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There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic gen-
ome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our
recent analysis shows that this and other genomic units correspond to chemical units reflecting
chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we
identified chemical units, called reaction modules, as the conserved sequences of chemical structure
transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic
units and chemical units. While the core of the metabolic network may have evolved with mecha-
nisms involving individual enzymes and reactions, its extension may have been driven by modular
units of enzymes and reactions.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Leonor Michaelis was a professor of Aichi Medical College
(currently Nagoya University School of Medicine) in Japan from
late 1922 to early 1926. His name associated with enzyme kinet-
ics [1] is well recognized, but the fact that the actual person
spent three years in Nagoya is no longer widely known among
Japanese scientists. Nevertheless, this review is a tribute to his
presence in Japan, especially to his contribution to the early days
of Japanese biochemistry [2]. In 1995 we started the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database project under
the then ongoing Human Genome Program in Japan. The original
concept was to create a reference knowledge base of metabolism
and other cellular processes from published literature, so that it
can be used for biological interpretation of genome sequence
data. The KEGG database has expanded significantly over the
years to meet the needs for integrating and interpreting large-
scale datasets generated by various types of high-throughput
experimental technologies [3], but this basic concept is un-
changed. At first the KEGG metabolic pathway maps were cre-
ated using the book ‘‘Metabolic Maps’’ [4] compiled by the
Japanese Biochemical Society. This Society was founded in
1925 during Michaelis’ stay in Japan, and the biochemistry of en-
zymes was an active field since then. The original KEGG that
owes to this tradition still remains in the metabolic pathway
section of the KEGG PATHWAY database. The KEGG pathway
map identifiers such as map00010, map00020, and map00030
for glycolysis, citrate cycle, and pentose phosphate pathway cor-
respond to the map numbers 1, 2, and 3 in the Japanese Bio-
chemical Society’s Metabolic Maps.

Since its inception the KEGG metabolic pathway map is
drawn to represent two types of networks: the chemical net-
work of how small molecules are converted and the genomic
network of how genome-encoded enzymes are connected to cat-
alyze consecutive reactions. This dual aspect has been utilized
for metabolic reconstruction. A set of enzyme genes encoded in
the completely sequenced genome will identify enzyme relation
networks when superimposed on the KEGG pathway maps,
which in turn characterize chemical structure transformation
networks allowing interpretation of biosynthetic and biodegrada-
tion potentials of the organism. In addition to this type of gen-
ome analysis, the KEGG metabolic pathway maps can be used
for chemical analysis of small molecules and reactions [5–8].
This review focuses on our efforts to integrate genomics and
chemistry toward better understanding of intrinsically related
genome evolution and chemical evolution of enzyme-catalyzed
reactions.

2. The KEGG resource

2.1. KEGG metabolic pathway map

The KEGG metabolic pathway maps are graphical diagrams rep-
resenting knowledge of enzyme-catalyzed reaction networks. Each
map is manually drawn to capture the overall architecture of how
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main compounds are converted. The details of individual reactions
involving all substrates and products can be examined in the KEGG
REACTION entries linked from the map. It is also drawn as a generic
map combining and summarizing experimental evidence in differ-
ent organisms, so that it can be used for interpretation of any gen-
ome. This is accomplished by the KEGG Orthology (KO) system
described below. Basic graphics objects in the KEGG metabolic
pathway maps are boxes for enzymes and circles for chemical
compounds (see, for example, http://www.kegg.jp/pathway/
map00010). Each circle is identified by the chemical compound
identifier (C number). Each box is given two types of identifiers:
the reaction identifier (R number) and one or more KO identifiers
(K numbers). Although the Enzyme Commission (EC) numbers
are usually displayed in the boxes, they are not identifiers and
are treated as attributes to KO identifiers. Note that the EC num-
bers may represent reaction classification of the EC system or
gene/protein functional classification in the genome annotation.
These two aspects of enzymes are clearly separated by the R num-
ber and the K number identifiers in KEGG, enabling the analysis of
chemical networks and genomic networks in much better defined
ways than using the EC numbers.

