
15 Dual Causality
Nothing in biology makes sense, except in the light of evolution –
Theodosius Dobzhansky

The stoichiometric matrix and the information associated with it fundamentally rep-
resent a biochemically, genetically, and genomically structured knowledge base. It can
be used to analyze network properties and to relate the components of a network
and its genetic bases to network or phenotypic functions. Biology is subject to dual
causality, or dual causation [261]. It is governed not only by the physical laws but also
by genetic programs. Thus, while biological functions obey the physical laws, their
functions are not predictable by the physical laws alone. Biological systems function
and evolve under the confines of the physical laws and environmental constraints.
How organisms operate within these constraints is a function of their evolutionary
history and their survival strategy.

15.1 Causation in Physics and Biology

Physics Classically, ‘cause and effect’ is established by formulating mathematical
descriptions of conceptual models of fundamental physical phenomena. One example
is molecular diffusion (see Figure 15.1). The fundamental process underlying diffusion
is the random walk process that a collection of molecules undergoes. The statistical
properties of the random walk process can be assessed quantitatively, and its macro-
scopic consequences are described with Fick’s law. This law is described by a simple
equation that is used as the basis to describe mass transfer processes from regions of
high concentration to regions of low concentration. The established causality is the
basis for computations that reliably predict mass transfer processes. The Boltzman
and Nernst equations provide other specific cases of causality in physics, and there
are many more examples.

Engineering design can be based on such predictions. Thus, in engineering, “there
is nothing more practical than a good theory,” as the physical laws can be used for
design, often with minimal experimentation and prototyping.

Cause and effect for physical phenomena are often well established and can be
described mathematically. Mathematical descriptions are in the form of equations and
inequalities. An interesting discussion of the character of physical law is found in [114].
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252 15 DUAL CAUSALITY

Figure 15.1 Causation in physics: an example of a random walk process and diffusion of
molecules. Panel A: the simulated random walk trajectory of a single molecule. Panel B: the
probability distribution for the molecule’s location as a function of time when it was located at
l = 0 at t = 0. The width of the distribution, l, increases with the square root of time, t.
Modified from [318].

Biology Causation in biology is much different from physics. Biological causation
originates fundamentally from the evolutionary process leading to genetic variation
within a population. There are four key parts to the conception of an evolutionary
process, shown in Figure 15.2:

1 initial phenotype resulting from a genotype;
2 natural selection of the new organism leading to the ability to produce

offspring successfully;
3 successful mating leads to the possible formation of a new genotype; and
4 processes, such as mutation and recombination, that lead to the formation of

a new genotype.

This process repeats itself. The result is diversity: a biopopulation of non-identical
individuals. Therefore, living systems are time-variant: they evolve and change over
time. In contrast, physical phenomena are time-invariant; e.g., oxygen, a homogeneous
population of identical molecules, always diffuses the same way in water under a
given set of circumstances, the unit charge on the electron does not change, and so on.

The outcome of the selection process is, in part, stochastic, and is influenced by
environmental variables. The selection process in biology gives the appearance of
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Figure 15.2 Causation in biology. The genotype–phenotype relationship conceptualized as an
iterative mapping process. Panel A depicts the position of genotype (G) and Panel B a
phenotype (P) in their respective spaces. Iteration over two generations is illustrated. Redrawn
based on [173].

.

‘sense of purpose’ that, fundamentally, is survival. The sense of purpose for quanti-
tative model-building is represented by an objective function (see Chapter 21) that is
meant to describe the basis of selection. In general, it is hard to know what the detailed
objective is underlying a selection process. Thus, the objective function becomes the
focus of study as one seeks to understand the selection process and the distal causation
it represents. The objective function itself is now subject to an experimental investiga-
tion through adaptive laboratory evolution in a controlled setting.

Causation in biology, therefore, is in some respect an endless iterative process that
seeks to find an optimal ’solution’ for survival. Alterations in the genetic program
with each iteration have the potential to induce changes in phenotypic functions. This
recursive process takes place within the constraints imposed by physics and chemistry
under given environmental conditions. Necessary ingredients to understand distal
causation mechanistically are thus constraints and optimality.

