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ABSTRACT OF THE DISSERTATION

Polymorphic Type Inference and Semi-Unification

by Friedrich Henglein, Ph.D.

Dissertation Director: Professor Robert Paige

In the last ten years declaration-free programming languages with a polymorphic typing disci-

pline (ML, B) have been developed to approximate the flexibility and conciseness of dynamically

typed languages (LISP, SETL) while retaining the safety and execution efficiency of conven-

tional statically typed languages (Algol68, Pascal). These polymorphic languages can be type

checked at compile time, yet allow functions whose arguments range over a variety of types.

We investigate several polymorphic type systems, the most powerful of which, termed Milner-

Mycroft Calculus, extends the so-called let-polymorphism found in, e.g., ML with a polymorphic

typing rule for recursive definitions. We show that semi-unification, the problem of solving in-

equalities over first-order terms, characterizes type checking in the Milner-Mycroft Calculus to

polynomial time, even in the restricted case where nested definitions are disallowed. This per-

mits us to extend some infeasibility results for related combinatorial problems to type inference

and to correct several claims and statements in the literature.

We prove the existence of unique most general solutions of term inequalities, called most

general semi-unifiers, and present an algorithm for computing them that terminates for all

known inputs due to a novel “extended occurs check”. We conjecture this algorithm to be

uniformly terminating even though, at present, general semi-unification is not known to be

decidable. We prove termination of our algorithm for a restricted case of semi-unification that

is of independent interest.

Finally, we offer an explanation for the apparent practicality of polymorphic type inference
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in the face of theoretical intractability results.
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Preface

In February 1987 I joined the SETL Project in the Department of Computer Science at New

York University’s Courant Institute of Mathematical Sciences after my research advisor, Prof.

Robert Paige, had moved from Rutgers University to New York University. Under the direction

of Prof. Edmond Schonberg I was to investigate the feasibility of a static typing system for

SETL that would be both practical enough to be incorporated in a compiler and powerful

enough to retain the “spirit” of SETL programming without imposing undue restrictions on the

programmer.

The work reported in this thesis is part of my investigation into the design of a suitable

static type system for SETL. It addresses the fundamental problem of inferring the types of

polymorphic functions; that is, functions whose arguments may range over many types. In

my first formulation of a type inference system for SETL I invariably used the polymorphic

typing rule for recursive definitions of procedures that is at the center of this dissertation. I was

mystified to find out that ML, whose typing discipline I had taken as a guiding influence, had

a restrictive, monomorphic typing rule. Shortly after this experience I chanced upon papers

by Meertens and Mycroft that addressed this very shortfall of ML, and I was convinced that

the few questions left unanswered by the two could be easily solved. Only over the following

days, weeks, and eventually many months did it become clear how much of an unwarranted

optimistic appraisal this was. This dissertation reports on fundamental results and aspects of

type inference with a polymorphic typing rule for recursive definitions; unfortunately it does not

settle the question of decidability, but it presents some — I would hope — promising inroads

and characterizations.

Whereas I thought this problem to be highly esoteric when I started working on it, it has

attracted amazingly wide-spread interest in the last two years. It is a thrilling thought to me

that this dissertation may be useful in advancing the rapidly developing field of type inference,

but it is also a slightly chilling thought that in the not-too-distant future many results in this

thesis may quite conceivably be superseded by better results. But that is, it may be argued,

what science is all about.
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Chapter 1

Introduction

1.1 Problem Background

Most programming languages provide the notion of types as their most fundamental abstraction

from the unstructured universe of basic computer structures. While some languages perform

type checking – checking for type consistent usage of program objects – at run-time (e.g., LISP,

PROLOG, APL), others do it at compile-time (Pascal, Ada, ML, etc.). Doing it at compile

time has the advantage that type errors, a common form of errors, are detected before the

program is run. This usually comes at the price of cumbersome explicit type, variable and

other declarations. Recently languages such as ML [32] have been designed that try to combine

the safety of compile-time type checking with the flexibility of declaration-less programming

by inferring type information from the program rather than insisting on extensive declarations.

ML’s type discipline allows for definition and use of (parametric) polymorphic functions; that

is, functions that operate uniformly on arguments that may range over a variety of types.

A peculiarity in ML is that occurrences of a recursively defined function inside its defi-

nition body can only be used monomorphically (all of them have to have identically typed

arguments and their results are typed identically), whereas occurrences outside its body can be

used polymorphically (with arguments of different types). This thesis studies the computational

implications for type inference in an extension of ML’s typing system, which we primarily at-

tribute to Mycroft [85], that treats recursively defined functions equally and uniformly inside

and outside their bodies.

Although the motivation for studying Mycroft’s extension to ML’s typing discipline may

seem rather esoteric and of purely theoretical interest, it stems from practical considerations. In

ML many typing problems attributable to the monomorphic recursive definition constraint can

be avoided by appropriately nesting function definitions inside the scopes of previous definitions.

Since ML provides a form of polymorphic definition called let-polymorphism in most cases
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nesting definitions is, indeed, a workable scheme. Some languages, however, do not provide

scoped nesting, but only top-level definition of functions. Consequently, all these definitions

have to be considered, in general, as a single, mutually recursive definition. For example, B,

SETL, and Prolog do not provide nested scopes. Adopting ML’s monomorphic typing rule

for recursive definitions in these languages would preclude polymorphic usage of any defined

function inside any definition. In particular, since logic programs, as observed in [86], can be

viewed as massive mutually recursive definitions, using an ML-style type system would eliminate

polymorphism from strongly typed logic programming languages almost completely. Mycroft’s

extension, on the other hand, permits polymorphic usage in such a language setting.

In many cases it is possible to investigate the dependency graph (“call graph”) of mutually

recursive definitions and process its maximal strong components in topological order thus simu-

lating polymorphically typed, nested let-definitions, but this is undesirable for several reasons:

1. The resulting typing discipline cannot be explained in a syntax-directed fashion, but

is rather reminiscent of data-flow oriented reasoning. This runs contrary to structured

programming and program understanding. For example, finding the source(s) of typing

errors in the program text is made even more difficult than the already problematical

attribution of type errors to source code in ML-like languages [51, 119].

2. The topological processing does not completely capture the polymorphic typing rule. My-

croft reports on a mutually recursive definition he encountered in a “real life” program-

ming project that could not be typed in ML, but could be typed by using the extended

polymorphic typing rule for recursive definitions [85, section 8].

1.2 An Example

As an illustration of the monomorphic typing rule for recursive definitions consider the following

standard definition of map and squarelist in Standard ML, taken directly from [85].

fun map f l = if null l then nil else f (hd l) :: map f (tl l)

and

squarelist l = map (fn x: int => x * x) l;
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As it is written, this is a simultaneous definition of map and squarelist even though squarelist

is not used in the definition of map. An ML-style type checker would produce the types

map: (int→ int)→ (int list→ int list)

squarelist: int list→ int list

even though we would expect the type of map to be

map: ∀α.∀β.(α→ β)→ (αlist→ βlist),

which is the type produced by defining — sequentially — first map and then squarelist.