2.2. KEGG Orthology

The KEGG Orthology (KO) system is a collection of manually de-
fined ortholog groups (KO entries) for all proteins and functional
RNAs that appear in the KEGG pathway maps (both metabolic
and non-metabolic) as well as in the KEGG BRITE functional hierar-
chies (ontologies). Whenever a pathway map is drawn based on
experimental observations in specific organisms, an additional
manual work is performed for generalizing gene information from
those specific organisms to other organisms. This is done by
assigning KO entries to the map objects (boxes) and, when neces-
sary, by defining a new KO entry and creating a corresponding set
of orthologous genes from available genomes. Each KO entry also
represents a sequence similarity group. This allows computational
assignment of KO identifiers in newly determined genomes and
metagenomes by sequence comparison, which may then be used
for KEGG pathway mapping (reconstruction) analysis. Note that
the degree of similarity in each group varies significantly
because each KO is defined in a context (pathway) dependent
manner.

2.3. KEGG reaction class

The KEGG REACTION database contains all biochemical reac-
tions that appear in the KEGG metabolic pathway maps together
with the set of experimentally characterized enzymatic reactions
in the Enzyme Nomenclature [9], i.e., those with the official EC
numbers. Less than one half of the reactions in the KEGG pathway
maps correspond to the Enzyme Nomenclature reactions, suggest-
ing the difficulty of using EC numbers for a comprehensive
analysis. In order to analyze chemical compound structure trans-
formation patterns, the following processing is performed for all
reactions both computationally and manually. First, reactant pairs
are defined as one-to-one relationships of substrate-product pairs
by considering the reaction type (as classified by the EC system)
and the flow of atoms. Second, structure transformation patterns
are computed, manually curated, and represented by the so-called
RDM patterns of KEGG atom type changes [5–7]. Third, the identity
of RDM patterns for the main reactant pairs, i.e., the reactant pairs
that appear in the KEGG pathway maps, is used to define KEGG
reaction class [8]. The resulting KEGG reaction class (identified
by RC number) is like an ortholog group of reactions defined by
localized structural changes and accommodating global structural
differences of reactants.
2.4. KEGG module

Functional units of enzyme complexes and subpathways are of-
ten encoded in positionally correlated gene sets (operon struc-
tures) in prokaryotic genomes. When complete genome
sequences first became available, a graph analytical method was
used to extract enzyme gene clusters on the chromosome that en-
code consecutive reaction steps in the metabolic pathways [10].
Such functional units are now accumulated in the pathway module
section of the KEGG MODULE database. Each KEGG module (iden-
tified by M number) is manually defined as a combination of KO
identifiers. For example, the reaction sequence involving oxaloace-
tate + acetyl-CoA, citrate, isocitrate, and 2-oxoglutarate in the cit-
rate cycle (map00020) is the KEGG pathway module M00010
named as ‘‘Citrate cycle, first carbon oxidation’’ and defined by:

K01647 ðK01681;K01682Þ ðK00031;K00030Þ

where alternative enzymes are given in parentheses. The positional
correlation of operon-like structures is not always observed, but
when it exists, at least, in certain organism groups, as is the case
for many KEGG pathway modules, it well supports the definition
of functional units.

