
An Algorithm for Structuring Flowgraphs

BRENDA S. BAKER

Bell Laboratories, Murray Hdl, New Jersey

ABSTRACT This paper describes an algorithm which transforms a flowgraph into a program containing con-
trol constructs such as if then else statements, repeat (do forever) statements, multdevel break state-
ments (causing jumps out of enciosmg repeats), and multilevel next statements (causing jumps to itera-
tions of enclosing repeats) The algorithm can be extended to create other types of control constructs,
such as while or until The program appears natural because the constructs are used according to com-
mon programming practices The algorithm does not copy code, create subroutines, or add new variables
Instead, goto statements are generated when no other available control construct describes the flow of
control. The algorithm has been implemented m a program called STRUCT which rewrites Fortran pro-
grams using constructs such as while, repeat, and if then else statements The resulting programs are
substantmUy more readable than their Fortran counterparts

KEY WORDS AND PHRASES structured programming, flow of control, flowgraph, program transformations,
Fortran

CR CATEGORIES 4 19, 4.43, 5 24

1. Introduction

Structured programming emphasizes programming language constructs such as whi le
loops, un t i l loops, and if then else statements. Properly used, these constructs
make occurrences of loops and branching of control clear. They are preferable to
goto statements, which tend to obscure the flow of control and make programs hard
to understand [10,11]. This paper describes an algorithm which transforms a flow-
graph into a program written using repeat (do forever) and if then else statements,
together with mult i level break statements (whJch cause jumps out of enclosing re-
peats) and mult i level next s tatements (which cause jumps to the next iteration of an
enclosing repeat) . The goal of the algorithm is to produce understandable programs,
rather than to avoid the use of goto statements entirely. Goto s tatements are gen-
erated when there is no better way to describe the flow of control.

Repeat and if then else statements are selected as target language constructs for
the algorithm because they are sufficient to show the organization of the program
into loops and branches to alternative blocks o f code. Break and next statements
are used because they are easily generated by the algorithm and contain more infor-
mation than gota statements. The algorithm can be easily extended to produce other
constructs, such as while , unt i l , or the constructs described in [16]. This paper con-
centrates on finding the basic structure of a program rather than on producing the
syntax desired for a particular implementat ion of the algorithm.

Copyright © 1977, Assocmtion for Computing Machinery, lnc General permission to repubhsh, but not
for profit, all or part of this material ts granted provided that ACM's copyright notice is given and that
reference is made to this publication, to as date of ~ssue, and to the fact that reprinting privileges were
granted by permissmn of the Association for Computing Machinery

A prehmmary version of this paper was presented at the Third ACM Symposmm on Prinoples of Pro-
gramming Languages, Atlanta, Georgia. January 19-21, 1976

Author's address. Bell Laboratories, Murray Hdl, New Jersey 07974

The author provided camera-ready copy for this paper using EQNITROFF 114] on tJUlX [20].

Journal of the Assooatlon for Computing Machinery, Vol 24, No i , January 1977, pp 98-120

A n ,4lgortthm for Structurmg Flowgraphs 99

A number of techniques for eliminating goto statements from programs have been
previously published [2,7-9,15,17,19]. These include adding control variables, copy-
nag code, creating subroutines, and adding extra levels of repeat statements in con-
junction with multilevel break statements. Each of these methods may be appropri-
ate in some cases. However, these techniques do not necessarily produce clear flow
of control [16]. Rather than try to determine when these techniques are appropriate,
the algorithm of this paper does not use them.

Instead, the structuring algorithm is based on some principles about how repeat
and if then else statements should be used for best readability. The structuring algo-
rithm and these principles evolved together. That is, applying earlier versions of the
algorithm led to refinements of the principles which led in turn to refinements in the
algorithm. The principles are discussed at length in [4]. A program which satisfies
the principles is called properly nested. In a properly nested program, repeats reflect
iteration in the program, and if then else statements reflect branching and merging
of control in a reasonable way. The algorithm transforms a flowgraph into a prop-
erly nested program, in which the predicates and straight line code statements are the
same as those of the flowgraph in both number and execution order. In general, the
program may contain goto statements. However, the goto statements occur only
where no other available control construct describes the flow of control.

Section 2 introduces flowgraphs and a simple structured language SL. Some sim-
ple ideas concerning the use of repeat and if then else statements are discussed in
Section 3 as motivation for the algorithm. Section 4 describes the algorithm as res-
tricted to "reducible" flowgraphs, i.e. flowgraphs in which each loop can be entered in
only one place. The algorithm is extended m Section 5 to include irreducible flow-
graphs. Section 6 proves that the algorithm produces a properly nested program.
Section 7 applies some results from [4] concerning properly nested programs to show
that any properly nested program for a flowgraph must be similar m form to the one
generated by the algorithm. Moreover, if a flowgraph has a properly nested program
with no goto statements, the algorithm generates one.

Section 8 discusses briefly an implementation of the algorithm in a program called
STRUCT [3], which translates Fortran programs into RATFOR [13], an extended Fortran
language which includes constructs such as if then else and while. The structured
programs generated by STRUCT are much more readable than their Fortran counter-
parts. It is usually not obvious that they are mechanically generated, since the
structuring principles cause them to imitate common programming practice. The
structured programs usually contain few goto statements. An example of a program
structured by STRUCT is included in Appendix B.

De Balbine [5,6] has written a program called the "structuring engine," which also
claims to structure Fortran. His algorithm has not been published for comparison
with the algorithm of this paper. However, the published output from the structur-
ing engine appears to follow some of the same basic principles as the algorithm of
thin paper. A major difference is that the structuring engine avoids goto statements
by creating a kind of argumentless subroutine. It is not clear from the published ex-
amples that the artificially created subroutines improve readability.

The structuring algorithm presented in this paper is proposed as a tool for the
maintenance of Fortran programs. One of the problems in dealing with Fortran pro-
grams is that the lack of convenient control structures makes programs hard to
understand Extended Fortran languages such as RATFOR have been developed so
that new programs may be written using convenient control structures and translated
by a preprocessor to Fortran for compilation. But many existing programs were writ-
ten in Fortran without the benefit of preprocessors. These programs become dramat-
ically more understandable when they are structured mechanically. Therefore,
modification and debugging of these programs is facilitated by structuring.

100 B.S . BAKER

2. Definitions
This section defines a simple structured language SL, the execution order of SL pro-
grams, and flowgraphs.

SL contains optionally labeled statements of the following forms:

(1) straight line code (sic) statements (i.e. assignment, read, write, etc.),

(2) stop,

(3) goto L, where L is a label,

(4) if (p) then [S1} else {$2}, where S1 and $2 are (possibly null) sequences of
optionally labeled SL statements, and p is a predicate,

(5) repeat {S}, where S is a non-null sequence of optionally labeled SL statements,

(6) break(i) , where i is a positive integer, 1

(7) next(i), where i is a positive integer, l

An SL program is a nonnull sequence of SL statements, such that each label in a
goto statement labels exactly one statement in the program. Henceforth, program
means SL program, except where otherwise noted.

Goto, next(i) , stop, and break(i) statements are referred to as branching state-
ments; other statements are nonbranchmg statements. Associated with a program is
an "exit" which is reached when a stop is executed, or when control reaches the bot-
tom of the program. Two statements are at the same level of nestmg if neither is en-
closed in another statement, or if the same statement is the smallest statement en-
closing each one. The exit of the program is outside all levels of nesting by
definition. The innermost repeat (if any) enclosing a statement is its first enclosing
repeat. For i>1 , the t th enclosing repeat is the repeat (I f any) enclosing the
(i - D - s t enclosing repeat.

Statements of types 1-4 are interpreted in the standard way. Repeat {S} causes
the sequence S to be iterated until a stop is executed, or until a goto, break(i) , or
next(i) (i greater than 1) causes a jump out of the repeat statement. Break(i)
causes a jump to the statement following the ith enclosing repeat statement. Next(i)
causes a jump to the next iteration of the ith enclosing repeat statement, that is, it is
equivalent to goto L, where L is a label added (if necessary) to the ith enclosing re-
peat.