If we were to use map in another line of the same mutually recursive definition with an argu-

ment type different from int list we would even get a type error. This peculiarity comes from

the fact that the Milner Calculus permits recursively defined functions to be used monomorphi-

cally only inside their bodies whereas they may still be used polymorphically — with arguments

of different types — outside their bodies.

1.3 Outline of thesis

At the core of this thesis is a study of the type inference problem of ML’s type system extended

with a polymorphic typing rule, termed Milner-Mycroft Calculus here, and some of its relatives.

Motivated by the well-known reduction of simple type inference to first-order unification we

relate type inference calculi to unification-like problems that distill the combinatorial essence

from the presentation of the typing problems. In particular, we show that semi-unification is

at the heart of Milner-Mycroft-style type inference. Because of this central role, we study the

algebraic and algorithmic aspects of semi-unification. Although semi-unification appears worthy

of study on the merit of its fundamental character alone, we show that most of the results on

semi-unification translate back to type inference and thus yield new results and new proofs of

known results.

1.3.1 Simple type inference and unification

We expand on some work by Kanellakis and Mitchell [53] and give, in detail, a log-space reduc-

tion of first-order unification to simple type inference. This shows that simple type inference is
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log-space equivalent to unification; in particular, it is P-complete under log-space reductions.

The encoding of first-order terms by λ-expressions is useful in later reductions.

1.3.2 Polymorphic type inference and semi-unification

Semi-unification is the problem of solving term inequalities, M ≤ N , where ≤ is interpreted as

the subsumption preordering on terms: M ≤ N ⇔ there is a substitution ρ such that ρ(M) = N .

We present two polynomial-time reductions: from type inference in the Milner-Mycroft Calculus

(and the Milner Calculus) to semi-unification, and from semi-unification to type inference in the

Flat Milner-Mycroft Calculus, which is a (minimal) programming language with only top-level

polymorphically typed recursive definitions. As corollaries we obtain that

1. semi-unification characterizes type inference in the Milner-Mycroft Calculus up to polynomial-

time equivalence;

2. type inference in the Milner-Mycroft Calculus can be efficiently reduced to the case with

only a single recursive definition and no other definitions (Flat Milner-Mycroft Calcu-

lus); this contradicts Mycroft’s conjecture that the complexity of type inference depends

exponentially on the degree of nesting of recursive definitions [85, p. 228];

3. Kanellakis and Mitchell’s seminal result of PSPACE-hardness for the Milner Calculus [53]

extends to the Flat Milner-Mycroft Calculus, solving a question posed by Kanellakis;

4. type inference in the programming language B [75] is no simpler than semi-unification

and type inference in the Milner-Mycroft Calculus, and Meertens’ uniformly terminating

type inference algorithm [74] is incomplete in the sense that it indicates type errors for

some typable B programs.

1.3.3 Algebraic structure of semi-unification

We show that strong equivalence, the standard formalization of “renaming of variables”, does

not adequately capture the structure of the solutions of semi-unification problems, thus cor-

recting a statement by Chou [15]. A slightly weaker notion — weak equivalence — permits us

to show that the set of solutions of any semi-unification problem form a complete lattice; in

particular, there is always a most general solution (semi-unifier) unique up to weak equivalence

if there exists a semi-unifier at all. As a corollary, the connection of polymorphic type inference
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and semi-unification yields a simultaneous proof of the principal typing property for the type

systems we investigate.

1.3.4 Specification of most general semi-unifiers

Most general semi-unifiers exist and are unique modulo weak equivalence; we present a non-

deterministic algorithm for computing the most general semi-unifier of any semi-unification

problem. It contains an “extended occurs check” that eliminates all known cases that lead

Mycroft’s [85, section 6] and Meertens’ [74, algorithm AA] type inference algorithms to nonter-

mination. We conjecture that our algorithm terminates uniformly, thus implying decidability

of the Milner-Mycroft Calculus and semi-unification, a currently open problem. This basic

algorithm is described in three paradigmatic forms: as a functional, a rewriting, and a graph-

theoretic program specification. All three are proved partially correct.

1.3.5 Efficient algorithm for uniform semi-unification

We study a space-efficient algorithm for uniform semi-unification, a provably decidable subclass

of general (nonuniform) semi-unification. Kapur et al. have an elegant algorithm for deciding

semi-unifiability in polynomial time. We present our own, independently devised, somewhat

more complicated algorithm; it is less efficient, but computes a most general semi-unifier, in

contrast to their decision algorithm.

1.3.6 Decidability — elementary approaches

We present some basic combinatorial properties of the graph-theoretic version of our basic semi-

unification algorithm in the hope that some deeper investigation will eventually lead to estab

lishing its uniform termination property. This seems appropriate to us since the “nonlocal”

nature of the extended occurs check in our specifications suggests that combinatorial properties

are stated most easily in a graph-theoretic setting.

1.3.7 Implications for practical programming languages

Beginning with the PSPACE-hardness result for the Milner Calculus there has been a gap

between the theoretical infeasibility of polymorphic type inference and its observed practical

success. This discrepancy appears even more pronounced in the Milner-Mycroft Calculus. We
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offer a tentative explanation of this gap in terms of resource-bounded typings, justified by

the intent of typings as computational and conceptual abstractions of the computations of a

program. If we impose the — as we think — reasonable restriction that the inferred type

information must not be super-polynomially bigger than the size of the underlying programs,

we can show that polymorphic type inference in the style of the Milner and Milner-Mycroft

calculi are both practically and theoretically tractable.
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Chapter 2

Implicitly Typed Lambda Calculi

The aim of our work is to study the principal aspects of type checking and type inference in

programming languages, especially as they relate to parametric polymorphic features. To do this

we shall use a language that contains only the features we are interested in so as to understand

them independently of their possible interactions with other language features. This is not to

say that other features are irrelevant or of less interest. In fact, operator overloading [52, 118],

implicit and explicit type coercions [103, 78, 27], abstract and dependent types [82, 69, 34],

recursive types [110, 70, 77] and especially inclusion polymorphism [10, 11, 112, 50, 98, 121, 122]),

a type-theoretic view of the behavior of object-oriented programming languages, are significant

in the typing disciplines of modern strongly typed programming languages (e.g., [99, 12]). But

we cannot hope to combine several features and study their interactions, before we understand

them individually. We refer the reader to [100] and [13] for an introduction and exposition of

types and type checking in programming languages.

2.1 Untyped Lambda Calculus

We start with a simple functional language Λ, the extended λ-calculus [90], also called Exp

in [23, 85]. It has function abstraction, application, definition, and fixed point computation.

We shall refer to it as the (untyped) λ-calculus even though the (pure) λ-calculus classically

contains only function abstraction and application [3].

2.1.1 Syntax

The set Λ of λ-expressions (expressions) is defined by the following abstract syntax.

e ::= x | λ x.e | (ee′) |
let x = e′ in e |
fix x.e
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where x ranges over a countably infinite set V of variables. In these productions λ, let, and fix

bind x in e; let does not bind x in e′, and application, denoted by juxtaposition, does not bind

anything at all. A variable or variable occurrence in an expression e that is bound by λ is a

λ-bound variable, respectively variable occurrence; same for let and fix. If a variable occurrence

is not bound, it is free. A variable is free in a λ-expression e if it has a free occurrence in e. The

convention for omitting parentheses is that application associates to the left, and application

has higher precedence than any other construction. We may abbreviate λx1.λx2. . . . λxk.e to

λx1x2 . . . xk.e or λ~x.e if ~x denotes the sequence x1x2 . . . xk. λ-expressions will usually be denoted

by the letter e and primed or subscripted versions of e; variables by x, y along with their sub-

and superscripted variants.