2.5. KEGG reaction module

An alternative way to define functional units in the metabolic
pathways has been developed recently [8]. It relies only on the
chemistry of reactions without using the information about genes
and proteins. As mentioned, KEGG pathway nodes (boxes) are gi-
ven both K numbers (gene/protein orthologs) and R numbers (reac-
tions), where the latter can be converted to RC numbers (reaction
class or reaction orthologs). While KEGG pathway modules are
conserved subnetwoks of the K number network, different types
of conserved subnetworks may exist in the RC number network.
This is in fact the case, and conserved reaction sequences termed
reaction modules can be extracted from known metabolic path-
ways [8]. Furthermore, reaction modules (also called RC modules)
tend to correspond to KEGG pathway modules (also called KO
modules) despite the fact that they are separately defined from dif-
ferent properties. A case in point is the RC module RM001, which
exactly matches the KO module M00010, for the reaction sequence
from oxaloacetate to 2-oxoglutarate. RM001 is named as ‘‘2-Oxo-
carboxylic acid chain extension by tricarboxylic acid pathway’’
and defined by:

RC00067 ðRC00498þ RC00618;RC00497ÞðRC00084þRC00626;RC00114Þ
RC01205 RC00976þRC00977RC00417
RC00470 RC01041þRC01046RC00084þRC00577

where the notation is somewhat more complex because of the exis-
tence of three subtypes and multi-step reactions denoted by plus
signs.

3. Modular architecture of metabolic network

3.1. Reaction modules used in combination

The analysis of reaction modules has revealed the modular archi-
tecture of the metabolic network with two interesting aspects: the
existence of chemical units containing chemical logic of organic
reactions and the correspondence of chemical and genomic units
[8]. The chemical units of reaction modules are used in combination
as if they are building blocks of the metabolic network, generating
different chemical substances in different pathways. A notable
example is illustrated in Fig. 1 for 2-oxocarboxylic acid chain
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elongation and modification as part of the biosynthesis pathways of
branched-chain amino acids (valine, leucine, and isoleucine) and ba-
sic amino acids (arginine and lysine). 2-Oxocarboxylic acids are an
important class of precursor metabolites including pyruvate (mono-
carboxylic acid), oxaloacetate (dicarboxylic acid), and 2-oxoisoval-
erate (methyl-modified monocarboxylic acid). The increase of the
chain length from these three is shown by vertical arrows in Fig. 1,
where eight 2-oxocarboxylic acids are denoted by shaded (red) cir-
cles. All the vertical arrows correspond to the reaction module
RM001 for increasing the 2-oxocarboxylic acid chain length by one
using acetyl-CoA as a carbon source. This module consists of a series
of characteristic reactions involving tricarboxylic acids.

Each of the six 2-oxocarboxylic acids, excluding pyruvate and 2-
oxobutanoate, is followed by a single reaction step of reductive
amination (RC00006 or RC00036) indicated by a horizontal line.
The reaction modules for 2-oxocarboxylic acid chain modifications
are shown by horizontal arrows. RM033 is for branched-chain
addition and RM032 and RM002 are for carboxyl to amino conver-
sion. There is an interesting distinction between RM032 and
RM002 defined by:

RM032 : RC00043 RC00684 RC00062
RM002 : RC00064 RC00043 RC00684 RC00062 RC00064

RM032 for a shorter chain is a direct conversion via a phosphoryla-
tion step (RC00043), but RM002 uses a protective N-acetyl group
that is added before and removed after (both RC00064) the core se-
quence of RM032. Furthermore, for a longer chain in lysine biosyn-
thesis, the protective N-acetyl group is attached to a carrier protein.

A similar variation exists in the biosynthetic pathways of fatty
acids, in which the acyl chain length is increased by two in one cy-
cle of the four-step reaction sequence consisting of ketoacyl syn-
thase (KS), ketoreductase (KR), dehydratase (DH), and
enoylreductase (ER) reactions. Two slightly different reaction mod-
ules are identified for this sequence: RM021 for the major pathway
and RM020 for the minor pathway in mitochondria. The minor
pathway, which is essentially the reversal of beta oxidation, does
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Fig. 1. The modular architecture of 2-oxocarboxylic acid metabolism (http://
www.kegg.jp/pathway/map01210). The 2-oxocarboxylic acid chain elongation is
shown in the vertical direction and its modification in the horizontal direction. The
correspondence of reaction modules (RM001, etc.) and KEGG pathway modules
(M00010, etc.) is also shown.
not involve acyl carrier protein and uses acetyl-CoA as a carbon
source. In contrast, the major pathway, which may be a more re-
cent invention, involves acyl carrier protein and uses malonyl-
CoA as a carbon source. These examples suggest that the reaction
modules seem to contain design principles of a series of organic
reactions including how to achieve an activated transition state
(e.g., phosphorylation), how to introduce a protective group (e.g.,
N-acetylation), and how to increase specificity and efficiency
(e.g., using carrier protein and switching from acetyl-CoA to malo-
nyl-CoA). This type of chemical logic may have played roles in the
chemical evolution of metabolic networks.