Systems biology As described above, causation differs in physics and biology.
However, both are relevant to systems biology and they represent opposite ends of
a hierarchical process (Figure 15.3). Systems biology tries to bridge the two ends of
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Figure 15.3 The hierarchical nature of living systems and multi-level causation. (A) Living
systems are complex and hard to define precisely in biophysical terms. (B) Systems biology
tries to provide structure to the hierarchical relationship between molecular and physiological
events. Inserted image from [148] used with kind permission from Springer Science+Business
Media B.V. Prepared by Nathan Lewis.

this spectrum and develop what amounts to a quantitative and mechanistic genotype–
phenotype relationship.

The genotype–phenotype relationship has been the subject of argument and
speculation. However, since the first genome sequence appeared in 1995, we have
learned how to build such relationships with a mechanistic basis and have applied it
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15.2 BUILDING QUANTITATIVE MODELS 255

to metabolism and growth of microorganisms and metabolism in mammals. Genome
sequences provide comprehensive, albeit not yet complete, information about the
genetic elements that create the form and function of an organism. A constraint-
based analysis provides a framework within which these basic considerations can be
accommodated. Before we describe this framework, we will discuss the challenges
with applying theory-based approaches to large-scale model-building in biology.

15.2 Building Quantitative Models

15.2.1 The physical sciences

Proximal causation In silico model-building in the physico-chemical sciences starts
with basic principles such as thermodynamics, chemical potential, the diffusion equa-
tion, mass conservation, or the Nernst and Boltzman equations. These equations are
based on well-developed fundamental physical theories, and they typically contain
a large number of parameters, most of which can be measured individually under
defined conditions. These parameters, such as the diffusivity of oxygen or the unit
charge on the electron, are time-invariant. These equations then form the basis for
computer models and simulation.

Limitations of theory-based modeling approaches in biology Traditional theory-
based models of large-scale biological processes are faced with fundamental chal-
lenges.

First, the intracellular chemical environment is complex (e.g., see Figure 15.3A) and
hard to define in terms needed for the formulation of equations that describe the
physics of the intracellular milieu.

Second, assuming that we had all the governing equations defined, we would have to
find numerical values for all the parameters that appear in these equations. These
values would have to be accurate for intracellular conditions.

Third, even if we could overcome the first two challenges, we have to face the fact
that evolution changes the numerical values of kinetic constants over time. In
addition, in a biopopulation, even if we had a perfect in silico model for one indi-
vidual organism it would not apply perfectly to other individuals in the biopop-
ulation due to genetic and epigenetic differences between individuals. Such time-
dependency and diversity of parameter values are key distinguishing features
between biological and physico-chemical systems.

15.2.2 The life sciences

Distal causation: the selection process The process of evolution is fundamental
to the biological sciences. Organisms exist in particular environments and, as they
replicate, they produce offspring that are not genetically identical to the parent, thus
generating a biopopulation of individuals that are each slightly different from one
another (Figure 15.2). Over time, natural selection favors those individuals in the
biopopulation that have more fit functions than other members of the biopopulation.
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256 15 DUAL CAUSALITY

To survive in a given environment, organisms must satisfy myriad constraints, which
limits the range of available phenotypes. The better an organism can achieve a
relatively fit function in a given environment, the more likely it is to survive.

Constraining behaviors Because of dual causality, mathematical model-building in
biology at the network and genome-scale will need to differ from that practiced in the
physico-chemical sciences. The third limitation listed above is due to the dual causality
that needs to be accounted for in realistic models of biological processes. An approach
to the in silico analysis of cellular functions can be formulated based on the fact that
cells are subject to governing constraints that limit their possible behaviors. Imposing
these constraints can determine what functional states can and cannot be achieved by a
reconstructed network. Imposing a series of successive constraints can limit allowable
cellular behavior, but will never predict it precisely.

The imposition of constraints leads to the formulation of solution spaces rather than
the computation of a single solution (or a discrete set of a few solutions), the hallmark of
theory-based models. Cellular behaviors (i.e., functional states of networks) within the
defined solution space can be attained, those outside cannot. Each allowable behavior
basically represents a different candidate phenotype based on the component list, the
biochemical properties of the components, their interconnectivity, and the imposed
constraints. The constraint-based approach leads to in silico analysis procedures that
are helpful in analyzing, interpreting, and even predicting the genotype–phenotype
relationship.