2.1.2 Operational Semantics

Instead of encoding renaming of λ-bound variables by an explicit axiom of α-conversion (see,

e.g., [42, definition 1.16]) we follow Barendregt [3] and write e ≡ e′ if e′ is identical to e

except that it may have some λ-bound variables systematically renamed. Every λ-expression

is then understood as a representative of its ≡-equivalent expressions, and all operations on

λ-expressions are always defined on ≡-equivalence classes. For e, e′ ∈ Λ, x ∈ V , e[e′/x] denotes

the simultaneous replacement of all free occurrences of x in e by e′; as usual we assume that

bound variables in e are renamed appropriately to avoid “capturing” free variables in e′. This

is an acceptable convention with the proviso just made [3, p. 26].

The operational semantics of λ-expressions is defined as the reflexive, transitive, compatible1

closure,
∗→, of the union of the following notions of reduction (see [3, chapter 3]).

(λ x.e)e′ →β e[e′/x]

let x = e′ in e →let e[e′/x]

fix x.e →fix let x = (fix x.e) in e

In our examples we may sometimes add “constants” such as natural numbers with some

arithmetic operators and the Boolean values with some logical operators to our λ-calculus.

Whenever suitable we shall use infix notation for constant operations instead of prefix. We may

tacitly assume the existence of suitable reduction relations, summarily called δ-reductions, that

1A relation R is compatible if it is closed under taking contexts; that is, (e1, e2) ∈ R implies (C[e1], C[e2]) ∈ R

for any context C[] surrounding e1, respectively e2.
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implement the usual semantics on those constants. Our theory is developed only for the “pure”

λ-calculus, although — or because — it can easily be extended to include constants.

As an example of an expression with constants,

fix f.λx.if x = 0 then 1 else x ∗ f(x− 1)

denotes the factorial function, and

let fact =

fix f.λx.if x = 0 then 1 else x ∗ f(x− 1) in

fact 5

reduces to 120 via
∗→.

Equality (β-equality), =, is the congruence relation generated by
∗→. As is well-known, for

the untyped λ-calculus we could have dispensed with let and fix since they are both definable

by abstraction and application alone:

let x = e′ in e = (λx.e)e′

fix x.e = Y (λx.e)

where Y = λf.WW and W = λx.f(xx) or Y = W ′W ′ and W ′ = λx.λy.y(xxy). For the second

definition of W we also have Y (λx.M)
∗→ (λx.M)(Y (λx.M)).

Nonetheless we shall keep let and fix forms since there are typed versions of the λ-calculus

in which the above replacements are not possible since the right-hand sides may not necessarily

satisfy the typing rules, which is to say that the sort of typing we shall consider is in general

not closed w.r.t. equality).

2.2 Type Inference Systems

It is not easy to find a modern set-theoretic interpretation of the λ-calculus in which appli-

cation is modeled by (set-theoretic) function application, and λ-abstraction is interpreted as

the definition of a (set-theoretic) function. This is mainly due to the possibility of unbridled

self-application, as in xx. Also, concerns over representation independence and type integrity in

the design of programming languages lead to the introduction of typing disciplines that restrict



10

the class of λ-expression that are considered acceptable (well-typed). We shall briefly present

the mechanism for specifying various related typing disciplines.

2.2.1 Notational Prerequisites

The notational conventions used here are fairly standard. The reader familiar with [23] and

[85] or any number of logically specified polymorphic type systems is encouraged to skip this

subsection.

Type Expressions

The type expressions (types) are formed according to the following productions.

τ ::= κ | α | τ → τ

σ ::= τ | ∀α.σ

where α ranges over an infinite set TV of type variables disjoint from V , and κ ranges over given

primitive types, such as integer, Boolean, etc, and ∀ is a (type) variable binding operator.

The distinction between free and bound variables (variable occurrences) in type expressions is

as expected: all occurrences of ∀-bound variables are bound, all other occurrences are free. The

type expressions M derivable from τ are the monotypes;2 the type expressions Π derivable from

σ are called polytypes.

For ~τ = τ1τ2 . . . τk we may write ∀τ1τ2 . . . τk.τ ′ or ∀~τ .τ ′ for ∀τ1.∀τ2. . . .∀τk.τ ′. The function

type constructor,→, is right-associative; that is, τ1 → τ2 → τ3 should be parsed as τ1 → (τ2 →
τ3). For any type expression σ we write σ[τ1/α1, . . . , τk/αk] to denote the type expression

resulting from simultaneously substituting τi for all free occurrences of αi, 1 ≤ i ≤ k, in σ.

Note that the ∀-quantifiers in polytypes can only appear as prefixes of type expressions,

which is the critical difference from the Second Order λ-calculus [29, 101].

The Greek letter τ always indicates a monotype, while the Greek letter σ signals a polytype,

and letters from the beginning of the Greek alphabet stand for type variables. This is the same

convention as in [23] and [85].

2Note that, in contrast to [76] and [85] our monotypes can contain (necessarily free) occurrences of type
variables.
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Full name Abbreviation Acronym
Curry-Hindley Calculus Hindley Calculus CH
Damas-Milner Calculus Milner Calculus DM
Milner-Mycroft Calculus Mycroft Calculus MM
Flat Milner-Mycroft Calculus Flat Mycroft Calculus FMM

Figure 2.1: Names and abbreviations of typing calculi

Type Assignments

A type assignment (or type environment) A is a mapping from a finite subset of V (variables)

to Π (polytypes). Type assignments are mostly used to formulate assumptions about the types

of variables occurring free in some expression under consideration. This is necessary since the

type of an expression e depends, in general, on the types of variables occurring free in e. For

given A we define

A{x : σ}(y) =







A(y), y 6= x

σ, y = x;

that is, the value of A{x : σ} at x is σ, and at any other value it is identical to A. We say a

type variable α occurs free in A if it occurs free in A(x) for some x in the domain of A.

The capital letter A henceforth always denotes a type assignment.

Typings

Typings are the well-formed formulae (judgments) of our type calculi. A typing consists of three

parts: a type assignment A, an expression e, and a type expression σ, written as A ⊃ e : σ. It

should be read as “In the type environment A, the expression e has type σ”. Of course, not all

typings are acceptable. Acceptability is defined statically by derivability in inference systems.

2.2.2 The Hindley, Milner, Mycroft, and Flat Mycroft Calculi

We shall study four type inference systems: the Curry-Hindley Calculus, the Damas-Milner

Calculus, the Milner-Mycroft Calculus, and the Flat Milner-Mycroft Calculus. Instead of using

their full names we shall abbreviate them throughout by using only the second component of

their compound names in running text or their acronym in derivations, tables, etc. (see Figure

2.1).
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With the exception of the Flat Mycroft Calculus all typing calculi under consideration here

share the fact that they are defined over the same class of programs (λ-expressions) and the

same set of judgments (typings). Their only differences are that they do not have the same

inference rules. Since they share several of their axiom and rule schemes, though, a list of all

axioms and rules is given in Table 2.1. Table 2.2 shows which of the axioms and rules are

present in which calculus, and which ones are not.