3.2. Correspondence of chemical and genomic units

Reaction modules are derived from purely chemical properties
of substrate-product structure transformation patterns, but they
are found to correspond to KEGG pathway modules defined as sets
of enzyme orthologs in the genome. This is already mentioned for
the correspondence of RM001 and M00010. In fact, as shown in
Fig. 1 the chain elongation module RM001 corresponds to different
enzyme units in different pathways: M00010 for oxaloacetate to 2-
oxoglutarate in citrate cycle, M00433 for 2-oxoglutarte to 2-oxoad-
ipate in lysine biosynthesis, M00535 for pyruvate to 2-oxobuano-
ate in isoleucine biosynthesis, and M00432 for 2-oxovalerate to
2-oxosicaproate in leucine biosynthesis. There are two characteris-
tic features. First, the enzyme units are encoded in operon-like
gene clusters, at least, in certain genomes. Second, the enzyme
units are similar in the sense that they contain paralogous genes
coding for similar amino acid sequences.

These features are commonly observed in the KEGG MODULE
database. Here a few examples of RM001 are shown in Table 1
for the genomes of Lactococcus lactis IO-1 [11], Bacteroides fragilis
YCH46 [12], Thermus thermophilus HB27 [13] and Saccharomyces
cerevisiae. The numbering of gene identifiers (locus tags) in the
three prokaryotic genomes indicates the proximity of genes on
the chromosome. Among the three enzymes (or enzyme com-
plexes) that constitute RM001, the second dehydratases and the
third dehydrogenases clearly form paralogous gene groups with
sequence identity ranging 35% to 45%. The first enzymes, citrate
synthase, homocitrate synthase and 2-isopropylmalate synthase,
are more distantly related; only the enzymes in the lysine and leu-
cine pathways exhibit some sequence similarity. Thus, the same
reaction sequence appears to be generated in different pathways
by duplicating and slightly modifying enzyme clusters. The en-
zyme that catalyzes the first step of the reaction sequence tends
to be more divergent, possibly reflecting the constraint of specific
substrate recognition.

Other notable examples can be found in the microbial biodegra-
dation pathways. Certain groups of bacteria are capable of metabo-
lizing non-biological chemicals accumulated in the environment by
acquiring or modifying gene sets for biodegradation. These gene sets
are often encoded in plasmids and can be transferred within a bac-
terial community. Environmental pollutants such as endocrine dis-
rupting compounds are mostly aromatic compounds, and the
modular architecture of the biodegradation pathways consists of
well-defined reaction modules for aromatic ring cleavage. They in-
clude preprocessing modules of methyl to carboxyl conversion on
aromatic ring (RM004 and RM013) and the main modules of dihydr-
oxylation and cleavage. Four types of dihydroxylation modules are
defined distinguishing dioxygenase and dehydrogenase reactions
(RM004), dioxygenase and decarboxylating dehydrogenase reac-
tions (RM005), two monooxygenase reactions (RM006), and dealky-
lation and monooxygenase reactions (RM007). Two basic types of
cleavage modules are defined for ortho-cleavage (RM008) and
meta-cleavage (RM009). Not surprisingly, these reaction modules
well correspond to enzyme gene clusters in operon-like structures
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Table 1
Examples of enzyme gene clusters for reaction module RM001.