For simplicity, no elseless if then statement is provided, but its equivalent is ob-
tained by a null else clause. Also, more complex constructs such as while and until
are not provided since they can be expressed in terms of repeat, if then else, and
break. For simplicity, return is not included; it may be treated like stop (but
separately) during structuring.

A flowgraph is a directed graph with labeled nodes and arcs representing flow of
control between nodes. Each node is either a straight line code (sic) node with one
outarc, an exit node with no outarcs, or an if node, with a "true" outarc and a "false"
outarc. A flowgraph has exactly one exit node, and there is a path to it from every
node in the flowgraph. One node~pf the flowgraph is designated as the start node.

An SL program is flowgraphable if every loop (created by means of repeat and/or
goto statements) includes either an sic or if statement. The possible computations
performed by a flowgraphable program P are determined by the flow of control
between sic and if statements and the exit of the program. This flow of control is
described by a flowgraph COMPUTE(P) which is obtained as follows from P. For

1Multilevel break and next statements are included because they happen to be easdy tdentlfied by the
structuring algorithm They are not fundamental to the algor,thm; the algortthm has been implemented
m STRUCT with nice results using only single level break and next statements

.4 n A lgorlthm for Structurmg Flowgraphs 101

each sic or if statement in P, there is a corresponding node in COMPUTE(P). In
addition, there is a single exit node which represents the exit of the program. There
is an arc from node p to node q if control can pass from statement p to q without
passing through any other if or sic statement. The s t a r t node of COMPUTE(P) is
the node which corresponds to the first sic or if statement reached upon executing
the program, or the exit node if the exit of the program is reached before any sic or
if statement is executed.

Two flowgraphable SL programs PI and P2 are equtvalent if COMPUTE(Pi)=
COMPUTE(P2). Note that this is a stronger statement than merely requiring that
the set of execution paths be the same. If one program has two copies of an sic
statement while the other has only one, the programs may have identical sets of exe-
cution paths but are not equivalent by this definition. This definition of equivalence
was chosen because the algorithm of this paper does not copy code.

A flowgraphable program P is a structuring of a flowgraph G if G~COMPUTE(P).
A loop in a ftowgraph G is a path which begins and ends at the same node and in-

cludes at least one arc. A cyc/e is a loop in which only the first node (which is the
same as the last node) occurs twice.

Finally, a flowgraph is reductble if every cycle in it can be entered in exactly one
place, i.e. there is a node p in each cycle such that every path from the start node
must reach p before any other node in the cycle. A program P is reductble if
COMPUTE(P) is reducible. The structuring of reducible flowgraphs is discussed in
Sections 3 and 4. Irreducible flowgraphs (i.e. flowgraphs which are not reducible) are
treated in Section 5.

3. Basic Requirements for the Algorithm

The goal of this paper is to present an algorithm which generates readable structured
programs from flowgraphs. The first step in developing the algorithm is to determine
some basic properties a program must have to be readable. To keep the discussion
simple, this section assumes that the programs of interest are reducible. The ideas
discussed in this section are generalized in [4] as a set of principles for the use of re-
, a t and if then else statements in (reducible or irreducible) programs. These prin-
ciples are listed in their general form in Section 6.

First, repeat statements must reflect iteration in the program Obviously, pro-
grams such as the following should not be allowed.

repeat
{ s = l

stop
I

But the following program is also poor because it gives the impression that the whole
program can be iterated.

repeat
{ if (p) then

code segment
stop

e l se
x = f (x)

The iteration in thin program is better represented by the following version.

102 B . s . BAKER

repeat
{ if (p) then { break(l) }

else { x = f(x) }

code segment
stop

Thus a basic requirement is that every statement within a repeat should lead to an
iteration of the r e p e a t .

Each if t h e n e l s e statement should reflect branching and merging of flow of con-
trol in the program. In particular, a goto s tatement should not jump into the middle
of a then or else clause. Also, a s tatement should appear within a clause if it can be
reached only from the clause and is within the innermost repeat (if any) containing
the clause. In particular, of the following examples, (a) is reasonable, while (b) and
(c) are not.

(a) if (p) then { j = 1 }
else { j ---- 2 }
y = fq)
stop

(b) if (p) then
{j----1

goto 10

else
{j = 2

1o y -- fq)

stop

(c) if (p) then {}
else

{j = 2
goto 10

j = l
10 y = f(j)

stop

The above discussion is sufficient as a base from which to develop the algorithm.
Obviously, the algorithm makes further decisions about the use of control constructs.

4. The Structuring Algortthm

This section presents the algorithm for structuring flowgraphs. To keep discussion
simple, this section assumes that the input flowgraph is reducible. Section 5
discusses adaptations to the algorithm which enable it to handle i r reduoble programs
tn a reasonable way.

4.1. FINDINC STRUCTURE IN A FLOWGRAPH. The input to the structuring algorithm is
a flowgraph G in which every node is reached by a path from the s tar t node. The
first step in structuring G is to locate the loops in G. Loops are identified from a
spanning tree which is constructed by a depth-first search [12]. The depth-first
search proceeds as follows.

Begin by wsttmg the start node of G and setting NUM to the number of nodes m the flowgraph When
vlsmng a node m, do the following If node m has an arc to a node p not already visited, make p a child of
m in the spanning tree, and visit p next Otherwise, number m with NUM, decrement NUM by 1, and re-
turn to v~stt the parent of m (if it exmts) again

An Algorithm for Structuring Flowgraphs 103

A back arc is an arc from a node to itself or from a descendant to an ancestor in the
spanning tree; other arcs are forward arcs. If (p,q) is a back arc and p~q, there is a
path from q to p consisting of edges from parent to child in the tree. This path and
the back arc form a cycle in G. Each node entered by one or more back arcs will be-
come the first statement within a repeat in the final program.

Let L be a list of the nodes of the graph ordered by the numbering assigned dur-
ing the depth-first search. This list will be used to ensure that all gotos in the final
program flow downward on the page. Note that an arc (p,q) is a back arc if and only
if q appears before p in L. Also, if (p,q) is a back arc, there is a path from q to p
which includes only nodes between q and p in L.

Example. A flowgraph and the numbering of nodes produced by a depth-first
search are illustrated in Figure 1.

START A1 ~ , B 2

t
V
C5

/ \

¢ "4
D5 E4

\ F6.¢...
\ /

137 t

FIG 1 A flowgraph G and the numbering assocmted with the depth-first search, whtch traverses "true"
(left) arcs before "false" (right) arcs Dashes indicate arcs m the sNnnmg tree The hst L-A,B,C,E,D,
F,G,H,I

At this point, the nodes which will become the first statements within repeats
have been determined. In particular, they are the nodes entered by back arcs. This
information is encoded in the flowgraph as follows. For each nt~de n entered by a
back arc, add a single repeat node p. Replace each arc (q,n) by an arc (q,p), and add
an arc (p,n). Insert the repeat node p immediately before n in L. Call the new
graph the extenston of G, EXT(G). The start node of EXT(G) is defined to be the
first node of L, which may be a repeat node rather than the start node of G.

Note that the addition of the new nodes does not change the ordering of the
nodes already in L. The definition of back arc is extended to EXT(G) by defining an
arc (p,q) in EXT(G) to be a back arc if q precedes p in L.

