
16 Functional States
Life is a program written in DNA – Craig Venter

Chemical reactions link cellular components together to form a network. Although
we can specify the chemical properties of links in biological networks, it is the way
in which a multitude of such links form networks that determines phenotypic func-
tions. These integrated network functions are also called functional states, and they
correspond to the observed biological functions or phenotypic states that networks
create. A functional state may be viewed as the outcome of the execution of the genetic
program written in the DNA. In this chapter we detail the concept of a functional state
of a genome-scale network and how it represents a physiologically observable state.
The following chapters then describe the framework for computing functional states
using the constraint-based approach.

16.1 Components vs. Systems

Components come and go Biological components all have a finite turnover time.
Most metabolites turn over within a minute in a cell, mRNA molecules typically have
two-hour half-lives in human cells [463], 3% of the extracellular matrix in cardiac
muscle is turned over daily, and so forth. So a cell that you observe today, compared
with the same cell yesterday, may only contain a small fraction of the same molecules.

Similarly, cells have finite lifetimes. The cellularity of the human bone marrow
turns over every two to three days. The renewal rate of skin is on the order of five days
to a couple of weeks. The lining of the gut epithelium has a turnover time of about five
to seven days. Slower tissues, like the liver, turnover their cellularity approximately
once a year. So a mammal that you observe today may only contain a small fraction
of the same cells as the same mammal observed a year ago. Thus, the components
of a biological system come and go, and their turnover takes place on multiple time
scales.

However, the system remains Most of the cells that are contained in an individual
today were not there just a few years ago. However, we consider the individual to be
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Figure 16.1 A contrast between the components view (on the left) and the systems view
(on the right).

the same. Similarly, we consider one cell to be the same one a week later, even if most
of its chemical components may have turned over. Thus, components come and go, but
the system remains. Therefore, a key feature of living systems is how their components
are connected. The interconnections between cells and cellular components define the
essence of a living process.

Moving from viewing components in isolation to being a part of a system The
difference between the familiar components view of a cell and its molecular biology is
different from the less familiar systems view in many subtle ways. Here, we illustrate
this difference in Figure 16.1.

On the left side we see the classical component point of view. When we are looking
at one gene product, in this case an enzyme carrying out its function, we study
this component by placing it in a beaker with its substrates and then observe the
time-dependent disappearance of a substrate and the appearance of a product. The
component that we are studying is the centerpiece of this experiment, and it is
responsible for concentration changing in a time-dependent manner.

The right side illustrates a systems viewpoint of a biochemical network. Contrary
to the components view, it is not the components that matter, but it is the state of
the whole system that is important. Any biological network will have a nominal
state that we recognize as a homeostatic state. Thus, the fluxes that reflect the
interactions among the components to form the functional state of the network
are dominant variables, and the concentrations of the individual components
are ‘subordinate quantities.’ The concentrations of the network components are
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266 16 FUNCTIONAL STATES

determined to a first approximation by the flux map, or the state of the network, and
then in detail by the kinetic properties of the links in the network.

Two key issues arise from the above considerations. The first deals with the nature
of the links between components in a biological network, and the second deals with
the functional states and the properties of a network that a set of links forms. At the
genome-scale, the former is the process of network reconstruction discussed in Part I,
and the latter is the subject of the current part of this book.

16.2 Properties of Links

Links between molecular components are given by chemical reactions or associa-
tions between chemical components. These links are therefore characterized and
constrained by basic chemical rules. In tissue biology, the nature of links between cells
is more complicated and often related to higher-order chemistry. We note that a T cell
receptor, for instance, forms a complicated structure in the membrane of a cell. The
properties of that structure, and how compatible it is with the complementary features
of another cell, determine whether there is communication, or links, between these
cells. Links between people in a social network have an even more complex basis.
As we are focused on the characteristics of biochemical networks, we will discuss the
chemical nature of links in molecular biology further.

Basic chemistry The prototypical transformations in living systems at the molecular
level are bi-linear. This association involves two compounds coming together to either
be transformed chemically through the breakage or formation of a new covalent bond,
as is typical of metabolic reactions or macromolecular synthesis:

X + Y � X–Y covalent bonds

or two molecules coming together to form a complex through hydrogen bonds and/or
other physical association forces, a complex that has different functionality from indi-
vidual components:

X + Y � X : Y association of molecules

Such association, for instance, could designate the binding of a transcription factor to
DNA to form an activated site to which an activated polymerase binds. Such bi-linear
association between two molecules might also involve the binding of an allosteric
regulator to an enzyme that induces a conformational change in the enzyme.