Organisma Gene M00010 M00433 M00432b Identityc

Lactococcus lactis (lls) synthase lilo_0538 lilo_1107 –
dehydratase lilo_0539 lilo_1109 0.258

lilo_1110 0.305
dehydrogenase lilo_0540 lilo_1108 0.300

Bacteroides fragilis (bfr) synthase BF3753 BF3445 –
dehydratase BF3755 BF3447 0.255

BF3446 0.317
dehydrogenase BF3754 BF3444 0.250

Thermus thermophilus (tth) synthase TTC0978 TTC1550 TTC0849 –/–/0.307
dehydratase TTC0374 TTC1547 TTC0865 0.266/0.261

TTC1546 TTC0866 0.341/0.394
dehydrogenase TTC1172 TTC1012 TTC0867 0.457/0.364

Saccharomyces cerevisiae (sce) synthase YNR001C YDL182W YNL104C –/–/0.222
dehydratase YLR304C YDR234W YGL009C 0.266/0.269
dehydrogenase YDL066W YIL094C YCL018W 0.322/0.280

a KEGG organism codes in parentheses. For Saccharomyces cerevisiae only one set of genes is shown.
b Multiple genes indicate large and small subunits.
c Sequence identity between M00010 and M00433/M00010 and M00432/M00433 and M00432.
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defined as KEGG pathway modules. For example, the BTX (benzene,
toluene, and xylene) degradation capacity is well represented by the
corresponding sets of reaction modules and KEGG pathway mod-
ules: preprocessing of toluene to benzoate (RM003 and M00538)
or xylene to methylbenzoate (RM003 and M00537), dihydroxylation
of benzene to catechol (RM006 and M00548), dihydroxylation of
benzoate to catechol (RM005 and M00551), meta-cleavage of cate-
chol (RM009 and M00569), and ortho-cleavage of catechol
(RM008 and M00568). These observations suggest a link between
genomic diversity and chemical diversity. It should be emphasized
again that the link is not simply between individual genes and reac-
tions, but rather between genomic units and chemical units reflect-
ing the modular architecture of the metabolic network.

3.3. Degree of modularity

The modular architecture of reaction modules and enzyme gene
sets was most apparent in carboxylic acid metabolism (for 2-oxo-
carboxylic acids and fatty acids) and aromatics degradation. How-
ever, such modularity cannot explain the architecture of the entire
metabolic network. Fig. 2 is an overview map for the biosynthesis
of twenty amino acids (http://www.kegg.jp/pathway/map01230).
Circles represent chemical compounds and lines connecting them
are reactions (or sets of reactions). The twenty amino acids are
shown in shaded (red) circles, the reaction modules RM001 and
RM002 are shown in thick (blue) lines, and the KEGG pathway
modules are shown as separate (red) lines with M numbers at-
tached. This overall pathway may be viewed as consisting of the
core part and its extensions.

The core part is the pathway module M00002 for conversion of
three-carbon compounds from glyceraldehyde-3P to pyruvate, to-
gether with the pathways around serine and glycine. M00002 is
the most conserved pathway module in the KEGG MODULE data-
base and is found in almost all the completely sequenced genomes.
The extensions are the pathways containing the reaction modules
RM001 and RM002 for biosynthesis of branched-chain amino acids
(left) and basic amino acids (bottom), and the pathways for biosyn-
thesis of histidine and aromatic amino acids (top right). Note that
no reaction modules are extracted by our method [8] for the bio-
synthetic pathways of histidine and aromatic amino acids because
they are not shared in other pathways. However, they can be con-
sidered uniquely defined modular units because of the existence of
enzyme gene clusters. It is interesting to note that the so-called
essential amino acids that cannot be synthesized in human and
other organisms generally appear in these extensions. Further-
more, the bottom extension of basic amino acids appears to be
most divergent containing multiple pathways for lysine biosynthe-
sis and multiple gene sets for arginine biosynthesis.