Example. Figure 2 shows the graph EXT(G) generated from G o f Figure 1.
A repeat node p is the head of all loops and cycles which include p but no nodes

preceding p in L. If p is the head of a loop containing q, and p~q, q is in a loop tad
headed by p. In the final program the repeat statement corresponding to p will con-
tain the statements corresponding to nodes in loop tails headed by p. For each node
q, the algorithm determines HEAD(q), which is the repeat node which will
correspond to the smallest repeat enclosing q in the final program. In particular, of
the repeat nodes which are heads of loops containing q, HEAD(q) is the closest one
preceding q in L. If no such node exists, HEAD(q) is undefined. For convenience,
If HEAD(q) is undefined, all nodes are said to be in the "loop tail" headed by
HEAD(q), and this "loop tail" is considered to be the entire program. Also, if

104 B . S . BAKER

START J > A > B

C Z'a
O E

~ i ~ H > I EXIT

FiG 2 The graph EXT(G) generated from the graph G of Figure 1 The hst L=J,A,B,C,
E,D,F,G, HJ

HEAD(p) and HEAD(q) are undefined, HEAD(p)= HEAD(q) by definition. Note
that for a repeat node p, HEAD (p) is either a different repeat node or is undefined.
The repeat corresponding to p will be nested within the repeat corresponding to
HEAD (p) m the final program.

Example. For the graph of Figure 2, HEAD(A)=HEAD(B)=J. For all other
nodes p, HEAD (p) is undefined.

To produce code from EXT(G), the algorithm needs to know which statements
are reachable from which others. For example, for the graph of Figure 2, it needs to
know that nodes F and G can be reached through both branches of C, so that neither
Fnor G should be placed within a clause of C

Such branching and merging of control can be described by dominators in the flow-
graph [1]. Node p dommates node q if every path from the start node to node q
must pass through node p. Node p is the tmmedtate dominator of node q if no other
dominator of q lies "closer" to q (that is, if every dominator of q other than p also
dominates p). Every node m the flowgraph except the start node ~s dominated by at
least one node, the start node. Moreover, every node except the start node has an
immediate dominator. Let DOM(p) denote the immediate dominator of p.

Example. The dominators of the nodes in the graph of Figure 2 are as follows:
DOM(J) is undefined, DOM(A)=J, DOM(B)=A, DOM(C)=B, DOM(I)=H, and
the immediate dominator of the other nodes is C.

For each node p, HEAD and DOMare used to obtain a set FOLLOW(p) specify-
ing nodes which belong "after" p at the same level of nesting as p. For each if node
p, define

FOLLOW(p)={q [q is entered by 2 or more forward arcs, p=DOM(q), and
HEAD(p)=HEAD(q) }

For each repeat node p, define

FOLLOW(p)={qIHEAD(q)=HEAD(p) and DOM(q) is in a loop tail headed
by p}.

For each sic node p, define

EOLLOW(p)={qlHEAD(q)=HEAD(p) and p=OOM(q)}.

An Algortthm for Structurmg Flowgraphs 105

Note that the sets FOLLOW(p) are pairwise disjoint, for all nodes p.
Every node is in a FOLLOWset except for the nodes which will correspond to the

first statements at each level of nesting. Intuitively, FOLLOW(p) is the set of non-
branching statements reachable from p which must follow p at the same level of
nesting as p.

Example. For the graph of Figure 2, FOLLOW sets are as follows. FOLLOW(J)
= {C}, FOLLOW(A) = {B}, FOLLOW(C) = {F,G,H}, FOLLOW(H) = {I}, and all
other FOLLOWsets are empty.

A recursive procedure getform generates the basic form of the structured pro-
gram. That is, getform determines the nesting and order of nonbranching state-
ments. Branching statements are added later. Getform is called on the start node of
EXT(G).

getform(n)
{ if (n is an sic node) then

{ pr int the straight line code }
else if (n is a repeat node with arc to node q) then

{ pr int ("repeat{")
call test(q)
print("}")

else if (n is an if node with predicate r and a "true" arc to
node p and a "false" arc to node q) then

{ print("if (r) then {'9
if (the "true" arc is a forward arc) then { call test(p) }
print("} else {")
if (the "false" arc is a forward arc) then { call test(q) }
print("}")

}
for each member q of FOLLOW(n) in order of appearance in L

{ call getform(q) }
}

test(q)
{ if (q is not in any FOLLOWset) then

{ call getform(q) }

Since the FOLLOW sets are pairwise disjoint, getform is called exactly once on each
node in EXT(G) The output from getform is called PF(G), the "program form"
generated from G.

Example. getform generates the following from the graph of Figure 2:

repeat
{A

if (B) then {}
else {}

if (C) then
I if (D) then {}

else {}

else
{ if (E) then {}

else {}
}

F
G
H

106 B . S . BAKER

The above procedure is responsible for ensuring that the final program has the
properties discussed in the preceding section.

4.2. ADDING BRANCmN~ STATEMENTS. The second part of the algorithm adds
branching statements to PF(G) to represent the flow of control in EXT(G). Some
decisions must be made at this point as to how to use branching statements. Obvi-
ously, a branchmg statement should not be used if deleting it does not alter the flow
of control. Branching statements are not needed in certain places in PF(G) because
the flow of control is already correct, The first part of the algorithm guarantees that
the first statement within a repeat is the node entered by an arc from the repeat, and
that the first statement within a clause of an if statement is the node entered by the
appropriate arc of the if. Thus, it remains to add branching statements to correct the
flow of control out of some sic statements and empty if clauses

The simplest way of correcting the flow of control in PF(G) is to find every s ic
statement and every empty if clause which passes control to the wrong point, and
add appropriate branching statements to correct the flow of control. However, it is
desirable to make the algorithm somewhat more sophisticated, so that it can generate
code such as the following.

i f tp) t h e n { j - l }
else { j = 2 }
break(l)

The simple strategy mentioned above would put a break statement in each clause,
rather than the single break statement after the if statement. Instead, a reasonable
convention is to place a branching statement after any statement p such that control
can pass out of the statement to exactly one nonbranching statement q, and q is not
reached automatically without a branching statement. Two definitions are needed to
identify such statements.

First, for each node p in EXT(G), define REACH(p) to be the set consisting of
all nodes q entered by arcs from p or from nodes corresponding to statements nested
within p, such that q does not correspond to p or to a statement nested within p.
(For this definition, recall that the exit node corresponds to the exit of the program
which has been defined to be outside all levels of nesting of statements.)

Example. For the graph G of Figure 2 and the code PF(G) of the preceding ex-
ample, REACH sets are defined as follows: REACH(A)={B}, REACH(B)~{J,C},
REACH(C)~{F,G}, REACH(D)~REACH(E)~{F,G}, REACH(F) =REACH(G)
={H}, REACH(H)--{I}, REACH(I)~-®, REACH(J)-- {C}.

Second, define a branching statement to be redundant if it passes control to the
same statement which would be reached from that point if the branching statement
were deleted. Thus, for each statement p in PF(G) such that REACH(p) contains
exactly one node r, p must be followed by a branching statement passing control to r
unless that statement would be redundant.

Branching statements are added to the program recurstvely from outer levels of
nesting to inner levels by calling the procedure addbranch(PF(G),G).

addbranch(F,G) /* F is a program minus branching statements, G is a flowgraph */
{ compute REACH(p) for every node p

if (F contains no nonbranching statements) then { add a statement "stop" to F }
else

{ let p denote the first nonbranching statement in F
call fixcontrol(p)

A n Algortthm for Structuring Flowgraphs 107

fixcontrol(p)
{ if (REACH(p) contains a single node r) then

{ add the statement choosebranch(p,r) after r unless this statement would be redundant }
if (p is a repeat statement whose body begins with a statement q) then { call fixcontroi(q) }
else if (p is an if statement) then

[for each clause of p
{ if (the clause is empty) then

{ add the statement ¢heosebranch(p,r) to the clause
unless this statement would be redundant

}
else if (the clause begins with a statement q) then { call fixcontrol(q) }

}
if (p is not the last nonbranching statement at its level of nesting) then

{ call fixcontrol(q), where q is the next nonbranching statement at this level of nesting }

cheosebranch(p,r) /* select a branching statement to pass control from p to r */
{ let n be the number of repeat statements enclosing p

for each i from 1 to n
{ if (placing "break(i)" after p would pass control to r) then { return("break(i)") } }

for each i from 1 to n
{ if (r is the ith repeat enclosing p) then { return("next(i)") } }

if (r is the exit node) then { return("stop") }
if (r has no label) then

{ label r with a label L distinct from all labels already in the program }
retnrn("goto L"), where L is the label of r

}

N o t e that the p rocedure c h o o s e b r a n c h imposes a p recedence o rder upon the possible
branching s t a t emen t s which migh t be used at each point. Th is o rde r has the desir-
able proper ty that it ensures that eve ry branching s t a t emen t is reachable (see L e m -
ma 3). This is not t rue for all p r ecedence orders. For example , i f b r e a k (i) is pre-
fe r red to b r e a k (j) , i > j , un reachab le b r eak s t a t emen t s may be genera ted . T h e r e -
fore, the a lgor i thm allows b r e a k s t a t emen t s to j u m p to o the r b r e a k s ta tements .