Thinking about constraints Cells are subject to a variety of constraints. There are
both non-adjustable (i.e., invariant or hard) and adjustable constraints (Table 15.1). The
former can be used to bracket the range of possible phenotypic functions. The lat-
ter can be used to further limit allowable behavior, but these constraints can adjust
through an evolutionary process or through changing environmental conditions. In
addition, the adjustable constraints may vary slightly from one individual to another
in a biopopulation. Together, these constraints define a range of possible functions,
described mathematically as a solution space, and direct the realization of phenotypic
expression.

This distinction between adjustable and non-adjustable constraints and their role
in understanding dual causation is illustrated schematically in Figure 15.4. The feasi-
ble space of steady-state reaction fluxes is determined by non-adjustable constraints
(the outer octagon). A narrower subset of functional states within this space is defined
by the regulation of kinetic properties, or adjustable constraints. These adjustable con-
straints can be modified further through evolution to alter the limits of the subspace
of expressed functional states. The direction of such an evolutionary expansion of
the regulated subspace is driven by a need for improved performance, which can be
described by an objective function (see Chapter 21).

15.2.3 Genome-scale models

Phenotypic functions are the results of the interactions of multiple gene products. In
principle, all expressed gene products under a given condition affect the phenotypic
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Table 15.1 Constraints on the functions of biochemical reaction networks. Adapted
from [311].

Factor Type of constraint

Physico-chemical constraints

Osmotic pressure, electroneutrality,
solvent capacity, membrane space,
molecular diffusion, thermodynamics

Hard, non-adjustable constraints

Connectivity

Systemic stoichiometry
Causal relationships

Hard, non-adjustable constraints, but
can be adjusted by horizontal gene
transfer

Capacity

Maximum/minimum flux Non-adjustable maximum based on
maximum association rates
Adjustable by transcriptional
regulation

Rates

Mass action, enzyme kinetics, regulation Highly adjustable by an evolutionary
process

state of an organism. Thus, to develop mechanistic genotype–phenotype relationships
a genome-scale model is needed. The availability of whole-genome sequences made
the construction of such models possible.

Three generations of genome-scale models The successive application of constraints
lends itself to a step-wise development of increasingly refined data-driven in silico
models [313]. These models broaden in scope with the establishment and imposition
of additional constraints. Constraint-based models can address questions relating to
determining the possible functions of a network, which of these functions the cell
actually chooses, and how such choices are made (Table 15.2).

The first generation of constraint-based models for microbial metabolism appeared at
the turn of the century [105, 106]. The ‘omics’ data type on which they are based
is genomic. Literature (bibliomic) data are used as well as the formulation of hard
physico-chemical constraints, such as mass, energy and redox balance, thermo-
dynamic, and maximal reaction rates. These constraints collectively define all the
possible functional states of a reconstructed network. They are confined mathe-
matically to a solution space. The properties of this space can be studied by the
methods described in the following chapters.

The second generation of constraint-based models includes the imposition of tran-
scriptional regulatory networks, leading to the shrinking of the allowable states
of metabolic networks (see Figure 15.4). In response to environmental queues
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Table 15.2 Generations of genome-scale models. From [313].

Generation Usage Type of data used

First What states are possible Genomic and bibliomic

Second What states are chosen Condition-dependent
transcriptomic and genome
location data

Third How states are chosen Time-dependent proteomic
and metabolomic
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Figure 15.4 Early conceptualization of hard and adjustable constraints and how distal
causation drives the choice of functional states within the hard constraints. Redrawn from [439].

and built-in regulation, the solution space is shrunk [85, 86] to contain network
functions that the cell has chosen through an evolutionary process. The choices
that a cell makes can then be identified and analyzed. Through the recon-
struction of transcriptional regulatory networks, we can now begin to impose
condition-dependent constraints, or restraints on reconstructed metabolic net-
works and formulate the second-generation models.

The third generation of constraint-based models will account for the abundance or
concentration of the cellular components. Various ‘omic’ data types can now
be obtained in a time-resolved fashion. Such data will help clarify just how
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15.2 BUILDING QUANTITATIVE MODELS 259

the cell implements the choices it has made and how it evolves to find new
choices. This approach is likely to lead to the definition of the rate constants
of the network as a whole rather than constants for the individual underlying
biochemical events. Initial efforts in this direction are represented by the MASS
modeling procedure [317].

Some properties of genome-scale models Biological networks have several funda-
mental properties that need to be considered when interpreting large-scale data sets
and building models to describe their functions (see Figure 15.5).