Fig. 2 shows only the pathways that are relevant to amino acid
biosynthesis. What constitutes the core part of the entire metabolic
network and how it has evolved would require more detailed anal-
yses of the central energy metabolism in relation to diverse envi-
ronmental conditions in which various organisms inhabit. The
increasing amount of genome sequences and metagenome se-
quences, together with the accumulated knowledge of metabolism
as represented in KEGG pathway maps, will enable such analyses
to be performed.

4. On the evolution of metabolic networks

The idea of conserved core and divergent extensions in the met-
abolic network is hardly new. The distinction of primary and sec-
ondary metabolism contains a similar notion. The core is
required for maintaining life and is conserved among all organ-
isms. The extensions are required for interactions with the envi-
ronment and are specific to certain organism groups. Microbial
biodegradation pathways are typical examples of secondary
metabolism, converting xenobiotic compounds with varying struc-
tures into alimited number of compounds in primary metabolism.
Here we assert that even within primary metabolism there is a
primitive core and its extensions. The conversion of three-carbon
compounds from glyceraldehyde-3P to pyruvate (M00002) is fol-
lowed by the first segment of citrate cycle from oxaloacetate to
2-oxoglutarate (M00010). We view M00002 as part of the primi-
tive core and M00010 as a modular extension as illustrated in
Fig. 2. According to the genome annotation in KEGG these two
modules are highly conserved, but there are certain organisms that
apparently lack M00010 [14]. In contrast, the second segment of
citrate cycle from 2-oxoglutarate to oxaloacetate (M00011) exists
only in less than one half of the completely sequenced genomes.
Citrate cycle may thus be an invention of combining one ancient
module and another more recent module.

Here we investigate more on the central carbon metabolism
illustrated in Fig. 3. The number of carbons is shown for each com-
pound denoted by a circle, excluding CoA or THF (tetrahydrofolate),
which is replaced by an asterisk. This map is first drawn by combin-
ing the three KEGG pathway maps, Glycolysis (map00010), Pentose
phosphate pathway (map00020), and Citrate cycle (map00030),
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whose reaction steps are denoted by blue arrows and which are here
called carbon utilization pathways. Then, by using two more KEGG
maps, Carbon fixation in photosynthetic organisms (map00710)
and Carbon fixation pathways in prokaryotes (map00720), six
known carbon fixation pathways [15,16] are superimposed. They
are: (1) reductive pentose phosphate cycle (Calvin cycle) in plants
and cyanobacteria that perform oxygenic photosynthesis, (2) reduc-
tive citrate cycle in photosynthetic green sulfur bacteria and some
chemolithoautotrophs, (3) 3-hydroxypropionate bi-cycle in photo-
synthetic green non-sulfur bacteria, two variants of 4-hydroxybuty-
rate pathways in Crenarchaeota called (4) hydroxypropionate-
hydroxybutyrate cycle and (5) dicarboxylate-hydroxybutyrate cy-
cle, and (6) reductive acetyl-CoA pathway in methanogenic bacteria.
In Fig. 3 pathways 1 to 5 are denoted by red arrows and pathway 6 by
green arrows.

The differences of these carbon fixation pathways from the uti-
lization pathways can be classified into three types. First, the car-
bon fixation pathway is a minor variation containing reaction
steps catalyzed by key enzymes. This is most apparent in reductive
pentose phosphate cycle (pathway 1) shown on top right of Fig. 3,
in which two additional reaction steps are catalyzed by key en-
zymes ribulose-bisphosphate carboxylase (RuBisCO) and phospho-
ribulokinase (PRK). Reductive citrate cycle (pathway 2) on bottom
left also belongs to this minor variation type.

