESHARKY uses a set of equa-
tions to tie growth rate to transcription and translation loads based
on experimental measurements and first-order kinetics.

The model uses the available amino acid sequences on KEGG
and an empirical mathematical cellular-chassis (organism) model
they have developed to estimate reductions in growth rate arising
from the heterologous pathway enzymes (38). This type of estima-
tion of physiological effects is unique among pathway prediction
systems. Metabolic load is estimated through a standard FBA
approach, as used in several other programs. The two load calcula-
tors each give an independent assessment of the physiological
impact from the novel enzymes introduced into the organism and
provide two perspectives on cellular pathway integration, whereas
most approaches would analyze only metabolic burden.

DESHARKY takes only a few seconds for each full run. The
code is easily amenable to both distributed computing and mod-
ified weightings for the probabilistic searching. The program is
open source, written in C/C++, and runs in UNIX environments
(http://soft.synth-bio.org/desharky.html).

2.3. Graph-Based Tools:

Atomistic Mapping

When searching for a pathway, one obstacle faced by graph-based
tools is the effect of compounds with high degrees of connectivities
(Fig. 2b) which can waste significant computational resources
exploring all available edges. These compounds, like ATP or
NADH, are often referred to as pool or currency metabolites and
are involved in many biological reactions serving canonical roles:
providing either oxidoreductive potentials or functional groups.
One common solution to the high connectivity metabolite prob-
lem is to remove those nodes from the networks, though this
prohibits the analysis of any pathways for the synthesis of those
currency metabolites or that of any reactions where the compounds
perform noncanonical roles.

The atom-tracing approach seeks to sidestep the high connec-
tivity metabolite problem by following how bonds are made and
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broken across reactions, similar to that done by the rule-based
approaches but in a much more reaction-specific manner. For
most cases, currency metabolites donate relatively few atoms across
a reaction (e.g., NADH is only involved in the transfer of protons
and electrons). Atom-mapping rule sets can detect which sub-
strate/product pairs have the most atoms in common, and pathway
searches can focus on edges containing the highest degree of atom-
istic conservation, as is illustrated in Fig. 3. This strategy was
pioneered by Arita (39).

These programs are able to make more informed pathway
discoveries than the probabilistic tools we have discussed, with
the added information from atom conservation driving pathway
discovery. However, this focus may come at the cost of exploring
more energetically favorable paths or pathways of significantly
shorter length. The programs we have chosen to detail here are
ReTrace (40), PathMiner (41), and MetaRoute (42).

Fig. 3. A simplified graph theoretical analysis with atom mapping incorporated. Note how, although both routes yield the
same product, in the bottom path the only atom maintained from the starting compound is C, whereas in the top one A, B,
and C are all conserved.
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2.3.1. ReTrace ReTrace merges graph theory tracing with the specificity of atom
tracing. The goal is for more accurate and concise pathway predic-
tions—overcoming the difficulties faced by many with respect to
“irrelevant connections” that often result from the searches focused
on whole molecules. ReTrace also identifies branching pathways, a
feature other pathway discovery tools often overlook (40).

Inputs and Operation The program relies on KEGG for potential reaction steps and also
utilizes the KEGG RPAIR database (discussed in the PathPred
section) for information about where individual atoms move across
reactions. This requires that a local version of the KEGG LIGAND
data be downloaded from the parent website. The user inputs the
source and target metabolites, and there are also several options
with preset default values that the user can change for additional
control.

ReTrace creates a graph of reactions connecting a starting and
ending compound, using atom conservation to prioritize the most
viable paths.

Search Algorithm The overall ReTrace algorithm is made up of three procedures that
are run sequentially: ReTrace, FindPath, and FindPathStart.
ReTrace creates the atom and reaction graph that is used to find
potential pathways. Again, KEGG is the biochemical database of
choice. The graph constructed here is different frommany others as
both the reactions and the individual atoms of the compounds are
represented by nodes, with edges describing how the individual
atoms change compound locations across reactions. ReTrace con-
structs this graph from the database, also incorporating the stated
target and source compound atoms into the map. The RPAIR
reaction pairings are used to describe the core atoms for reactions
listed in KEGG and how their bonds change. The program con-
structs a graph of source and target atom nodes and all reactions/
edges of those atoms within a given number of reaction steps.