W h e n the above p rocedure is applied to the p rogram f o r m PF(G) gene ra t ed by
the first part o f the a lgor i thm, the resul t ing p rogram is called ALG(G).

Example. For the f lowgraph G o f F igure 1, ALG(G) is the fol lowing.

10
20

repeat
/A

if (B) then {I
else { break(l) }

}
if (C) then

{ if (D) then { goto 10 }
else {}

}
else

{ if (E) then {}
else { goto 10 I

}
F
goto 20
G
H
stop

This example is no t an impress ive e x a m p l e o f a s t ruc tured program. It was chosen
because its pecul iar i t ies i l lustrate m o s t parts o f the s t ruc tur ing a lgor i thm.

108 B . s . sAx~a

5. Structuring lrreductble Flowgraphs
Most programs are reducible. However, the algorithm must handle irreducible pro-
grams if it is to be perfectly general. Since the decision has been made in this paper
not to copy code, a program generated from an irreducible flowgraph must contain a
g o t o into one or more repeat statements. Therefore, the problem is to find a reason-
able way to treat goto statements which jump into repeat statements. The choice
made here is to try to make the program well structured at a local level. In particu-
lar, the algorithm pretends that each loop is entered at only one point, structures the
program accordingly, and adjusts the final flow of control to put the jumps into loops
back in. Thus, the algorithm can generate a program of the following form.

if (p) then { goto 10 }
else {}
repeat

{ i f (q) t h e n l j - - 1 }
else

{
10 j --2

}
if (r) then {stop }
else {}

I

This program contains an ugly jump into an else clause, However, this program is
better structured within the repeat than the following program, in which the jump
into the else clause is avoided at the expense of an extra goto statement.

if (p) then Igoto 10 }
else {}
repeat

I if (q) then
{ j = ' l

goto 20
}

else {}
lO j = Z
20 if (r) then {stop }

else {}
}

A large example of an irreducible program generated by STRUCT appears in Appendix
B.

The way the algorithm "pretends" that the flowgraph is reducible is to construct a
reducible flowgraph REDUCE(EXT(G)) from the flowgraph EXT(G), and calculate
dominators from this reducible graph rather than from EXT(G).

Intuitively, the algorithm pretends that each arc entering a loop at a point other
than its head enters the head instead. Let REDUCE(EXT(G)) be a flowgraph ob-
tained as follows from EXT(G). If (p,q) is an arc, p#HE,4D(q), and p is not in a
loop tail headed by HEAD(q), the arc (p,q) is replaced in REDUCE(EXT(G)) by an
arc (p,r), where r is the first repeat node in L which is the head of a loop containing
q but not the head of any loop containing p. The resulting graph
REDUCE(EXT(G)) is reducible. Node p R-dommates node q if p dominates q in
REDUCE(EXT(G)). Note that a repeat node p R-dominates each node in a loop
tail headed by p. For each node p, RDOM(p) is defined to be the immediate domi-
nator of p in the graph REDUCE(EXT(G)). Define an arc (p,q) m
REDUCE(EXT(G)) to be a forward arc if p<q.

The description of the algorithm in Section 4 must be modified for the general

A n AIgortthm for Structurmg Flowgraphs 109

case by using R-dominators rather than dominators in EXT(G). Also, in defining
FOLLOW(p) for an if node p, the reference to forward arcs must be to forward arcs
in REDUCE(EXT(G)) rather than to forward arcs in EXT(G). Note that if
EXT(G) is reducible, REDUCE(EXT(G))--EXT(G). Therefore, this general form
of the algorithm behaves the same on reducible flowgraphs as the basic algorithm of
the preceding section.

6. Properttes of ALG(G)

This section proves that the general algorithm of Section 5 produces a structuring of
G, and that this program ALG(G) has reasonable properties.

TaEOREM 1. ALG(G) ts a structurmg of G.
PROOF. The procedure fixcontrol guarantees that flow of control in ALG(G)

between if, sic, and repeat statements and the exit of the program corresponds to
EXT(G). Since every loop in EXT(G) includes an sic or if statement, ALG(G) is
flowgraphable and COMPUTE(ALG(G)) is defined. The flow of control between
sic and if statements and the exit of ALG(G) is obtained from EXT(G) by applying
the inverse of the transformation which generated EXT(G) from G. Thus,
G=COMPUTE(ALG(G)), and ALG(G) is a structuring of G. []

Section 3 discussed how repeat and if then else statements should be used in
reducible programs. These ideas are generalized in [4] as a set of principles for the
use of repeat and if then else statements in a program (reducible or irreducible). It
will be shown that ALG (G) satisfies these principles.

The principles are divided into two parts: ~roper use of repeat statements, and
proper use of if then else statements.

A program uses repeat statements properly if it has the following properties:

(1) If a nonbranching statement q is nested within a repeat statement p, there is an
execution path which passes from p to q and back to p without leaving the body
of p.

(2) The first statement within a repeat is an sic or if statement and is reached only
from the repeat.

(3) A repeat statement can be entered withou~ first entering its body.

(4) Control can pass to a lexically preceding ~3art of the program only from within
the body of a repeat to the repeat.

A program P uses if statements properly if the following conditions are satisfied:

(1) if goto L occurs and is not within a then or else clause containing L, then the
goto is also outside the innermost repeat containing L.

(2) If a nonbranching statement r in P is nested within the innermost repeat con-
taining an if statement p, and is not within the then (else) clause of p, then r is
reachable either from the "false" ("true") branch of p or from a nonbranching
statement not equal to p which is nested w,thin the repeat but not nested within
the clause or within r.

A program is well formed if it is flowgraphab~e and every nonbranching statement
is accessible from the start of the program. A program is properly nested if it is well
formed and uses both repeat and if then else st~ tements properly.

In order to prove that .4LG(G) is properly nested, two technical lemmas are
needed. Their proofs appear in Appendix A. The first lemma describes the behavior
of the procedure getform. If getform(q) is called during the recursive execution of
getform(p), p is called a g-ancestor of q, and q is called a g-descendant of p.

LEMMA 1..,4 node q ts a g-descendant of a node p tf and only tf p R-dominates q and q
is m a loop tall headed by HEAD(p).

1 1 0 a . s . BAKER

LEMMA 2. I f (r,s) IS a back arc m EXT(G) , then s is a repeat node and r is nested
within s m A L G (G) . I f (r , s) is a forward arc m EXT(G) , then etther s Is nested within
r or s is after r m A L G (G) .

THEOREM 2. ALG (G) is properly nested.
PROOF. From the proof o f Theorem l, A L G (G) is a structuring of G. Since the

flow of control between nonbranching statements and the exit of the program is
represented by EXT(G) , and every node in G is accessible f rom the start node,
A L G (G) is well formed.

Next, it is shown that ALG (G) uses repeat statements properly.
(1) First, it is shown that a node p is nested within a repeat statement r if and

only if p is in a loop tail headed by r.

Let q be the node entered by an arc f rom r in EXT(G) . It is straightforward to
show that q is in a loop tail headed by r and q is nested within r.

Now consider any node p, p ~ q and p;~ r. I f p is nested within r, p is a g-
descendant of q. By Lemma 1, p is in a loop tail headed by HEAD(q) . On the
other hand, if p is in a loop tail headed by HEAD(q) --r, r R-dominates p.
Since r R-dominates p and the only outarc of r enters q, q R-dominates p. By
Lemma 1, p is a g-descendant of q, and p is nested within r.