Redundancy. Biochemical reaction systems have redundancy built into them at many
levels. Often, individual steps in a network can be carried out in more than one
way. Isozymes represent different enzymes that carry out the same reaction. Sim-
ilarly, some codons can be translated by more than one tRNA. There are also
network-level redundancies. The overall function of a network to support a phe-
notype can be achieved in more than one way. Thus, there are multiple equivalent
outcomes from the same biological selection process. The mathematical aspect of
this feature, equivalent optimal solutions, is detailed in Chapter 20. Biologically, these
may be called silent phenotypes.

Multi-functionality. There are components in biochemical networks that can carry out
more than one function. Examples include generalist of promiscuous enzymes that
can catalyze many related chemical reactions. Similarly, some tRNA molecules
can translate more than one codon. At the network level, there could be global
network states that would give similar phenotypes even if the environments were
different. This feature would be called a generalist phenotype. The notion of a high-
flux backbone in metabolism [14] is composed of a set of reactions that lead to
optimal growth on different substrates. A high-flux backbone is an example of a
large correlated set of reactions that function together in optimal solutions [325].
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Figure 15.5 Some properties of genome-scale models. Panel A: redundancy; panel B:
multi-functionality; panel C: non-causality. Prepared by Nathan Lewis.
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260 15 DUAL CAUSALITY

Non-causality. Due to the hierarchical organization of organisms, changes on one
level may not percolate up to functions at a higher-level of organization, and
would thus be non-causal. A well-known example of non-causality are hitch-
hiker mutations that co-select with a causal mutation located nearby on the
genome. In the field of signal transduction, many are interested in knowing
‘who-talks-to-whom,’ meaning that one wants to know all possible chemical
interactions between two components. Protein–protein interaction maps provide
one example. In this case, however, the biologically meaningful question is
‘who-listens-to-whom,’ as we are only interested in knowing if chemical inter-
actions are a part of a higher-order biological function. Thus, there can be many
non-causal (biologically), but detectable, chemical interactions among macro-
molecules.

These three attributes are important considerations in studying the hierarchical nature
of biological systems. Multi-scale, multi-parameter analysis methods will be needed to
study this hierarchical organization. They will need to be able to deal with non-regular
patterns, which will be a deviation from classical methods such as Fourier analysis that
looks for repeated regular patterns. All of these features have appeared through the
evolutionary process which abides by a series of constraints.

Higher-order properties There are some other notable higher-order properties of
biological networks, which will not be detailed here. Such properties include self-
assembly of components to form a functioning network spontaneously, the selection
that seems to be at work during both distal and proximal causation, the notion of a
self in biology (namely, is a component a part of a network, or not?), and the notion
of awareness (that ultimately is related to the mathematical concept of a functional
state of a network). It is an interesting and fundamental challenge to the field to
determine if such important biological properties can be defined mathematically in the
context of genome-scale models. If possible, molecular systems biology will advance
notably.

15.3 Constraints in Biology

All expressed phenotypes resulting from the selection process must satisfy the govern-
ing constraints. Therefore, clear identification and statement of constraints to define
ranges of allowable phenotypic states provides a fundamental approach to under-
standing biological systems that is consistent with our understanding of the way in
which organisms operate and evolve.

Different types of constraints limit cellular functions and several authors have dis-
cussed general constraints in biology [84,93,139,179,261]. Here we start this discussion
by dividing constraints into four categories [344]: (1) fundamental physico-chemical,
(2) spatial or topological, (3) condition-dependent environmental, and (4) regulatory,
or self-imposed constraints.

Physico-chemical constraints Many physico-chemical constraints govern cellular
processes. These constraints are inviolable and thus represent hard constraints.
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Conservation of mass, elements, energy, and momentum represent hard constraints.
The interior of a cell is densely packed, forming an environment where the viscosity
may be on the order of 100–1000 times that of water. Diffusion rates inside a cell
may be slow, especially for macro-molecules. The confinement of a large number
of molecules within a semi-permeable membrane causes high osmolarity. Thus, cells
require mechanisms for dealing with the osmotic pressure generated, such as sodium–
potassium pumps to balance osmolarity or a rigid cell wall to physically withstand
it. Intracellular reaction rates are determined by local concentrations inside cells.
Reactions have maximal reaction rates (denoted with vmax) estimated to be about a
million molecules per μm3 per second (see Equation (17.6)). Furthermore, biochemical
reactions need to have a negative free energy charge in order to proceed in the forward
direction. These are some of the many basic physico-chemical constraints under which
cells must operate.