Chemical transformations have certain key properties.

Stoichiometry. The stoichiometry of chemical reactions is fixed, and is described
by integers that count the molecules that react and that form as a consequence
of the chemical reaction. Thus, stoichiometry represents ‘digital information.’
Chemical transformations obey elemental and charge balancing, as well as other
features. Stoichiometry is invariant between organisms for the same reactions and
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16.3 LINKS TO NETWORKS TO BIOLOGICAL FUNCTIONS 267

does not change with pressure, temperature, or other conditions. Stoichiometry
gives the fundamental topological properties of a biochemical reaction network.

Relative rates. All reactions inside a cell are governed by thermodynamics. The
relative rate of reactions, forward and reverse, are therefore fixed by basic
thermodynamic properties. Unlike stoichiometry, thermodynamic properties do
change with physico-chemical conditions such as pressure and temperature. The
thermodynamics of transformation between small molecules in cells are fixed
but condition-dependent. The thermodynamic properties of associations between
macromolecules can be changed by altering the amino acid sequence of a protein.

Absolute rates. In contrast to stoichiometry and thermodynamics, the absolute rates
of chemical reactions inside cells are adjustable. Highly evolved enzymes can
be very specific in catalyzing particular chemical transformations. Cells can thus
extensively manipulate the rates of reactions through changes in DNA sequence.
Enzymes evolve to bring molecules into particular orientation to control the rate
of appropriately oriented collisions between two molecules that lead to a chemi-
cal reaction (see Figure 7.1). It should be noted that much of the chemistry that
takes place in cells occurs on the surfaces of protein. Surfaces are encoded in
the DNA sequence and they determine the catalytic properties, such as rate con-
stants, binding specificity, subunit association, protein binding to the DNA, and so
forth.

The formation of links is restricted Links cannot just form between any two cellular
components. The links that are formed are constrained by the nature of covalent bonds
that are possible and by the thermodynamic nature of interacting macromolecular
surfaces. The absolute rates are key biological design variables because they can evolve
from a very low rate, as determined by the mass action kinetics based on collision
frequencies, to a very high and specific reaction rate, as determined by appropriately
evolved enzyme properties.

Information about links We do not have detailed information about the nature of all
links between molecules inside a cell. In fact, there is a range of levels of knowledge
that we have available to us (see Figure 16.2). Full information about the links allows
for a full description of how a genetic property is mechanistically related to a pheno-
typic one. Most of this book is focused on this level of information, although additional
auxiliary information can be included in the form of logistical relationships.

16.3 Links to Networks to Biological Functions

Reaction bi-linearity and network topology Most biochemical reactions are bi-
linear. Bi-linearity gives the networks a hyper-graph property that is topologically
non-linear. Consequently, biochemical reaction networks form a tangle of cycles [361]
where different chemical properties and moieties are being transferred throughout the
network from one carrier to the next. The coordinated movement of such transferred
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Figure 16.2 Illustration of different levels of knowledge that are available about a link in a
network. Prepared by Nathan Lewis.

properties is determined by network topology and represents a key aspect of systems
biology as they tie the whole system together.

We are familiar with the pathway maps that are used to describe cellular processes.
We are less familiar with maps drawn around co-factors or carrier molecules that
participate in multiple reactions. An example of the trafficking of redox equivalents
in the core E. coli metabolic network is shown in Figure 16.3. This figure illustrates
the two points of view, and shows how the carrier or co-factor molecules form a
tangle of cycles that transmit the redox potential from one state to another. Another
familiar example would be the movement of high-energy phosphate bonds between
metabolites and proteins. ATP is the primary carrier of such high-energy bonds, and,
for instance, a phosphate group is tied to glucose to form glucose-6-phosphate as the
first step in glycolysis. The same feature is found in signaling networks whose compo-
nents are in phosphorylated or dephosphorylated states. Other properties being trans-
ferred between molecules are one-carbon units, two-carbon units, ammonia groups,
and so on.

Bi-linearity makes biochemical reaction networks highly interwoven and confers
on them certain stoichiometric texture that affects their steady and dynamics states.