Now, control can never jump out of r and back in without passing through a non-
branching statement. Thus, for each statement within the body of r, there is an exe-
cution path f rom r to the statement and back to r, such that the path never passes
outside of r.

(2) As a result of the construction of EXT(G) f rom G, the first statement within
a repeat is an sic or if statement and is reached only from the repeat.

(3) From the depth-first search and the construction of EXT(G) , it follows that a
repeat node can be reached in EXT(G) without passing through any node in a loop
tail headed by the repeat. By part (1) of this proof, the repeat can be entered
without first passing through any nonbranching statement nested within the repeat.
Since a goto can jump only to a nonbranching statement, the repeat can be entered
without first entering the body of the repeat.

(4) If control passes upward in the program to a statement other than an enclosing
repeat, it does so via a goto statement. So suppose a goto statement s jumps to a
statement r above s or to a statement r enclosing s. By definition of fixcontrol, r is a
nonbranching statement.

By (2), s is not the first statement within a repeat. Suppose s is the first statement
within a clause o f an if statement p. Then there is an arc f rom p to r in EXT(G) .
By Lemma 2, this arc is a back arc and r is a repeat enclosing p and s.

Suppose s follows a statement p at the same level of nesting. Then r is in
REACH(p) and there is an arc f rom p or a node nested within p to r. By definition
of REACH sets, r is not nested within p and r i p . By Lemma 2, this arc is a back
arc and r is a repeat enclosing p and s.

Thus, control can flow to a lexically preceding point in the program only to an en-
closing repeat.

Next, it is shown that A L G (G) uses if statements properly.
(5) Let p be an if statement with a "true" ("false") arc to q. Suppose the then

(else) clause contains a statement r labeled with L. Suppose goto L occurs within
the innermost repeat enclosing p but outside this clause. The go to corresponds to an
arc (u,r) such that u is outside the clause but within the innermost repeat enclosing
p. By part (1) of this proof, u is in a loop tail headed by HEAD(p) . Lemma 2 im-
plies that the arc is not a back arc. If r=q, either the arc (p,q) is a back arc or r is in
a FOLLOW set. In the former case, Lemma 2 implies that p is nested within r, and

An Algortthm for Structuring Flowgraphs 111

in the latter case getform guarantees that r is not nested within the clause. So r~q.
Now, u is not a g-descendant of q. By Lemma 1, u is not R-dominated by q. Since u
is in a loop tail headed by HEAD(q)=HEAD(p), neither is r. By Lemma 1, r i s not
a g-descendant of q, contradicting the fact that r is in the clause.

(6) Let p be an if statement with a "true" ("false") arc to q. If q ~s not in the then
(else) clause, getform implies that q is in a FOLLOlYset or the arc is a back arc, and
that the clause contains no nonbranching statements. Thus, either q is not in the in-
nermost repeat enclosing p, or q is reached from the "false" ("true") branch of p, or q
is reached from another nonbranching statement not in the clause.

Now consider a node r~q. Suppose r is within the innermost repeat enclosing p
but not within the then (else) clause. If q is not within the clause, the clause con-
tains no nonbranching statements and r is reached from a statement outside the
clause or f rom the "false" ("true") arc of p. So assume q is within the clause. By part
(1) of this proof and Lemma 1, r is not R-dominated by q. Since every nonbranch-
ing statement within the clause is R-dominated by q, r is reached from the "false"
("true") branch of p or f rom a nonbranching statement which is within the innermost
repeat enclosing p but is not within the clause. []

COROLLARY. I fgo to L occurs m ALG(G), then the statement labeled L occurs after
the goto statement.

PROOF. The corollary follows f rom part (4) of the above proof and the fact that
the algorithm generates a next in preference to a goto statement which jumps to an
enclosing repeat. []

Finally, it is shown that every statement in ALG(G) is reachable. This justifies
the comments in Section 4 after the procedure ehoosebranch.

LEMMA 3. Every statement ts reachable 3~om the start of the ALG(G).
PROOF. Since G is a flowgraph in which every node is entered by a path from the

start node, and G=COMPUTE(ALG(G)), every nonbranching statement in
ALG(G) is reachable f rom the start of the program. It will be shown that every
branching statement is reachable f rom the start of the program, f rom a nonbranching
statement, or from a branching statement lexically preceding it in the program. Con-
sequently, every statement in the program is reachable.

Let p be any branching statement within ALG(G). If p is the first statement in
the program, it is reachable from the start of the program. If p is the first statement
within any other level of nesting, it is reachable f rom the statement enclosing it.
Otherwise, p follows a nonbranching statement. The remainder of the proof shows
that every branching statement which follows a nonbranching statement r is reach-
able from r or from a statement nested within r.

For each statement p, define LEX(p) as follows. If p ~s followed at the same level
of nesting by a statement q, q--LEX(p). Otherwise, if p is the last statement within
a clause of an if statement q, LEX(p)=LEX(q). Otherwise, if p is the last statement
within a repeat statement q, LEX(p)=q. If p is the last statement in the program
LEX(p) is the exit of the program.

Define the target of a branching statement to be the first nonbranching statement
reached upon executing it.

Next, it is shown that if r is an if statement and {q}=REACH(r), then
{q}=REACH(s), where s is the last nonbranching statement to occur at the outer-
most level within r. Since P is well formed, the exit of the program is reachable
f rom s, and REACH(s) is not empty. Moreover, every member of REACH(s) is
outside r (for either it is below both s and r, or by Theorem 2, part(2) it is a repeat
containing both s and r). Therefore, REACH(s)=REACH(r).

Now, it is shown by mductton that if a branching statement p is LEX(r) for a
nonbranching statement r, and the target of p is is the umque member of
REACH(r), then p is reached from r or f rom a statement nested within r. The m-

112 B.S. BAKER

duction is based on the number of levels of nesting within p. For the basis, note
that if r is an sic statement, then LEX(r) is reached from r. Suppose that the asser-
tion holds whenever r has at most k levels of nesting. Now suppose that r has k + l
levels. If r is a repeat, p is reached by a break from within r because its target is in
REACH(r) and lower levels of break statements are generated in preference to
higher levels. So suppose r is an if statement. Consider the else clause of r. If the
clause is null, LEX(r) is reached from r. Otherwise, let s be the last statement
within the clause. If s is a branching statement, its target must be in REACH(r) ,
implying that its target ,s the same as the target of p, and s is redundant. Therefore,
s is a nonbranching statement. Since REACH(s) is nonempty, R E A C H (s) =
REACH(r) . Also, LEX(s)= LEX(r) ~p. By the induction hypothesis, p is reached
from r or from within r.

Finally, suppose a branching statement p follows a nonbranching statement r at
the same level of nesting. By the definition of fixcontrol, the target of p is the
unique member of REACH(r) . By the preceding paragraph, p is reached from r or
from a statement nested within r. []

7. Properttes of Properly Nested Programs

This section quotes some results concerning proper nesting which show that any
properly nested structuring of a flowgraph G must be similar to ALG(G) . More-
over, if G has a properly nested structuring with no goto statements, A L G (G) has
no goto statements.

In a program with proper nesting, the nesting of statements can be characterized
as follows [4].

THEOREM 3[4]. I f Pl and P2 are equtvalent properly nested reductble programs, then
they are tdentmal m the number of occurrences of each nonbranchmg statement and tn
how the nonbranchmg statements are nested wtthm each other, but not necessardy m the
order of nonbranchmg statements at each level of nesong.

Note that this theorem does not state that Pl and P2 are identical in the order of
nonbranching statements at each level of nesting. In fact, the order of statements is
not uniquely determined. For example, consider the following code.

if (p) then
{ if (q) then { goto 10 }

else {}

else
{ if (r) then { goto 10 }

else {}

x ~ l
goto 20

10 x ~ 2
20 y ~- f(x)

This segment could be rewritten by exchanging x ~- 2 with x --- 1 and moving the
goto statements to the else clauses.