FindPath uses this graph for pathway construction and optimi-
zation, using the heuristic of atomistic conservation to rank them.
Optimal predicted pathways should minimize the number of “dan-
gling substrates,” or substrates that are used in reactions of the path
but enter into the pathway as foreign compounds. This helps
minimize unknowns in metabolic reactions (uncertainty on the
availability of a given compound), as well as yield much higher
metabolic efficiencies, as energy is not wasted on removing and
adding back atoms that are necessary.

Following the completion of this atom-traced graph, FindPath
first finds the initial pathways within the reaction network. It runs a
k-shortest path analysis between the source and target compounds,
with the procedure FindPathStart being used to match final com-
pound atoms to their starting compound atoms. FindPath looks
through the top k-shortest paths to find those in which atoms are
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and are not fully traced, and pathways where most atoms can be
traced to source compounds are stored for further analysis. For
those pathways with “unresolved atoms,” or atoms untraced to one
of the preset starting compounds, the program performs repeated
FindPath analyses with those unresolved atoms to add more edges
into the network. This is done until the program either runs out of
edges to add or the atom conservation score increases beyond a
preset minimum value.

Pathway Evaluation and

System Validation

The authors have benchmarked their program using 13 metabolites
as both source and target molecules (i.e., for each target, there were
12 sources). Computation times ranged from 1,000 s (CO2) to
16,000 s (CMP-N-acetylneuraminate), the number of average dis-
covered pathways to targets ranged from <30 (CO2) to about
1,700 (CMP-N-acetylneuraminate), and the average path lengths
ranged from five steps (CO2) to 33 (p-Coumaroyl-CoA). The
authors also showed they could find novel pathways from glucose
to inosine-50-monophosphate. Many pathways were found, includ-
ing a known prokaryotic synthesis route, and routes using several
alternative starting compounds were also identified. ReTrace was
also used to reconstruct previously unknown pathways for the
construction of amino acid carbon backbones in T. reesei, with
success for many predicted pathways (43).

ReTrace has several unique aspects as compared to other graph-
based approaches. By utilizing graph searching (which is fast, but
prone to connectivity artifacts) to atomistic mapping (which is
slower, but detailed), ReTrace capitalizes on each strategy’s
strength while minimizing its weakness. The other advantage to
ReTrace is its ability to analyze branching pathways. Other graph-
based tools make simplifying assumptions to pathway construction
in a purely linear manner. By defining reactions and compounds as
nodes, ReTrace can analyze all types of reactions—linear or branch-
ing—equally. Python code for ReTrace is freely available from
http://www.cs.helsinki.fi/group/sysfys/software/retrace/ and
requires the KEGG LIGAND database.

2.3.2. PathMiner PathMiner tweaks the graph-based approach by using vectors of
atoms to create “biochemical state spaces” and uses heuristic
searching. Though the current implementation relies on KEGG,
this approach could easily incorporate novel chemistries or other
databases to predict new biochemical reactions (44).

Inputs and Operation In PathMiner (41), the KEGG reactions and compounds are put
into a biochemical state space, where compounds are the different
states and the reactions constitute state transitions. This is analo-
gous to a graph-based approach, but using vector notation. Each
compound is described by a state vector x. Based on biochemistry,
the authors have created a set of 145 unique atoms and atom bond
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structures (e.g., C, O, S atoms with possible bond structures of
C¼O, O–S, S–S, among many others). The vector x contains 145
elements, and the different numbers within it detail the compound
and its chemical structure. An example of this is given as xCO2 ¼
[(C1)(O2)(C¼O2). . .]. Each reaction is a vector t, which is deter-
mined by the vector difference between states of reactant and
product. Because individual compounds can perform many differ-
ent chemistries, any individual x will likely have several t’s coming
from it.

Combining the t’s with the x’s gives virtually the same result as
would be found from a graph theory approach, but with the added
benefit of the atomistic state descriptors. These 145 state elements
could be easily be expanded to potentially include nonmolecular infor-
mation about the compounds such as thermodynamic values (41).

Search Algorithm With a state space defined, the authors take a computer science-
based approach and view the discovery of new pathways as a classi-
cal state-search problem. An uninformed search of this space would
be intractable, opening the door for heuristics to provide a quicker,
informed analysis.