Let X = CH, DM, MM, FMM. We write X ⊢ A ⊃ e : σ if A ⊃ e : σ is derivable in the

Hindley Calculus (X = CH), the Milner Calculus (X = DM), the Milner-Mycroft Calculus (X =

MM), or the Flat Milner-Mycroft Calculus (X = FMM). If X is clear from the context, we may

simply write A ⊃ e : σ to indicate that this typing is derivable in X. Let e be a λ-expression,

and let X = CH, DM, MM, or FMM. We say e is well-typed or typable in X (or simply well-

typed/typable, if it is clear with respect to which typed calculus) if there is a type environment

A and a type expression σ such that A ⊃ e : σ is derivable in X. The typability problem for

X is the problem of deciding the set of all well-typed expressions in the X. We may often

abbreviate “the typability problem for the X Calculus” to simply “the X Calculus” as in “The

Hindley Calculus is log-space equivalent to unification”. As we shall see below, every expression

e typable in the X Calculus has a unique (modulo some simple equivalence) “principal” type

expression, given a type assumption A, no matter what choice of X. The functional problem of

computing the principal type or outputting an indication of untypability for given e,A will be

called the type inference problem for the X Calculus.

The Hindley Calculus corresponds to a language without mandatory variable or parame-

ter type declarations; yet every variable has exactly one monotype. This is in the spirit of

conventional statically typed languages such as Pascal where every program variable and every

procedure has a unique type. That type has to be declared within the program itself, in contrast

to the Hindley Calculus.

The Milner Calculus encodes the polymorphism that results from the ability in languages

such as ML [31, 32], SPS [120], Miranda [117] to give let-bound variables x a parameterized

type that is automatically and implicitly instantiated at all applied occurrences of x. Note

that in the rule (FIX-M) the type associated with the (presumably) recursively defined x is a

monotype.3 This implies that, intuitively, all occurrences of x in a recursive definition fix x.e

are monomorphic; that is, they have the same monotype.

3Remember that τ always stands for a monotype.
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Let A range over type environments; x over variables; e, e′ over λ-expressions; α over type
variables; τ, τ ′ over monotypes; σ, σ′ over polytypes. The following are type inference axiom
and rule schemes.

Name Axiom/rule
(TAUT) A{x : σ} ⊃ x : σ

(GEN) A ⊃ e : σ
(α not free in A)

A ⊃ e : ∀α.σ

(INST) A ⊃ e : ∀α.σ
A ⊃ e : σ[τ/α]

(ABS) A{x : τ ′} ⊃ e : τ
A ⊃ λx.e : τ ′ → τ

(APPL) A ⊃ e : τ ′ → τ
A ⊃ e′ : τ ′

A ⊃ (ee′) : τ

(LET-M) A ⊃ e : τ
A{x : τ} ⊃ e′ : σ′

A ⊃ let x = ein e′ : σ′

(LET-P) A ⊃ e : σ
A{x : σ} ⊃ e′ : σ′

A ⊃ let x = ein e′ : σ′

(FIX-M) A{x : τ} ⊃ e : τ
A ⊃ fix x.e : τ

(FIX-P) A{x : σ} ⊃ e : σ
A ⊃ fix x.e : σ

Table 2.1: Type inference axioms and rules
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Axiom/rule CH DM MM FMM
TAUT

√ √ √ √
GEN

√ √ √ √
INST

√ √ √ √
ABS

√ √ √ √
APPL

√ √ √ √
LET-M

√
LET-P

√ √
FIX-M

√ √
FIX-P

√ √

The mark
√

indicates the corresponding axiom/rule is present in the calculus in whose column
it appears; blank space means it is not included. The Flat Mycroft Calculus is restricted to
λ-expressions with no let-operator and with only one occurrence of a fix-operator, which must
occur at top-level.

Table 2.2: The Hindley, Milner, Mycroft, and Flat Mycroft type inference calculi

The Mycroft Calculus models a language such as Hope [8] that permits fix-bound variables

(i.e., for the most part recursively defined functions) to have parameterized types that can be in-

stantiated arbitrarily inside the scope of their definition. Hope will admit such polymorphically

typed recursive definitions only at the top-level and requires explicit type declarations, whereas

our Milner-Mycroft Calculus permits even nested polymorphically typed recursive definitions

and does not require explicit declarations.

The Flat Mycroft Calculus has only λ-expressions of the form fix f.e where e contains

only variables, λ-abstractions, and applications, but no let- or fix-constructs. It adopts the

polymorphic typing rule from the Mycroft Calculus for its sole recursive definition. We call

it “flat” since no nesting of polymorphically typed definitions — as in the Milner Calculus

(let-rule (LET-P)) and in the Mycroft Calculus (let-rule (LET-P) and fix-rule (FIX-P)) —

is permitted. This essentially models polymorphic programming languages with only top-level

definitions that are automatically mutually recursive, as in (Polymorphic) Prolog [86], B [75],

or (Polymorphic) SETL [36].

In our calculi we have deliberately excluded programming language features that have a

strong bearing on type checking, such as coercion, overloading, inclusion polymorphism, union

types, dependent types; not to mention assignment, references, exceptions. Note also that the

typing disciplines are implicit: there is no mention of types in the programs (λ-expressions)

themselves, only in the typing statements about them. This is to say, ours is the “Curry

viewpoint”: types are properties of (untyped) programs. This is in contrast to the “Church
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viewpoint”: types occur in programs and are instrumental in the definition of what constitutes

the notion of (typed) program in the first place. More importantly, though, the programming

language considered here has a fixed point constructor and is thus universal, similar to LCF,

yet very much in contrast to many typed calculi that are of interest for the very absence of a

general fixed point operator. This is the main reason why we do not refer to what we call the

Hindley Calculus as Church’s Typed λ-calculus. What we call Milner Calculus is called ML (by

Kfoury et al. [58]), or more loosely let-polymorphism or Milner-style polymorphism. Since it is

well-known that side-effects and pointers have an effect on the soundness of polymorphic typing

disciplines [22, 68, 116], we prefer not to call this typing calculus ML, a concrete programming

language with side-effects, pointers and several other features. For similar reasons Kfoury et

al.’s ML+ is our Mycroft Calculus.4 The general rationale for our choice of names is that

the calculi are named after researchers that are prominently associated with investigating their

properties.

2.2.3 Properties of Typed Calculi

It is quite clear that the Milner-Mycroft Calculus is more powerful than the Milner Calculus,

which in turn is more powerful than the Hindley Calculus; that is to say, every λ-expression

typable in the Hindley Calculus is typable in the Milner Calculus, and every λ-expression

typable in the Milner Calculus is typable in the Mycroft Calculus. Even stronger, the sets of

derivable typings in each of these calculi are in a containment relation along the same lines.