However, there is no flexlbihty in order when no goto statements occur [4].
THEOREM 4 [4]. I f Pl and P2 are equtvalent properly nested programs with no goto

statements, then PI and P2 are tdenttcal m how nonbranchmg statements are nested and
m the order ofnonbranchmg statements at each level of nesting.

The following theorem shows that AL G(G) generates a properly nested program
with no goto statements whenever this is possible.

THEOREM 5. Let P be a properly nested program. The followtng statements are
equivalent:

A n Algortthm for Structurmg Flowgraphs

(1)
(2)

113

P has an equivalent properly nested program wtth no goto statements.
P is reductble, and for each repeat or if statement p, at most one statement outstde
of p but wtthm the innermost repeat enclosmg p can be reached 3tom p or from
wtthm p.

(3) ALG(COMPUTE(P)) ts a properly nested program wtth no goto statements
equtvalent to P.

PROOF. (1 = > 2) Let P ' be a properly nested program equivalent to P with no goto
statements. The lack of goto statements implies that P ' is reducible.

Let p be any repeat or if statement. At most one statement within the innermost
repeat (if any) enclosing p can be reached from p or from within p without a goto,
since control must pass out of an if or repeat through the bottom.

(2 = > 3) For each nonbranching statement p, let R (p) denote the unique non-
branching statement outside of p but within the innermost repeat enclosing p which
can be reached from p or from within p, if such a statement exists. Apply the algo-
rithm to COMPUTE(P) to obtain a properly nested program P'. By Theorem 3, Pl
and P2 are identical in the nesting of nonbranching statements but not necessarily in
the ordering of statements at each level of nesting.

Suppose p is a nonbranching statement. It will be shown that if FOLLOW(p) is
nonempty, then R (p) is defined and is the unique member of FOLLOW(p).

Let s be the least member of FOLLOW(p). Since s is reachable, s is entered
by a forward arc from a node t. Now, s is dominated by p and
HEAD(s)=HEAD(p) . Therefore, either t=p or t is dominated by p. Also, t is
in a loop tail headed by HEAD(p). Either t=p or by Lemma 1, t is a g-
descendant of p. By Lemma 2, t precedes s or t encloses s in the program.
Thus, either t=p or t is nested within p, implying s=R (p)

Now, suppose that FOLLOW(p) has another member q, q ~ R (p) . By
definition, the immediate dominator of q is p or is nested within p. But R (p)
must be a closer dominator to q than p or any node nested within p. Therefore,
no such q exmts.

Define LEX(p) as in the proof of Lemma 3. It is shown that R(p)= L EX(p)
whenever R (p) is defined. The proof is by induction on the number of levels en-
closing p. Assume that the assertion holds for all statements (if any) enclosing p.

If p is the last nonbranching statement at its level of nesting, and R(p) is
defined, then R (p) is below p within the innermost repeat (if any) enclosing p
and is not the exit of the program. Therefore, p is enclosed by an if statement
t such that R (t)=R (p). By the induction hypothesis, L E X (t) = R (t) . Thus,
L E X (p) = L E X (t) = R (p).

Otherwise, let q be the next nonbranching statement after p at the same level of
nesting Since each FOLLOW set has at most one member, q is in
FOLLOW(p) , implying q=R (p). Thus, no branching statement follows p and
q=LEX(p) .

Now, suppose a goto statement g with target q occurs in the program. Either g
follows a nonbranching statement p or is the first statement within a clause of an if
statement p. If q is within the innermost repeat enclosing p, the above argument im-
plies that q=LEX(p) contradicting the existence of the goto. If q is not within the
innermost repeat containing p, then q=LEX(r) for some repeat r enclosing p Thus,
ehoosebraneh generates a break in preference to the goto, contradicting the ex-
istence of the goto. Therefore, no goto occurs m the program.

(3 = > 1) Trivial. []
The results in this section suggest that ALG(G) cannot be greatly improved upon

within the context of properly nested programs and the limitations imposed by the

114 B . S . BAKER

definition of structuring. The way in which branching statements are used could be
modified without losing the desirable properties described in this section and Section
6. It. is possible that restricted use of code copying, creating subroutines, or creation
of control variables might improve upon ALG(G) in some cases, if the definition of
"structuring" is relaxed to allow these operations. Such extensions of the algorithm
are left for further research.

8. Applying the Algortthm

The algorithm has been implemented in a program called STRUCT [3], which rewrites
Fortran programs in RATFOR [13]. STRUCr consists of about 4000 lines of code in the
programming language C [18] and runs on a PDP 11/45 under UNIX [20].

RarFog has the following statement types m addition to Fortran statements: re-
peat, repeat until, while, if else (the keyword then is omitted), and single level
break and next statements. The basic algorithm is extended m STRUCr to generate
whi le loops and elseless if statements. Predicates are negated when necessary for
the generation of elseless if statements. STRtJCT keeps each comment with the fol-
lowing statement. Since RATFOR has only single-level break and next statements,
STRUCT chooses its branching statements by a modified version of choosebranch.
Appendix B contains an example of a Fortran program and the RATFOR program gen-
erated from it by STRUCT.

The mechanically structured versions of programs are easier to understand than
their Fortran counterparts, sometimes dramatically so. Their natural appearance in-
dicates that the structuring principles describe reasonable programming practices.
The structured programs usually contain few goto statements. Of course, STROCr
does not improve programs; it merely displays their structure. A Fortran program
with peculiar flow of control can have a structured version with many goto state-
ments. A more extensive discussion of STRUCT, its handling of individual Fortran
constructs, and its success in structuring Fortran appears in [3].

It is expected that STRUCT will be a useful tool in the maintenance of existmg pro-
grams. New programs may be written in RATFOR, while existing Fortran programs
may be structured into RATFOR for greater ease of modtfication and debugging.

Appendtx A

This appendix contains the proofs of Lemmas 2 and 3. In order to prove them,
another technical lemma is needed to relate REDUCE(EXT(G)) to EXT(G) when
G is irreducible. The following lemma is trivially true if G is reducible.

LE~MA A.
(3 I f u R-dommates v, then u < v.
(tO I f (r,s) ts an arc m EXT(G) whtch ts replaced by an arc (r,t) m

REDUCE(EXT(G)) , s # t , then r < t < s .
PgOOF. The following assertion, referred to as Assertion A, is helpful in the

proofs of (i) and (ii).
Suppose p is not a repeat node, p is in a loop headed by r, and r has an arc to s
in EXT(G). Either p=s or p is a descendant of s in the spanning tree generated
by the depth-first search.

This assertion is easily proved from the fact that a back arc passes from a descendant
to an ancestor in the spanning tree.

(i) Each path from the start node to v in REDUCE(EXT(G)) contains every R-
dominator of v. Therefore, it suffices to show that there is a path from the start
node to v in REDUCE(EXT(G)) in which each node other than v is < v.

If v is a repeat node, let s be the node entered by an arc from v; otherwise, let
s=v. In G, there is a path start =Po Pn=S in which each arc passes from parent to

A n AIgortthm for Structurmg Flowgraphs 115

s=v. In G, there is a path start =P0 p,=s in which each arc passes f rom parent to
child in the spanning tree identified by the depth-first search. Since all these arcs are
forward arcs, each P,<P,+i. In EXT(G) , some edges (P,,P,+i) may be replaced by
edges (p,,t), (t,p,+l) in which t is a repeat node and p,<t<p,+l. Call the new path
P'. By Assertion A, P ' contains every repeat heading a loop tail containing s. Thus,
v is on the path whether or not v=s. It is easy to show that this path is also a path in
REDUCE (EXT(G)).

(li) Let u be the node entered by an arc from t. I f s is a repeat node, let w be the
node entered by an arc f rom s, otherwise, let w=s. Then u immediately follows t in
L, and either s=w or w immediately follows s in L. Since t is the head of a loop tail
containing s, t <s. Suppose by way of contradiction that t < r Then u < r , and u is
last visited after r is last visited during the depth-first search.