Chemical similarity of a molecule’s state to the target molecule
is used to determine which transitions/reactions are likely to lead
toward the product of interest. For chemical similarity, this involves
an additive combination of the distance traveled G (i.e., chemical
similarity between start compound and present molecule) and the
distance not yet traveled H (i.e., chemical similarity between target
compound and present molecule) such that F ¼ G + H. This is
computed from the 145 atomic descriptors in what is essentially a
state-space-based similarity index search. As these distances
represent the costs of the system, the best paths are those with
minimal F values. By expanding the fitness function F to include
additional “edge cost” descriptors (F ¼ G + H + e) for availability
of precursors, heterologous vs. homologous enzymes, and others,
much more sophisticated heuristics were incorporated into
PathMiner (44).

After the database is fully characterized and assembled, Path-
Miner only requires a starting and ending compound. Searches are
done by exploring all of the state transitions from each step that
yields the best fitness values. The program terminates when there
are no more states to explore and outputs all of the paths that were
found between the two specified compounds.

Pathway Evaluation

and System Validation

PathMiner’s heuristic approach generally outperformed both unin-
formed breadth-first and depth-first searches for several different
metabolic “themes”(41). In predicting vanillin synthesis (44),
PathMiner found the native pathway and was able to suggest
alternative host organisms for synthesis: Brucella melitensis or Strep-
tomyces coelicolor over E. coli.
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PathMiner uses state-space approaches and chemical distance
to efficiently search known metabolic databases. Using the state-
space approach, new parameters can be added to bias the network
search and could be easily extended to other metabolic databases
and even to potentially novel/predictive chemistries.

2.3.3. MetaRoute MetaRoute (42) combines atom mapping and graph theory analy-
sis with k-lightest path analysis to discover metabolic routes from
large enzymatic databases. Here, a lightest path search will look for
the pathways with the lowest connectivity values. The atom-
mapping approach analyzes reactions and tracks where individual
atoms go throughout a stated pathway.

Inputs and Operation MetaRoute uses atom tracing analogous to ReTrace, where path-
ways with the highest number of atoms that are conserved from
starting to final compound are given high scores. However, while
ReTrace used RPAIR/RDM for its rules, MetaRoute developed its
own rules in an automated fashion by looking for molecular sub-
structures that are the same in reactant and product and then
deducing the atoms that take part in the reaction. The KEGG and
EcoCyc (45) databases were used to construct the rules (46).
However, using this substructure approach can lead to redundancy
because of repeated functional groups or substructures across dif-
ferent parts of a molecule. This redundancy in rules is solved by
comparing atom-tracing reactions for enzymes clustered together
based on the EC numbers. Presumably, similarly clustered enzymes
should perform similar chemistries and thus have similar atom-
tracing reactions. After multiple atom-tracing reactions are com-
pared within a cluster, the atom-tracing reaction that predicts the
most reactions in the cluster is chosen.

Search Algorithm MetaRoute uses a modified k-lightest path search to discover novel
pathways between two predefined compounds. The graph used is
the reverse of the typical reaction graph, as MetaRoute uses nodes
as reactions and edges as compounds. The novelty of the MetaR-
oute approach lies in the integration of the atom mappings into the
k-lightest path search in what the authors have termed a “weighted
atom-mapping graph.” This involves two parts—the weighting of
certain nodes and a structural moiety constraint. Each reaction
(node) in the network has been pre-analyzed and is weighted by
the atom transfer across the reaction. The k-lightest search max-
imizes the atom transfer during the search while subject to a mini-
mum structural moiety constraint. This strategy can fail in the case
of a reaction node with no atom mappings. As only 63% of the
KEGG database has available reaction rules, the pathway search
could potentially stall if no atoms can be traced to any products.
When this happens, the program makes a choice based on the
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k-lightest path criteria and then restarts the structural moiety con-
straint with the next compound.

Pathway Evaluation

and System Validation

MetaRoute was used in a glycolysis search from D-glucose-6-phos-
phate to pyruvate. MetaRoute found three pathways: one docu-
mented glycolysis route and two novel paths. One of the novel
pathways used an enzyme not yet classified into any documented
pathways at the time of the paper’s publication and had one fewer
reaction than typical glycolysis. This is a strong case to use these
types of computational tools for not just pathway creation but also
for prediction of as yet-unknown biochemical pathways. MetaR-
oute has an intuitive interface, is easy to use, and is available online
for free at http://abi.inf.uni-tuebingen.de/Services/MetaRoute/.