One network, many functional states One interesting feature of biochemical net-
works as they grow in size is that due to combinatorics, the number of possible func-
tional states that they can take can grow faster than the number of components in
a network. Therefore, the number of phenotypic functions derivable from a genome
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Figure 16.3 The tangle of cycles in trafficking of redox potential (R) in E. coli core metabolic
pathways showing the redox equivalents (R) of the metabolites and carriers in the core E. coli
metabolic model under aerobic conditions. (A) A reaction map organized around the core
pathways. (B) A series of node maps organized around the molecules that carry redox
potential. This map looks like a tangle of cycles. Taken from [317].
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270 16 FUNCTIONAL STATES

Figure 16.4 Stoichiometries of two alternative cycles for complete oxidation of PEP. The
tricarboxylic acid cycle (A) and the PEP–glyoxylate cycle (B). Large solid arrows indicate
reactions that are used twice per turn of the cycle. Gene names are shown in italics. Taken
from [122].

does not linearly scale with the number of genes. For instance, the human genome
may only have 50% more genes than the genome of Caenorhabditis elegans, a small
worm, but nevertheless, human beings display much more complicated phenotypes
and in greater variety. Thus, in general, it is hard to correlate organism complexity and
functions to the number of genes its genome contains.

The fundamental property of biochemical networks having many possible func-
tional states leads to the possibility of having the same network display many different
phenotypic behaviors. A specific example in Figure 16.4 shows two experimentally
determined alternative functional states of some of the metabolic pathways in the core
pathways of E. coli. An organism does not fully exploit or use all possible functional
states.

Many possible states will be useless to the organism in its struggle for survival.
Therefore, a limited subset of these functional states needs to be selected and expressed
by cells by imposing regulatory constraints. As we will discuss in Chapter 20, complex
biological reaction networks can also have equivalent functional states, that is, there
are identical overall functional states that differ in the ways in which they use the
underlying links in the network.

Changing properties through evolution: distal causation Some of the key fea-
tures of biological networks that distinguish them from other networks need to be
accounted for in the analysis of their systemic properties. The first basic feature of
biological networks is that they evolve; they change with time. They are time-variant.
Principally, such changes occur through the kinetic properties of the links in the
network and the changing of the available or active links in the network at any given
point in time. The number of available links can be manipulated by regulation of gene
expression, by horizontal gene transfer, and by other mechanisms.

The second feature that has to be taken into account is the fact that they have
a sense of purpose. The fundamental purpose is survival. However, in complicated
organisms that are fundamentally composed of many networks, some will have goals
that are subtasks to the overall goal of survival. For instance, the goal of adipocytes
would be to collect and store fat if there is an abundance of energy resources in its
environment. A goal of the mitochondrion, being the powerhouse of the cell, seems
to be to maximize ATP production from available resources. Therefore, the study of
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16.4 CONSTRAINING ALLOWABLE FUNCTIONAL STATES 271

objectives, i.e., purpose, of biochemical reaction networks becomes a relevant and cen-
tral issue (Chapter 21).

Temporal–spatial organization Thus, linking many biological components together
forms a network. This network can have many functional states from which a subset
is selected. Links, network topology, and functional states can all change with time or
environmental conditions. It is important to be cognizant of the fact that biochemical
reaction networks have to operate in the crowded interior of a cell (see Figures 15.3A
and 17.1). Thus, the network view of the biological process has to be considered in
the context of the three-dimensional physical arrangement of such networks. These
considerations may limit the usefulness of analogies with other man-made networks
such as electrical circuits.

16.4 Constraining Allowable Functional States

Disciplines differ in their approach to model-building The above considerations
of the nature of links, how they form networks, and how networks form functional
states, make it likely that in silico modeling and simulation of genome-scale biological
systems is going to be different from that practiced in the physico-chemical sciences.
First is the notion that a network can fundamentally have many different states or
many different solutions. Which states (or solutions) are picked is up to the cell and
such choices can change over time based on the selection pressure experienced. This
difference from the physico-chemical sciences is illustrated in Figure 16.5.