If u is also first visited before r is first visited during the search, then r is a descen-
dant of u in the spanning tree. But then, there is a path from u to r to w which in-
cludes no node less than u. Since w is in a loop tail headed by t, there is a path in G
from w to u not including any node less than u. Consequently, EXT(G) has a path
from t to r and from r to t not including any node less than t. Thus, r is in a loop
tail headed by t, and (r,s) is not replaced by (r,t) in REDUCE(EXT(G)) , contradict-
ing the imtial condition on r.

Therefore, u is first visited after r. But then, the arc (r,w) is searched before t is
searched, and w is not a descendant of t, contradicting Assertion A. []

LEMMA 1. A node q ts a g-descendant of a node p tf and only tf p R-dominates q and q
ts m a loop tad headed by HEAD(p).

Pgoov. (= >) If q is a g-descendant of p, there is a sequence P=Po,Pl Pn=q
such that for each t, getform(p,+0 is called during the outermost level of
getform(p,). Suppose n = l , i.e. getform(q) is called during the outermost level of
getform(p). Either q is in FOLLOW(p) or q is not in any FOLLOW set and is en-
tered by an arc f rom p.

In the former case, HEAD(q)- -HEAD(p) by definition. If p is an if node or sic
node, p = R D O M (q) by definition of FOLLOW sets. I f p is a repeat node,
RDOM(q) is in a loop tall headed by p and p R-dominates RDOM(q) . By transitivi-
ty, p R-dominates q.

In the latter case, q is entered by only one forward arc in REDUCE(EXT(G)) . If
q is entered by a back arc (s,q) in REDUCE(EXT(G)) , (s,q) is also a back arc in
EXT(G) by Lemma A. Consequently, s is in a loop tall headed by q, and q R-
dominates s. Therefore, back arcs need not be considered in finding RDOM(q) .
Since the only forward arc entering q is (p,q), p=RDOM(q) . Moreover, since q is
not in the FOLLOW set of any repeat node, q is in a loop tail headed by
HEAD (RDOM(q)) =HEAD (p).

The proof is completed for n > 1 by applying the above argument inductively and
noting the transitivity of the dominance relation and containment in loops.

(< - -) Suppose node p R-dominates q and q is in a loop tail headed by HEAD(p).
The R-dominance relation provides a sequence p=ro rn=q such that for each j < n,
rj=RDOM(rj+i). Obtain a subsequence p--so sm--q by deleting each rj such that q
is not in a loop tail headed by HEAD(rj). Obviously, So=p and Sm--q. By transitivi-
ty, each sj R-dominates sj+l, for j ~ 0 m - 1 .

Consider any s,, 1 ~<t<m, for whmh HEAD(s,) is defined. Since the loop headed
by HEAD(s,) is entered only through HEAD(s,) in REDUCE(EXT(G)) , HEAD(s,)
must be a closer R-dominator to q than any other R-dominator t of q not in this
loop, i.e. t R-dominates HEAD(s,). Therefore, if s,-i is not in a loop tail headed by
HEAD(s,), s,_i=HEAD(s,). Moreover, s,+l is in a loop tail headed by HEAD(s,).
For otherwise, both s, and s,+l R-dominate q, implying that s,+l R-dominates
HEAD(s,). But this contradicts the fact that HEAD(s,) R-dominates s, which R-

116 ~. s . BAKER

dominates s,+l.
Now, suppose HEAD (s,) # HEAD (S,+l) for some i. I f HEAD (s,) is undefined, the

inequality guarantees that HEAD(s,+i) is defined, and by definition, HEAD(s,+i) is
in a loop tail headed by HEAD(s,). I f HEAD(s,) is defined, the preceding paragraph
implies that s,+l is in a loop tail headed by HEAD(s,). Since HEAD(s,)
HEAD(s,+i), s, cannot also be in a loop tail headed by HEAD(s,+i). By the preced-
ing paragraph, s,~HEAD(s,+i), and s, is a repeat node. Since q is in a loop tail
headed by s, =HEAD(s,+i), the node entered by an arc f rom s, cannot have been
deleted; this node must be S,+l. Since this node is entered by no other arcs, S,+l is
not in any FOLLOWset and getform(s,+l) is called during getform(s,).

Now suppose HEAD(s,)=HEAD(s,+i). If s, #RDOM(s,+O, then s, is a repea t
node and RDOM(s,+i) is in a loop tail headed by s,. Therefore, s,+: is in
FOLLOW(s,). On the other hand, suppose s,--RDOM(s,+i). If S,+l is entered by
two or more forward arcs in REDUCE(EXT(G)) , then s, is an if node and s,+l is in
FOLLOW(s,). Otherwise, either s, is an s|e node and S,+l is in FOLLOW(s,) , or s,
is an if node with an arc to s,+l and s,+l is not in any FOLLOW set. In each case,
getform(s,+l) is called during getform(s,). []

LEMMA 2. I f (r,s) tS a back arc m EXT(G) , then s ts a repeat node and r is nested
wtthtn s in ALG(G) . l f (r , s) ts a forward arc m EXT(G) , then eaher s is nested wtthm
r or sts after r m ALG(G) .

PROOF. If (r,s) is a back arc in EXT(G) , then s is a repeat node by construction
o f EXT(G) and r is in a loop headed by s. By part (1) o f the proof o f Theorem 2, r
is nested within s in ALG(G) .

Suppose (r,s) is a forward arc in EXT(G). By definition, r < s . Since the con-
struction of EXT(G) eliminates self-loops, r # s . If s is a g-descendant of r, then
getform(s) is called before getform(r) , and either r is nested within s or s is above r.
I f r is a g-descendant of s, then s R-dominates r by Lemma 1. By Lemma A(i) ,
s < r, contradicting the choice of r < s.

So suppose neither r nor s is a g-descendant o f the other. Let t be the "closest"
common g-ancestor of. r and s , i.e. there is no g-descendant of t which is a g-
ancestor of both r and s. Let u be such that getform(t) calls getform(u) and either
u=r or r is a g-descendant of u. Let v be such that getform(t) calls getform(v) and
either v f s or s is a g-descendant of v.

If r is in a loop tail headed by HEAD(s) , let z=s. Otherwise, let z be the node
such that the arc (r,s) is replaced in REDUCE(EXT(G)) by an arc (r,z). In the
former case, r<sffiz since (r,s) is a forward arc. In the latter case, r < z by Lemma
A(ii). The following argument shows that vffiz:

Either zffis or z is the head of a loop tail containing s. In the latter case, s is
nested within z by part (1) of the proof of Theorem 2, and s is a g-descendant
of z. Either s=v or s is a g-descendant o f v. Thus, either zffiv or z is a g-
descendant of v or v is a g-descendant of z
If v is a g-descendant of z, so are u and r. By Lemma 1, z R-dominates r. By
Lemma Aft) , z<r. But from earlier, r<z. The contradictton implies that v is
not a g-descendant of z.
Suppose z is a g-descendant of v. Then z is in a loop tail headed by HEAD(v)
by part (1) of the proof of Theorem 2. Moreover, so is r. Since r is not a g-
descendant of v, Lemma 1 implies that v does not R-dominate r. But then the
arc (r,z) prevents v f rom R-dominating z, which contradicts Lemma 1.
The conclusion is that vffiz.