Second, the carbon fixation pathway consists of four units of
reaction sequences in carbon metabolism: (A) succinyl-CoA to
acetyl-CoA roughly corresponding to the second segment of citrate
cycle, (B) acetyl-CoA to propionyl-CoA to succinyl-CoA containing
three-carbon reaction sequence found in propanoate metabolism
(map00640), (C) succinyl-CoA to acetoacetyl-CoA to acetyl-CoA
containing four-carbon reaction sequence found in butanoate
metabolism (map00650), and (D) propionyl-CoA to acetyl-CoA
containing five-carbon reaction sequence. The three overlapping
carbon fixation pathways are formed by these segments: 3-
hydroxypropionate bi-cycle (pathway 3 consisting of A, B, and D),
hydroxypropionate-hydroxybutyrate cycle (pathway 4 consisting
of B and C), and dicarboxylate-hydroxybutyrate cycle (pathway 5
consisting of A and C).

Third, carbon fixation results from a different pathway, meth-
ane metabolism, in the case of reductive acetyl-CoA pathway
(pathway 6). This pathway appears to represent a most primitive
form of carbon fixation. All the other carbon fixation pathways
are modifications of existing pathways, whether the modification
is incremental (individual reactions and individual enzyme) or
modular (units of reactions and units of enzymes). We postulate
that a primitive core may exist around reductive acetyl-CoA path-
way together with parts of the pathways for methane metabolism
(map00680), nitrogen metabolism (map00910), and sulfur metab-
olism (map00920).

Many models have been presented for the metabolic pathway
evolution including the retrograde model [17] and the patchwork
model [18,19]. Our analysis indicates an additional aspect; namely,

http://www.kegg.jp/pathway/map01230


phosphoenolpyruvate

glycerate-3P

glyceraldehyde-3P

glycerone-P

fructose-6P

sedoheptulose-7P

pyruvate

acetyl-CoA

malate

citrate

glycerate-2P

isocitrate

2-oxoglutarate

succinyl-CoA

succinate

fumarate

oxaloacetate

3

3

3

2*

6

6

5

4

4*

4

4 4

4

3

3

glycerate-1,3P2

6

4

6 5

6 6 66

5

5

xylulose-5P

erythrose-4P ribulose-5P

ribose-5P
fructose-1,6P2

5
ribulose-1,5P2

CO2

6*

4*

2glyoxylate

malonyl-CoA3*

4*

3*

CO2

HCO3

HCO3

CO2

x 2

x 2

5*

5*

CO2

glyoxylate

pyruvate

RuBisCO

PRK

CO2

acetoacetyl-CoA

3-hydroxy-
propionate

3

sedoheptulose-1,7P2

glucose-6Pglucose glucono-1,5-lactone-6P gluconate-6P

3serine
2

glycine
THF

1

3 3

malyl-CoA

citryl-CoA

formate 1*1*1*1*

33

3

3

4-hydroxy-
butyrate

CO2 CO

hydroxypyruvate

phosphoserine

5-methyl-THF

propionyl-CoA

Fig. 3. An overview map for central carbon metabolism. The number of carbons is shown for each compound excluding a cofactor. The map combines carbon utilization
pathways of glycolysis, citrate cycle, and pentose phosphate pathway (denoted by blue arrows) and six known carbon fixation pathways: reductive pentose phosphate cycle,
reductive citrate cycle, 3-hydroxypropionate bi-cycle, hydroxypropionate-hydroxybutyrate cycle, dicarboxylate-hydroxybutyrate cycle (all denoted by red arrows), and
reductive acetyl-CoA pathway (denoted by green arrows).

2736 M. Kanehisa / FEBS Letters 587 (2013) 2731–2737
chemical evolution driven by chemical logic of a series of organic
reactions. The increasing complexity of the molecular machinery,
such as fatty acid synthase, is a genome evolution, but it also re-
flects the increasing complexity of organic reactions, a chemical
evolution. It is unlikely that a single model can explain all aspects
of the metabolic pathway evolution. An integrated approach of
genomics and chemistry will better characterize the intrinsically
related genome evolution and chemical evolution of the metabolic
network under the changing environment of Earth.
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