2.4. Linear

Programming Tool

One approach that shares some similar approaches to graph-based
methods but optimizes paths in a very different manner is the
OptStrain program which uses linear programming (LP)/FBA-
based tools (47).

2.4.1. OptStrain OptStrain relies on online reaction databases for novel chemical
steps and reactions to construct a pathway. Going beyond just
pathway design, it will subsequently make suggestions about
which genes from the native organism should be knocked out or
added to enhance production.

Inputs and Operation OptStrain uses a universal database, constructed from KEGG, UM-
BBD, MetaCyc, and more, that is updated automatically. Only
stoichiometrically balanced reactions from the databases are used
in the search. The program also uses an organism model, which
serves as the metabolic environment that novel reactions are intro-
duced to. The program will attempt to maximize the production of
a target compound given a large set of potential starting substrates.

Search Algorithm OptStrain approaches the pathway search as an LP problem rather
than a node/edge search problem. As with FBA, the universal
reaction database is organized as a stoichiometric matrix S, with
rows representing metabolites and columns representing reactions,
where the element (n,m) has the stoichiometric coefficient of the
nth metabolite within the mth reaction (48). Given a target prod-
uct, OptStrain solves the universal matrix as an LP problem to
maximize yields from a given substrate set by identifying a set of
reactions that will achieve the desired biotransformation.

After identifying a set of possible reactions, OptStrain mini-
mizes the number of new enzymes that would need to be added to
the host organism. A mixed-integer linear programming problem,
where heterologous enzymes to the host of interest are differen-
tiated from native enzymes, is carried out to maximize the number
of heterologous reactions that are removed while maintaining the
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maximum product yield. In the last step, OptStrain utilizes another
tool developed by the same authors, OptKnock (49), which does
not design new pathways but attempts to optimize the host metab-
olism to maximize yield of the target compound through gene/
reaction knockouts.

Pathway Evaluation

and System Validation

In initial work, the authors optimized amino acid synthesis and
found that seven amino acids could be synthesized by alternative
pathways that were more energy efficient than native pathways
(50). Subsequently, the authors analyzed hydrogen and vanillin
synthesis (49). The first case exemplified OptStrain’s ability to
look to many different organisms and potential starting substrates,
while the second succeeded most in minimizing heterologous
genes for successful pathways. The hydrogen work predicted that
E. coli could produce hydrogen but not in a manner coupled with
growth rate. Clostridium acetobutylicum was identified as an addi-
tional candidate for glucose!hydrogen production that was tightly
coupled with growth rate. Vanillin production in E. coli was pre-
dicted de novo with alterations similar to prior work by other
researchers; however, OptStrain indicated much higher yields
could be achieved with several knockouts not employed by the
experimentalists.

3. Concluding
Remarks

We have presented here a wide range of different computer pro-
grams of potential use in metabolic engineering. As society has a
greater demand for sustainable chemicals, designing de novo meta-
bolic pathways will become increasingly important. The different
approaches and programs have their advantages and disadvantages.
Graph-based methods can analyze known biochemistry and bring
to light potentially unimaginable combinations of reactions to yield
new ways to think about metabolism. This can be used to further
pathway creation, as well as to inform scientists on bridging current
gaps of metabolism. Several strategies, such as probabilistic search-
ing, atom tracing, and formulating the search as an LP problem,
have been successful in identifying pathways out of very large
biochemical databases. However, these graph-based approaches
rely completely on documented biochemical reactions and cannot
predict unobserved but feasible biosynthesis pathways. To design
metabolic pathways for compounds not observed to be produced
by enzymes, rule-based approaches are essential. By sampling
known biochemistry and distilling it into common reaction types,
rule-based approaches can predict the potential reactions that could
be performed on a given substrate. However, rule-based results are
inherently high risk, as predicted chemistry may not be possible.
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Regardless of the approach, computational tools for pathway
design in metabolic engineering provide powerful methods for
realizing novel biochemical processes. The tools described here,
and others, demonstrate a diversity of approaches to pathway
design. All of the programs, upon their release, presented some
form of validation or verification of the program’s efficacy for
pathway prediction, typically by showing the program’s ability to
predict already known pathways. While few examples to date have
taken a designed pathway and demonstrated that it could work (2),
we expect to see a strategy of computer-aided design of metabolic
pathways, with implementation, to have an increasing prominence
in the design of new synthesis processes for new chemicals.
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