Next, it is shown that z is m FOLLOW(t) . Suppose z is not in any FOLLOWset.
Then only one forward arc enters z in REDUCE(EXT(G)) and it originates at t. But
(r,z) is also a forward arc entering z in REDUCE(EXT(G)) , and r~ t . Consequent-
ly, z is in a FOLLOW set. Moreover, it must be in FOLLOW(t) in order for

A n ,4 lgorzthm for Structurmg Flowgraphs 117

By L e m m a 1, u ~< r a n d f r o m a b o v e , r < z . E i t h e r u is n e s t e d w i t h i n t wh i l e z fol-
lows t, o r u is a lso in FOLLOW(t) a n d g e t f o r m (u) is ca l l ed b e f o r e g e t f o r m (z) .
T h e r e f o r e , g e t f o r m (r) is ca l led b e f o r e g e t f o r m (z) , a n d z appea r s a f t e r r in ALG(G).
E i t h e r s=z or z is t he h e a d o f a loop c o n t a i n i n g s a n d s is n e s t e d w i t h i n z by par t (1)
o f t he p r o o f o f T h e o r e m 2. T h e r e f o r e , s is a f t e r r in ALG(G). []

Appendtx B

A F o r t r a n s u b r o u t i n e (f r o m R.C. S i n g l e t o n , A l g o r i t h m 347, A n eff ic ient a l g o r i t h m
for so r t i ng w i t h m i n i m a l s to rage , Comm. ACM 12, 3 (M a r c h 1969) , p. 186, w i t h
s o m e a d d e d c o m m e n t s) :

subroutine sort(a,ii,jj)
c variation on quicksort sorts array a into increasing order from a(ii) to a ~)
c arrays iu(k) and il(k) permit sorting up to 2"*(k+1)-1 elements

dimension a(1),iu(16),il(16)
integer a,t,tt
m----1
i = i i
j = j j

5 if (i .ge.j) goto 70
e set t to median of a(i), a((i+j) /2) , a(j)
10 k - - - - i

lj = q + i) / 2
t = a(ij)
if (a(1) .le. t) goto 20
a(ij) -- a(i)
a(i) = t
t=a(i j)

20 l= j
if (a(j) .ge. 0 goto 40
a(q) = aq)
aq) = t
t = a(ij)
if (a(i) .ie. t) goto 40
a(ij) = a(i)
a(D = t
t = a(ij)
goto 40

30 a(l) = a(k)
a(k) = tt

c use t to split segment
40 ! = !-1

if (a(I) .gt. t) goto 40
tt -- a(i)

50 k = k ÷ l
if (a(k) .It. t) goto 50
if (k .le. D goto 30

c stack one segment to be sorted later
if (l - i .le. j - k) goto 60
il(m) = i
iu(m) = I
i = k
m = m + l
goto 80

60 i l (m) = k
iu (m) = j
j = l
m = m + l
goto 80

c find next segment to be sorted

1 1 8 B . S . BAKER

70 m Z m - - 1
if(m.eq. 0) return
i= i l (m)
j = iu (m)

80 if (j - i .ge. 11) goto 10
c sort smal l segments

if (i .eq. ii) goto 5
i = i - I

90 i = i + l
if (i .eq. j) goto 70
t = a (i + l)
if (a(i) .le. t) goto 90
k = i

100 a (k + l) = a(k)
k = k - I
if (t .It. a(k)) goto 100
a (k + l) = t
goto 90
end

The preceding program as structured by STRUCT is:

subroutine sort(a,ii,jj)
variation on quicksort sorts array a into increasing order from a(ii) to a(jj)
arrays in(k) and il(k) permit sorting up to 2 * * (k + l) - I e lements

dimension a(1),iu(16),il(16)
integer a,t,tt
m = l
i = i i
j = j j
repeat

{ if (i< j)
go to 10

repeat
{

find next segment to be sorted
m = m - I
if (m = =0)

return
i = il(m)
j = iu(m)
while (j - i > =11)

{
set t to median of a(i), a ((i + j) / 2) , a(j)

10 k = i
= q +i)12

t = a(ij)
if (a(i) > t)

{ a(ij) = a(i)
a(i) = t
t = a(ij)

}
I = j
if (a(j) < t)

{ a(19 = aq)
aq) = t
t = a(ij)
if (a(i) > t)

{ a(ij) = a(i)
a(i) = t
t = a(ij)

}
}

A n A lgorlthm for Structurmg Flowgraphs 119

repeat

use t to split segment
I---- i - 1
if (a(l) < ~-t)

{ tt = a(l)
repeat

{ k = k + l
if (a(k) > ----t)

break
}

if (k > 1)
break

a(I) = a(k)
a(k) = tt

}
}

stack one segment to be sorted later
if (I - i < ---j-k)

{ il(m) = k
iu(m) ---- j
j = l
m = m + l

}
else

{ il(m) -~ i
in(m) ~- I
i - ---k
m ---- m + l

}
}

sort small segments
if (i -'~ ----ii)

break
i = i - I
repeat

{ i ---- i+1
if (i= = j)

break
t ---- a(i+ l)
if (a(i) > t)

{ k = i
repeat

}

}

FetuFn
end

{ a (k + l) = a(k)
k ~ - k - 1
if (t > -~-a(k))

break

a(k+ l) ---- t

ACKNOWLEDGMENTS T h e a u t h o r w i s h e s to t h a n k A . V . A h o , R . A . B e c k e r , S .C . J o h n -

s o n , B . W . K e r n i g h a n , a n d M . D . M c l l r o y fo r m a n y h e l p f u l c o m m e n t s o n t h i s p a p e r .

REFERENCES

l AHO, A V , AND ULLMAN, J D The Theory of Parsing, Translation, and Compdmg, VoL IL Compdmg
Prentice-Hall, Englewood C|lffS, N J , 1973

1 2 0 B. S, BAKER

2 ASrtCROFT, E , AND MANNA, Z Translating program schemas to while-schemas S lAM J. Comptg 4,
2 (1975), 125-146

3. BAKER, B.S Struct, a program which structures Fortran Internal m e m o , Bell Labs, Murray Hill,
N J., 1975.

4 BAKER, B S. Automatic structuring of programs In preparation
5. DE BALBINE, G Better Man Power Utlhzation Using Automatic Restructuring Came, Farber &

Gordon, Inc., 1974
6 DE BALBINE, G Using the Fortran structuring engine In Proc of Comp Scl and Stat 8th Ann

Syrup on the Interface, Los Angeles, 1975, pp 297-305
7 BOHM, C, AND JACOPINI, G Flow diagrams, Turlng machines and languages with only two forma-

tion rules Cumin ACM 9, 5 (May 1966), 366-371
8 BRUNO, J , AND STEIGLITZ, K The expression of algorithms by charts d A C M 19, 3 (July 1972),

366-371
9 COOPER, D C Bohm and Jacoplm's reduction of flow charts Cumin AC M 10, Aug 1967), 463

(Letter)
10 DAHL, O -J , DIJKSTRA, E W , AND HOARE, C A R Structured Programming Academic Press, New

York, 1972.
II DIJKSTRA, E W Go to statement considered harmful Cumin A C M 11, 3 (March 1968), 147-148
12 HECHT, M S , AND ULLMAN, J.D Characterizations of reducible flowgraphs J ACM 21, 3 (July

1974), 367-375
13 KERNIGHAN, B W Ratfor -- a preprocessor for a rational Fortran Software Pracoce and Experience

5, 4 (1975), 395-406
14 KERNIGHAN, B W , AND CHERRY, L L A system for typesetting mathematics Cornm AC M 18, 3

(March 1975), 151-156
15 KNUTH, D E , AND FLOYD, R W Notes on avoiding "go to" statements lnfor Proc Letters 1 (1971),

23-31
16 KNUTH, D E Structured programming with go to statements ACM Comptg Surveys 6, 4 (1974),

261-302
17. KOSARAJU, S.R. Analysis of structured programs. J. Comptr. Sys. Scl. 9, 3 (1974), 232-254
18 LESK, M E , KERNIGHAN, B W , AND RITCHIE, D M The C programming manual Comptg Scl

Tech. Rep #31, Bell Labs, Murray Hill, N J
19 PETERSON, W W , KASAMI, T , AND TOKURA, N. On the capabilities of while, repeat and exit state-

ments Cumin ,4CM 16, 8 (Aug 1973), 503-512
20 RITCHIE, D M , AND THOMPSON, K The UNIX time-sharing system Cumin AC M 17, 7 (July

1974), 365-375

RECEIVED APRIL 1976, REVISED JULY 1976

Journal of the Association for Computing Machinery, Vol 24, No 1, January 1977