These inclusions of typable expressions are proper. Consider, for example, the expressions

e0 ≡ let x = λy.y in (xx) and e1 ≡ fix f.λx.(ff). The expression e0 is typable in the Milner

Calculus due to the rule (LET-P), but not in the Hindley Calculus; e1 is typable in the (Flat)

Mycroft Calculus due to rule (FIX-P), but not in the Milner Calculus. For example,

DM ⊢ {} ⊃ let x = λy.y in (xx) : ∀α.α→ α

MM ⊢ {} ⊃ fix f.λx.(ff) : ∀α.∀β.α→ β

This shows that, indeed, the Hindley Calculus, the Milner Calculus, and the Mycroft Cal-

culus form a hierarchy of properly more powerful typing disciplines. For completeness’ sake we

shall briefly touch upon results that show that the type systems we consider here are not just

syntactic in nature, but interact with the semantics of λ-expressions in an orderly fashion.

4Compounding the potential for confusion is that Jategaonkar and Mitchell are investigating an object-
oriented extension to ML, called ML++. They call their initial design in this direction ML+.
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Soundness

Milner [76] presents a formal denotational semantics for expressions and types that allows

specification of a semantic notion of validity. A type system is said to be sound (with respect

to Milner’s semantics) if all typings derivable are also semantically valid. We present only the

following theorem and refer the reader to [76], [23], [85] or [70] for an exposition of semantic

issues only alluded to here.

Theorem 1 1. The Milner Calculus is sound (with respect to Milner’s semantics).

2. The Milner-Mycroft Calculus is sound (with respect to Milner’s semantics).

Proof:

1. See [23].

2. See [85].

It may be noted that the soundness of the Milner Calculus also follows immediately from

the soundness of the Milner-Mycroft Calculus and the fact that the Milner-Mycroft Calculus

subsumes the Milner Calculus.

Subject Reduction

None of our typing disciplines are semantically complete since the property of typability is not in-

variant under β-equality. For example, forK ≡ λx.λy.x, I ≡ λx.x the expression (KI)(λx.(xx))

is not typable in any of the typing disciplines under consideration here, yet (KI)(λx.(xx)) = I,

and I is clearly typable. A dynamically typed language is a programming language with a non-

trivial typing discipline that is invariant under equality. Examples are LISP (but not the pure

λ-calculus), APL, and SETL. Every dynamically typed (universal) language has a necessarily

undecidable typability problem in view of Scott’s version of Rice’s theorem [3, chapter 6.6]. This

in fact necessitates run-time type checking, hence motivating calling it “dynamically typed” in

the first place.

Even though our static typing disciplines are not invariant under equality, a slightly weaker,

yet very desirable property holds.

Theorem 2 (Subject reduction property)

Let X = CH, DM, or MM. If X ⊢ A ⊃ e : σ and e
∗→ e′, then X ⊢ A ⊃ e′ : σ.
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Proof: See Curry and Feys [21] for X = CH. The proofs for DM and MM are

simple generalizations of Curry and Feys’s original proof.

This theorem expresses that once a λ-expression has been been found to have some type,

reducing the expression will preserve that type. In particular, it is never possible to encounter

an untypable intermediate result when evaluating (reducing) any typable expression.

Principal Typings

Note that there may be many different typings for a single expression. In this subsection we

briefly summarize for our type systems what has been called the principal typing property:

Given a type assignment A every expression that has a type under A has a unique most general

type under A.

The generic instance preordering ⊑ between types is given by

∀α1 . . . αn.τ ⊑ ∀β1 . . . βm.τ [τ1/α1, . . . , τn/αn]

for any monotypes τ1, . . . , τn whenever every βi(1 ≤ i ≤ m) is not free in ∀α1 . . . αn.τ . The

equivalence induced by ⊑ is simply renaming of ∀-bound type variables and is denoted by ≡.

Let X = CH, DM, MM, or FMM Calculus. We say σ is a principal type for e under A in X

if

X ⊢ A ⊃ e : σ

and for any type σ′ such that

X ⊢ A ⊃ e : σ′

we have σ ⊑ σ′. Clearly, principal types are unique modulo ≡. If for every A and every e,

e has a principal type under A (or has no type under A), then we say the whole calculus X has

the principal typing property.

Theorem 3 (Principal typing property)

Let X = CH, DM, MM, or FMM Calculus. X has the principal typing property.

Proof: For CH, see [41, 20]; for DM, [23]; for MM and FMM, [85].
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It is easy to see that if a closed λ-expression e (a λ-expression without free variables) has a

type σ under any type assignment A then it has type σ under the empty assignment {}, and

vice versa. For this reason we can speak of the principal type of e (independent of any type

assignment).

The type inference problem is the (functional) problem of computing a principal type for

given A and e or flagging untypability. Of course, the (decision) problem of typability is triv-

ially solvable once the type inference problem has been solved. The converse, though, is not

necessarily true even though essentially all current type checking algorithms for our typing

disciplines also compute, directly or indirectly, principal types.5

Note that even though all type systems under consideration here have the principal typing

property, it may be that the principal type for an expression e in one calculus is different from

the principal type in another (for fixed A). Consider, for example, the Standard ML definition

of “map” and “squarelist” in the program example in chapter 1. In the Milner Calculus the

principal type of “map” is the monotype (int → int) → int list → int list whereas in the

Mycroft Calculus it is ∀α.∀β.(α → β) → αlist → βlist. Of course, this presumes an encoding

of the mutually recursive definition of “map” and “squarelist” and of the SML type constructor

list into the λ-calculus and the language of our type expressions. This is difficult since lists are

a recursive data type, but a simpler “pure” example illustrating the difference is

fun Ix = x and

J = Iy0

under the type assignment A0 = {y0 : int}. There are standard ways for encoding tuples and

mutually recursive definitions by single recursive definitions in the λ-calculus. The above SML

program can thus be transformed into a single recursive definition e0 in the λ-calculus,

fix f.λg.g(λx.x)(f(λx.λy.x)y0).

This expression, e0, is typable under A0 both in the Milner Calculus and in the Mycroft

Calculus. The principal types, however, are ((int → int) → int → int) → int in the Milner

Calculus and ∀α.∀β.((α→ α)→ int→ β)→ β in the Mycroft Calculus.

5The fact that the uniform semi-unifiability algorithm of Kapur et al. [54] does not compute most general
uniform semi-unifiers — the equivalent of principal types — can be viewed as a remarkable exception.
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2.3 Background

The calculi we consider have appeared in the literature before, with some variations. Curry,

Hindley and others investigated the properties of “functionality” of combinatory logic [21, 84,

20, 41, 4], which is essentially what we call the Hindley Calculus. The Milner Calculus, in its

logical form as a typed λ-calculus, was investigated by Damas and Milner [23, 22] on the basis

of earlier work by Milner [76].

As early as in the late 70s Wadsworth reportedly worked on extending the well-known type

inference algorithm W for the Milner Calculus [76] to capture the more general typing rule

(FIX-P) in (what we call) the Mycroft Calculus, but apparently did not publish his work [67].