Theory- versus constraint-based thinking All theory-based considerations in engi-
neering and physics leads one to attempt to seek an ‘exact’ solution, typically com-
puted based on the laws of physics and chemistry. However, in biology it appears
that not only can a network have many different behaviors that are picked based on
the evolutionary history of the organism, but also, as we shall see, these networks
can carry out the same function in many different and equivalent ways. This leads
to an interesting distinction in mathematical modeling philosophy between the key
disciplines (Table 16.1).
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Figure 16.5 Theory- vs. constraint-based analysis. Illustration of finding an exact solution (a
point) versus finding a range of allowable solutions (a solution space).
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272 16 FUNCTIONAL STATES

Table 16.1 Disciplinary differences in modeling philosophy.

Equations Boundary conditions Nature of solutions

Physics +++ + Unique

Engineering ++ ++ Design

Biology + +++ Multiple

and changing

In physics, the emphasis has always been on deriving theory. Quantum mechanics
developed about 100 years ago. Boltzman derived his famous equation prior to that.
Theory, as expressed by mathematical equations representing our understanding
of fundamental physical mechanisms, has been central to physics. If one wants to
obtain particular solutions to these equations, one imposes boundary conditions that
typically lead to the calculation of a unique solution.

Engineering takes a bit of a departure from this philosophy. The equations used in
engineering do not need to be correct mechanistically, in a fundamental theoretic
sense, as long as they describe the process at hand phenomenologically. Further-
more, the boundary conditions that need to be stated are very important and are
often very specific to what an engineer is designing. In engineering, though, one is
used to the fact that a problem can have multiple solutions, and that often comes
down to the use of design variables to try to optimize a design.

In biology, based on the above consideration, we find that the equations needed to
describe the physics of the intracellular environment may never be well-known,
and furthermore, network functionalities evolve and change over time. There-
fore, the fundamental equations describing biological functions may be hard to
formulate and fully define. On the other hand, the boundary conditions or the
constraints under which cells operate and evolve against are easier to identify, state,
and use.

Constraint-based analysis methods These considerations give a general conceptual
background for functional states and that there are constraints on what functional
states a cell can take on. There are many methods that have been developed under
the constraint-based modeling approach. They can be used to address many network
properties, functional states, and biological questions; some are summarized in a later
chapter (Table 18.1). To complete this chapter, we will discuss the general types of
constraints that biology operates under before we proceed to formalize and mathe-
matically deploy them.

16.5 Biological Consequences of Constraints

The constraints under which a cell operates Cells operate under myriad constraints.
There are different ways to classify these constraints, and many authors have dis-
cussed them from different points of view. A few will be mentioned here.
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16.5 BIOLOGICAL CONSEQUENCES OF CONSTRAINTS 273

• A statement of two very general categories of constraints imposed by
natural selection have been described by F. Jacob [179]. They are basically
(i) the requirement for reproduction and the genetic mechanisms required to
produce offspring with non-identical genetic composition of the parent(s),
and (ii) the permanent interaction with the environment that imposes
thermodynamic constraints of constant flux of matter, energy, and
information. The latter constraints are easier to describe in the language of
the basic physical laws while the former describe distal causation.

• A. Danchin [93], in his insightful book about genomes, divides the cellular
processes and their associated constraints into four general categories: (i)
compartmentalization to segregate function in space and to differentiate the
‘inside’ from the ‘outside;’ (ii) metabolism that determines the flow of matter,
energy, and redox potential within cells, and its relationship with the outside
world; (iii) the transfer of memory to physico-chemical processes (i.e.,
‘actuating’ inherited information); and (iv) memory transmitted from one
generation to the next. This classification is similar to that of Jacob, with the
first two describing the physico-chemical constraints that a cell deals with
while the latter two are related to biological causation.

• In Chapter 15 we defined four categories of constraints that can be used to
analyze the capabilities of reconstructed biochemical reaction networks: (i)
physico-chemical constraints, (ii) spatial and topological constraints, (iii)
environmental constraints, and (iv) regulatory constraints. This classification
is operational and these constraints can be described mathematically and
used to assess the capabilities of networks.

Picking candidate states: the role of regulation Cells are subject to inviolable con-
straints such as those associated with mass and energy balances. Their underlying
biochemical networks must obey these, and other spatial constraints. These constraints
have been called hard constraints and, as illustrated by the pentagon in Figure 16.6,
give a range of all allowable states of the network. One or more states may be deemed
suitable by the cell, based on its evolutionary history and current challenges (i.e., the
prevailing environmental constraints). A way to exclude all the unwanted states (i.e.,
those that are unsuitable, or selected against) is to implement a regulatory network
that eliminates a large portion of the solution space (the pentagon), and by default
forces the expression of the ‘desired’ phenotype.