Spatial constraints The crowding of molecules inside cells leads to spatial, or three-
dimensional, constraints. The linear dimension of the bacterial genome is on the order
of 1000 times that of the length of the cell. DNA must therefore be tightly packed in
the nuclear region in an accessible and functional configuration because DNA is only
functional if it is accessible. Thus, at least two competing needs (to be tightly packed,
yet accessible) constrain the physical arrangement of the bacterial genome. DNA in
eukaryotes is organized in a highly hierarchical fashion.

As a further example, we note that the ratio between the total number of tRNA
molecules and the number of ribosomes in a typical E. coli cell is approximately 10
to 1 [282]. With 43 different types of tRNA, there is less than one full set of tRNAs
per ribosome. The genome, therefore, may have to be configured such that the loca-
tion of rare codons is spatially close and translated by the same ribosome. Protein
localization and crowding of space in membranes represent additional topological
constraints.

Identification of these constraints and analysis of their consequences will be
important for the understanding of the three-dimensional organization of cells. This
challenge is hard, but progress is being made [477].

Environmental constraints Environmental constraints on cells, such as nutrient
availability, pH, temperature, osmolarity, etc., are typically time- and condition-
dependent. For example, H. pylori, a human gastric pathogen, lives in a relatively
constant environment, but is constrained by its low pH. It produces ammonia to
sufficiently neutralize the pH in its immediate surroundings in order to stay alive. The
growth of a plant is limited by the flux of incident photons as well as nitrogen and
phosphorous availability in the soil.

Conversely, the life cycle of E. coli is characterized by a series of sudden envi-
ronmental changes. Outside of an animal it lives at ambient temperature and in the
presence of ample oxygen. Then it experiences a heat shock when it enters the mouth
of an animal, followed by an acid shock when it reaches the stomach. Following
entry into the small intestine, another pH shock is experienced, followed by a
nutritionally rich anaerobic environment where it can grow rapidly in the presence
of other bacterial species. Then, finally, it experiences a cold shock and ample
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Figure 15.6 The carcinogenic process conceptualized as a series of losses of constraints. Taken
from [136].

oxygen with diminishing nutrients surrounding it upon excretion. E. coli needs to
be able to adjust its internal functional state to survive this series of environmental
changes.

Knowing the environmental constraints is of fundamental importance for the
quantitative analysis of microorganism functions; however, natural environments
may be hard to define precisely. Conversely, in the laboratory, defined growth media
can be used so that the environmental variables are known precisely.

Regulatory constraints These constraints are fundamentally different than the three
types discussed above. They are self-imposed, are subject to evolutionary change, and
can thus be time-variant. As illustrated in Figure 15.4, they work within the outer
constraints defined by physico-chemical processes. For this reason, these constraints
may be thought of as regulatory restraints, in contrast to the physico-chemical con-
straints, the spatial constraints, and environmental constraints. Based on environmen-
tal conditions, regulatory constraints provide a mechanism to eliminate suboptimal
phenotypic states and confine cellular functions to behaviors of high fitness. Regula-
tory constraints are produced in a variety of ways.

The loss of ability to impose constraints through regulation to maintain a certain
phenotype would lead to a loss of the desired biological function. The carcinogenic
process provides a serious example (Figure 15.6). This process can be understood as
a series of losses of constraints that leads to a malignant phenotype and ultimately a
metastatic state.
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15.4 Summary

• Systems biology bridges multiple scales in biology.
• Dual causation in biology requires us to accommodate the

physico-chemical constraints under which cells operate, as well as the
fundamental biological processes of natural selection and generation of
alternatives when building models in systems biology.

• Organisms have to abide by a series of constraints, including those arising
from basic physical laws, spatial constraints, and the environment in which
they operate.

• Many possible biological functions are achievable under these constraints,
and organisms willfully impose constraints through various regulatory
mechanisms to select useful functional states from all allowable states.

• A constraint-based approach that enables the simultaneous analysis of
physico-chemical factors and biological properties emerges from these
considerations.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139854610.019
Downloaded from https://www.cambridge.org/core. Tufts Univ, on 25 Feb 2019 at 03:32:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139854610.019
https://www.cambridge.org/core