The polymorphic programming language B, [75] has an extended rule for typing recursive defini-

tions analogous to Mycroft’s. Meertens [74], who designed it unaware of ML’s polymorphic type

system, presents a uniformly terminating type inference algorithm for B. Since B has neither

higher-order functions nor nested declarations, Meertens raised the question of whether type

inference in what we call the Mycroft Calculus is decidable.6 Exploring static typing for logic

programming [86], Mycroft [85] investigated the properties of ML with an extended rule for

recursive definitions that allows for polymorphically typed occurrences of the defined function

in its body. He was able to show that the resulting calculus, which we have called the Mycroft

Calculus, is sound with respect to Milner’s [76] semantics and that the principal typing property

of the Milner Calculus is preserved. The standard unification-based type inference algorithm is

not complete for the extended calculus, though. Mycroft provided a semi-algorithm for com-

puting principal typings, but he left the computability of that question and the decidability of

the calculus open. Leiß[64] gave an alternate type inference system for the Mycroft Calculus

(along with an extension of polymorphic type inference to record-based subtyping) based on

term inequalities with context conditions. The decidability of the Mycroft Calculus was specif-

ically addressed by Kfoury et al. [58]. They showed that typability in the Mycroft Calculus

can be reduced to a “Generalized Unification Problem (GUP)” [56], which is similar to Leiß’s

formulation of inequalities with context conditions, and embarked on showing that, if a GUP

instance has a solution, it has a solution whose size can be bounded recursively as a function

6In chapter 4 we shall see that Mycroft-style type inference is not greatly affected by the absence or presence
of higher-order functions and nested definitions. Meertens’ uniformly terminating type inference algorithm is
syntactically incomplete in that it signals a type error for some programs that are type correct with respect to
the typing rules for B (or, equivalently, with respect to his semi-algorithm AA).
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of the size of the input. The authors have reported a flaw in their proof, and the general de-

cidability of the Mycroft Calculus remains open. Once proven this would give an essentially

nonalgorithmic proof of decidability for the Mycroft Calculus.

Whereas the Milner-Mycroft Calculus only admits polytypes with universal quantifiers in

prefix position only on the top level, the Second Order λ-calculus [101] relaxes this constraint

and permits polytypes with nested quantifiers. In such a system the let-construct is unnec-

essary since the equivalent description of a let-expression in the pure λ-calculus is typable if

and only if the let-expression itself is typable. Böhm [6] showed that partial type inference

in the Second Order λ-calculus is undecidable whereas, interestingly, the decidability of full

type inference for the same type system is has been open [65, 28] since the inception of the

Second Order λ-calculus. Girard’s system Fω [29] generalizes the 2nd Order λ-calculus to type

expressions of arbitrary finite order. Pfenning [91] refined Böhm’s result by showing that type

inference in the n-th Order λ-calculus, Fn, is equivalent to n-th order unification [46, 30]. The

typable λ-expressions in the conjunction type discipline of [18] (see also [106, 83]) are exactly the

strongly normalizing (untyped) λ-expressions, which implies that type inference is undecidable.

Nonetheless, the Second Order λ-calculus and the conjunction type discipline have had a direct

influence on programming language design. The language LEAP employs is directly based on

Fω and employs partial type inference with satisfactory practical performance [92]. Reynolds’

language Forsythe [99] makes use of a conjunction type discipline.

There are many more very powerful type systems whose immediate application is in proof

theory. They exploit and extend the “types-as-propositions” (and “expressions-as-proofs”) anal-

ogy [44] to formulate constructive proof systems. A sample of such systems is AUTOMATH

[24], Martin-Löf type theory [73], the Calculus of Constructions [19], and LF [33].
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Chapter 3

Semi-Unification: Basic Notions and Results

Semi-unification is the problem of solving sets of inequalities of the form M1 ≤ M2 in the

subsumption lattice of free first-order terms. The special case of solving single inequalities has

found applications in proving nontermination of term rewriting systems [54] while the general

case characterizes type inference in the Mycroft Calculus (see chapter 4). Since this problem

does not seem to have attracted broad attention in computer science, in this chapter and

chapter 5, we give a comprehensive treatment of its basic algebraic properties and contrast it

with unification, the problem of solving term equations.

Unification and semi-unification deal with related problems. Unification addresses solving

equations between free first-order terms while semi-unification tackles the more general question

of solving systems of equations and inequalities1 (SEI’s) where inequalities, M1 ≤M2, between

terms M1 and M2 refer to the subsumption preordering ≤ on terms.

In this chapter we introduce the basic machinery of semi-unification. In particular, section

3.1 describes terms and substitutions and their basic algebraic structure, and section 3.2 contains

definitions of systems of equations and inequalities and their solutions, semi-unifiers, as well

as some basic results. In chapter 4 we shall show why semi-unification is relevant to type

inference, and in chapter 5 we investigate the algebraic structure of semi-unifiers, which in

turn has reverberations on the structure of typings. Algorithms for computing most general

semi-unifiers can be found in chapter 6, and some combinatorial properties of our basic semi-

unification algorithm are in chapter 7.

1We find the prevalent terminology somewhat unfortunate. While there is a distinction between “equation”
(something that is to be solved) and “equality” (something that holds), there is no corresponding distinction
with “inequality” since the term “inequation” is not commonly used in the English language. Even worse,
“inequality” gives no indication as to whether ≤ (less-than-or-equal-to) or 6= (not-equal-to) is meant, and there
is no standard linguistic mechanism for distinguishing between these two. The term “inequation” has popped up
in the literature, but, since it is still uncommon, we will use “inequality” throughout. This also makes it possible,
admittedly somewhat artificially, to distinguish our systems of equations and inequalities from the related, but
different, systems of equations and inequations in [17] and [63].
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3.1 The Algebraic Structure of Terms and Substitutions

In this section we define the objects of our universe of discourse, terms and substitutions, and

investigate elementary aspects of their algebraic structure. The material is mostly extracted

from [45], [26], and [63]; much of the material dates back to [93], [94], [102], and [46]. Some

definitions and results appear to be new. Though simple refinements of standard concepts and

results, they are useful in later sections.

3.1.1 Basic Definitions

Definition 1 (Ranked alphabet, functors, constants, variables, terms)

A (ranked) alphabet A is a pair (F, a) where F is a nonempty, denumerable set whose

elements are called functors and a : F → N maps every functor f to its arity a(f). Functors

with arity 0 are called constants. A is linear if all its functors have arity at most 1, nonlinear

otherwise.

A set of variables V for A = (F, a) is an infinite denumerable set disjoint from F .

The set of proper (first-order) terms T (A, V ) (or simply T whenever A and V are under-

stood), where V is a set of variables for A, consists of all strings derivable from M in the

grammar

M ::= x|f(M, . . . ,M
︸ ︷︷ ︸

ktimes

)

where f is a functor from A with arity k, and x is any variable from V . The set of (first-order)

terms TΩ(A, V ) (or simply TΩ) is T (A, V ) with an additional distinguished element Ω called

the undefined term.2

Variables are usually denoted by u, v, x, y, z, constants by c, d, nonconstant functors by

f, g, h, and terms by M,N , as well as by their respective subscripted and superscripted versions.

To indicate the arity k of a functor f we may write f (k). With these conventions in place we

shall omit the parentheses following constants appearing in terms since this cannot lead to any

confusion.