If a state or phenotype is not the best one under given conditions, the solution
can move within the allowable range. This change in the selection of a functional state
can be accomplished by regulating the expression of the genes or by regulating the
activity of the corresponding gene products. Such regulation has a relatively short
time profile. Over longer times, of course, the components of the network can evolve
and the properties change slightly, allowing a drift in the phenotypic function of
the cell.

Hierarchical organization in biology Many facets of cellular function and prop-
erties are organized hierarchically. The spatial organization of DNA is shown in
Figure 16.7A. The linear dimension of the E. coli cell is about 1 mm while the length

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139854610.020
Downloaded from https://www.cambridge.org/core. Tufts Univ, on 25 Feb 2019 at 03:33:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139854610.020
https://www.cambridge.org/core


274 16 FUNCTIONAL STATES

regulatory constraints; 
self-imposed restraints

hard constraints
(P/C environment, etc.)

evolutionary 
selection
pressure

'fit' phenotype
states
allowed

states
eliminated
by regulation

Figure 16.6 Illustration of the constraints on network functions. The pentagon illustrates the
range of allowable functions based on hard physico-chemical and environmental constraints.
The solid horizontal line illustrates self-imposed constraints (restraints) produced by regulatory
networks, i.e., all the states below the line are ruled out by regulatory mechanisms (the blue
segment). The red dot denotes the desired functional state, that is found among the admissible
states (gray segment) after regulatory constraints have been imposed.
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Figure 16.8 Timeline of the development and biological ‘fraction’ of major cellular and
developmental processes. Inspired by Marc Kirschner.

of the cell is on the order of 1 μm, a 1000-fold difference. The bacterial genome is thus
‘folded’ a thousand times in a hierarchically organized fashion. Biochemical reaction
networks can be similarly decomposed (Figure 16.7B). Reactions group together into
coordinated units that may be co-localized in space, or even compartmentalized.
Many such coordinated units can form a larger organized unit.

The constraints that apply to the lower levels of organization by necessity will con-
strain the subsequent higher-level functions. This upward application of constraints
necessitates a bottom-up approach to the analysis of complex biological phenomena.
Gödel’s completeness theorem in mathematics that showed an axiomatic approach to
proving mathematical theorems could not prove all properties of a system may in a
general sense apply to biology. By analogy, we would expect that we cannot construct
all higher-level functions from the elementary operations alone. Thus, observations
and analyses of system-level functions will be needed to complement the bottom-up
approach. Therefore, bottom-up and top-down approaches are complementary to the
analysis of the hierarchical nature of complex biological phenomena.

Evolutionary adoption of constraints and formation of hierarchy The successive
adoption of cellular functions over evolutionary times are illustrated in Figure 16.8.
The basic biochemistry of cellular processes and the maintenance and expression of the
information on the DNA molecule evolved early. This basic set of processes is found
in all organisms today. The genetic code is essentially universal and most proteins
are made up of about 20 amino acids. These are basic constraints under which all
subsequent cellular processes must operate. The genetic code cannot be predicted
from basic theory or physics [91], but is consistent with the basic laws of physics and
chemistry. Once picked, it is essentially fixed over evolution. Similarly, most modern
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proteins are made up of a limited number of motifs, and the basic circuits that lay
out the body plan are remarkably conserved. Thus, the constraints set at a lower level
of biological hierarchy confine higher levels of organization, but may not explain or
predict the more complex functions. Evolution is a tinkerer that combines the elements
at hand together in new and unpredictable ways. The first ‘wave’ in Figure 16.8 is close
to the underlying chemical principles and represents the focus of this text.

16.6 Summary

• Biological systems are defined by the interactions between their
components.

• The links between molecular components are constrained by the basic laws
of chemistry.

• Multiple links between components form a network, and the network can
have functional states.

• Functional states of networks are constrained by various factors that are
physico-chemical, environmental, and biological in nature.

• The number of possible functional states of networks typically grows much
faster than the number of components in the network.

• The number of candidate functional states of a biological network far
exceed the number of biologically useful states to an organism.

• Cells select useful functional states by elaborate regulatory mechanisms.
• One may view hierarchical organization and evolutionary change as

biological consequences of dealing with constraints.
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