Two terms M1,M2 ∈ T are equal, denoted M1 = M2, if and only if M1 and M2 are identical

as strings; e. g., f(x, y) = f(x, y), but f(x, y) 6= f(u, v). The special term Ω is equal to itself

2Of course we make the standard assumption here that neither A nor V contain Ω or any of the symbols ‘(’,
‘)’, or ‘,’.
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and no other term.

The distinction between linear and nonlinear alphabets is crucial since terms over a linear

alphabet can have at most one variable whereas terms over a nonlinear alphabet can contain any

number of variables. In a nonlinear alphabet it is always possible to “emulate” a functor of arbi-

trary arity. For example, g(4)(M,N,N,N) can be viewed as a term f (2)(M,N) with a fictitious

binary functor f (2), and h(2)(h(2)(M1,M2),M3) can be interpreted as a term f (3)(M1,M2,M3)

with an “emulated” ternary functor f (3). In this sense we are justified in stipulating the ex-

istence of a functor f with any arity k ≥ 1 without loss of generality in a nonlinear alphabet.

Note that this is, of course, not possible with linear alphabets.

Definition 2 (Substitutions)

A proper (first-order) substitution is a mapping from V to T (A, V ) that is the identity on

all but a finite subset of V . Every substitution σ : V → T (A, V ) can be extended uniquely to

σ̄ : TΩ(A, V )→ TΩ(A, V ) by the equations

σ̄(x) = σ(x), if x ∈ V

σ̄(Ω) = Ω

σ̄(f (k)(M1, . . . ,Mk)) = f (k)(σ̄(M1), . . . , σ̄(Mk)).

The domain dom σ of σ : V → T (A, V ) is {x ∈ V | σ(x) 6= x}. The canonical representation

of σ with dom σ = {x1, . . . , xn} is {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.

The mapping ωA,V , which maps all terms M ∈ TΩ(A, V ) to Ω, is called the undefined

substitution. The set of all proper substitutions is denoted by S(A, V ) (or simply S whenever

A, and V are understood from the context). The set of (first-order) substitutions Sω(A, V )

consists of S(A, V ) with the additional mapping ωA,V .

We shall omit the subscript from ωT (A,V ) below whenever A, V , and thus T (A, V ) are clear

from the context. Similarly, we will identify, as is usual, every substitution σ with its extension

σ̄. In this chapter and chapter 5 substitutions are ranged over by ρ, σ, τ, υ along with their sub-

and superscripted variations. To avoid confusion with type expressions, in the other chapters

they may also be denoted by letters R,S, U .

A substitution specifies the simultaneous replacement of some set of variables by specific

terms. For example, for σ0 = {x 7→ u, y 7→ v, u 7→ y, v 7→ x} we have σ0(f(x, y)) = f(u, v).

The undefined substitution maps everything to the undefined term; e. g., ω(f(x, y)) = Ω and

ω(Ω) = Ω.
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For σ ∈ S, we will write σ |W for the substitution defined by

σ |W (x) =







σ(x), x ∈ W
x, x 6∈ W

Furthermore, ω |W = ω.

Clearly substitutions, if understood as acting on terms, are closed with respect to functional

composition. The undefined term Ω and the undefined substitution ω are useful in providing

a meaning for the dynamic notion of “failure” in unification and other applications. They also

lead to a very satisfying algebraic structure of terms and substitutions (see theorems 4 and 16)

in chapter 5.

3.1.2 Term Subsumption

Let A be an arbitrary, but fixed alphabet in this section, and let V be a set of variables for A.

Definition 3 (Subsumption, α-congruence)

The preordering ≤ of subsumption3 on TΩ is defined by

M1 ≤M2 ⇔ (∃σ ∈ Sω) σ(M1) = M2

for any M1,M2 ∈ TΩ.

The congruence relation ∼= of α-congruence on TΩ is defined by

M1
∼= M2 ⇔M1 ≤M2 ∧M2 ≤M1

for all M1,M2 ∈ TΩ. We write M1 < M2 if M1 ≤ M2, but M1 6∼= M2. For any M ∈ TΩ, [M ]

denotes the equivalence class of M in TΩ.

If M1 ≤M2 we say M1 subsumes M2; e. g., f(x, y) subsumes f(g(y), z) since for σ1 = {x 7→
g(y), y 7→ z} the equality σ1(f(x, y)) = f(g(y), z) holds. If M1

∼= M2 we say M2 is an α-variant

of M1 and vice versa; e. g., f(x, y) is an α-variant of f(u, v).

Recall that a partial order (L,≤) is a (complete) lower semi-lattice if it has a greatest lower

bound for every finite (finite or infinite) subset of L. It is a (complete) upper semi-lattice if it

has a least upper bound for every finite (finite or infinite) subset of L. It is a (complete) lattice

if it is both a (complete) lower semi-lattice and a (complete) upper semi-lattice [66]. Recall also

3Note that this definition follows [45] and [26], but is dual to the definition in [63].
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that a partial ordering is Noetherian if it has no infinite descending chains M1 > M2 > . . . [45].

It is well-known that any Noetherian lower semi-lattice is a complete lower semi-lattice, and

any complete (lower or upper) semi-lattice is already a complete lattice.

The preordering ≤ on TΩ induces a partial order on the quotient set TΩ/∼= = {[M ] | M ∈
TΩ}, which we will also denote by ≤. The structure of terms with respect to subsumption is

captured in the following theorem.

Theorem 4 1. (TΩ/∼=,≤) is Noetherian.

2. (TΩ/∼=,≤) is a complete lattice.

Proof: See [45].

The least upper bound of a set of terms is called its most general common instance; its

greatest lower bound is called its most specific common anti-instance. The theorem expresses

that both most general common instance and most specific common anti-instance are unique

modulo α-congruence. Finding the most general common instance of a pair of terms is a special

case of the unification problem (disjoint variable case). Finding the most specific common anti-

instance of a pair is the anti-unification problem [46, 63]. A most general common instance

of {f(x, g(y)), f(g(y), z)} is f(g(y), g(z)), but also f(g(u), g(v)); a most specific common anti-

instance is f(s, t). Clearly, [x] = V (x any variable) is the least element and [Ω] = {Ω} is the

greatest element in TΩ/∼=.

The subsumption preorder can be extended to substitutions, but not in a unique fashion.

Different notions and their implications are studied in chapter 5.

3.2 Systems of Equations and Inequalities and Semi-Unifiers

In this section we present basic definitions and properties of inequalities over the subsumption

preordering of terms and their solutions.

Definition 4 (System of equations and inequalities, nonuniform/uniform semi-unifier, unifier)

A system of equations and inequalities (SEI) is a pair S = (E, I) where I = (I1, . . . , Ik) for

some k ∈ N and E, I1, . . . , Ik each consist of a set of pairs of terms from T , usually written in

the form4

4Note that “=” and “≤” are only formal here.
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





M11 = M12

M21 = M22

. . .

Mm1 = Mm2







E







N1
11 ≤ N1

12

N1
21 ≤ N1

22

. . .

N1
n11 ≤ N1

n12







I1

. . .







Nk
11 ≤ Nk

12

Nk
21 ≤ Nk

22

. . .

Nk
nk1 ≤ Nk

nk2







Ik

A substitution σ for which there exist quotient substitutions5 ρ1, . . . , ρn such that6

5It is actually irrelevant whether ω is permitted amongst the ρi or not.

6Here the symbols = and ≤ denote their logical meanings.
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σ(M11) = σ(M12)

σ(M21) = σ(M22)

. . .

σ(Mm1) = σ(Mm2)

(E)

ρ1(σ(N1
11)) = σ(N1

12)

ρ1(σ(N1
21)) = σ(N1

22)

. . .

ρ1(σ(N1
n11)) = σ(N1

n12)

(I1)

. . .

ρk(σ(Nk
11)) = σ(Nk

12)

ρk(σ(Nk
21)) = σ(Nk

22)

. . .

ρk(σ(Nk
nk1)) = σ(Nk

nk2)

(Ik)

hold simultaneously7 is called a (nonuniform) semi-unifier of S. If ρ1 = ρ2 = . . . = ρn = ρ

for some ρ, then σ is called a uniform semi-unifier, and if furthermore ρ = ι, the identity

substitution, then σ is called a unifier.

S is solvable if it has a semi-unifier other than ω. SU(S) is the set of semi-unifiers of S,

USU(S) the set of its uniform semi-unifiers, and U(S) is the set of its unifiers.

The special symbol 2 is an additional SEI that has only ω for a unifier and for a (non)uniform

semi-unifier; we call 2 the (only) improper SEI.8 The set of all proper systems of equations and

inequalities over alphabet A and variables V is denoted by Γ(A, V ) (or simply Γ whenever A
and V are understood from the context). Γ(A, V ) with the additional improper SEI 2 is denoted

by Γ2(A, V ).

Semi-unifiability is the decision problem of determining if a given SEI is solvable (has a

proper semi-unifier). As we shall see in chapter 5, every solvable SEI has a most general semi-

unifier that is unique up to an appropriate equivalence relation on substitutions. The term

7Here “=” denotes term equality.

8Note that there are proper SEI’s that have only the improper ω as their sole semi-unifier.
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semi-unification refers to the (functional) problem of computing a most general semi-unifier of

a given SEI or flagging non-semi-unifiability. Similarly, uniform semi-unifiability and uniform

semi-unification as well as unifiability and unification are the decision, respectively, functional

problems that correspond to finding uniform (proper) semi-unifiers and (proper) unifiers. Often

we will be sloppy and use the term for the functional problem to also denote the decision

problem.

A semi-unifier, in other words, is a solution to a given set of equations and inequalities

where the inequalities are split into groups that “share” the same quotient substitution, but

the quotient substitutions across different groups of inequalities can be different. A uniform

semi-unifier additionally solves the inequalities in a “uniform” fashion9, and a unifier solves the

inequalities by making both sides equal. By definition, if an SEI has a unifier it has a uniform

semi-unifier, and if it has a uniform semi-unifier it has a semi-unifier.

Clearly, for unifiers there is no need to distinguish between equations and inequalities, and

we can view, in this case, an SEI S = (E , I) as a system of equations alone made up of E ∪⋃ I.

It is well-known that a set of equations can be expressed by a single equation in the sense

that the set of its solutions (unifiers) is identical to the set of solutions of the original set of

equations. An analogous result, with the same simple proof, holds for uniform semi-unifiers,

but apparently not for nonuniform semi-unifiers.

Proposition 1 The following statements are equivalent.

1. A is nonlinear.

2. {U(S) : S ∈ Γ(A, V )} = {U(S) : S ∈ Γ(A, V ), S = (E , I), |E| ≤ 1, |I| = 0}

3. {USU(S) : S ∈ Γ(A, V )} = {USU(S) : S ∈ Γ(A, V ), S = (E , I), |E| ≤ 1, |I| ≤ 1, (∀I ∈
I) |I| = 1}

4. {SU(S) : S ∈ Γ(A, V )} = {SU(S) : S ∈ Γ(A, V ), S = (E , I), |E| ≤ 1, (∀I ∈ I) |I| = 1}

Proof:

Statements 2, 3, and 4 follow from 1 by “tupling”. For given SEI S form term

M1 by tupling all the left-hand sides of S, and M2 by tupling all the right-hand

9Note that (∅, {{x ≤ c1}, {x ≤ c2}}) has a semi-unifier — the identity substitution ι — but no uniform
semi-unifier.
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sides. Define S′ = ({M1 = M2}, ∅); this proves 2. For 3 and 4 proceed similarly

by tupling both sides of equations and all inequalities separately, respectively by

tupling equations and the groups of inequalities separately.

Each of 2, 3, and 4 individually imply 1, which indicates that the ability to “tuple”

is instrumental in embedding the theories of semi-unifiers and unifiers in the above

subclasses of systems of equations and inequalities. We only prove 3 ⇒ 1, the other

implications being very similar.

Assume {USU(S) : S ∈ Γ(A, V )} and {USU(S) : S ∈ Γ(A, V ), S = (E , I), |E| ≤
1, |I| ≤ 1, (∀I ∈ I) |I| = 1} are identical. Consider the SEI S1 = (∅, {{y0 ≤ x1, y0 ≤
x2}}) for pairwise distinct y0, x1, x2. Clearly σ1 = {x1 ← x2} is a semi-unifier of

S1, but ι is not. If we assume that no functor in A has arity greater than 1, we

already know that all terms in T (A, V ) have at most one variable occurrence. Thus

if an inequality M ≤ N has a solution at all then there must be subterms M ′ and

N ′ of M and N , respectively, such that M ′ ≤ N ′ has the same set of semi-unifiers

as M ≤ N and either M ′ is a variable or N ′ is a variable or none of M,M ′, N,N ′

contains a variable. If M ′ is a variable then the identity substitution ι = {} is a

semi-unifier, and if it is not, then σ1 is not a semi-unifier of M ′ ≤ N ′, and, finally,

if M ′ and N ′ contain no variable then either all substitutions are semi-unifiers of

M ′ ≤ N ′ (including ι) or none are (excluding σ1). This holds also in the presence of

an additional term equation. Consequently there is no SEI with at most one equation

and one inequality with the same set of semi-unifiers as S1 under the assumption

that A has no functor with arity greater than 1, and we can conclude that A must

be nonlinear.

In view of this proposition, whenever working with nonlinear alphabets we could have defined

systems of equations and inequalities to consist of at most one equation and a set of inequalities

instead of sets of equations and sets of sets of inequalities . We have chosen the present

formulation because it permits a slightly more natural reduction of type inference to semi-

unification. Furthermore, we can give a simple specification for computing most general semi-

unifiers by rewritings over our systems of equations and inequalities, but not so easily if we

adopted the simpler definition.

Nonetheless, when investigating the structure of semi-unifiers over a nonlinear alphabet — as

we shall do almost exclusively — we shall often make use of the possibility of “contracting” sets of
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equations and groups of inequalities into single equations and single inequalities. In this vein, we

may often omit the set brackets for singleton sets; e. g., ({M = N}, {{M1 ≤ N1}, {M2 ≤ N2}})
may be written simply (M = N, {M1 ≤ N1,M2 ≤ N2}) or even (M = N,M1 ≤ N1,M2 ≤ N2).

3.3 Previous Work on Unification and Semi-Unification

Unification is the problem (and informally also the process) of finding solutions to term equations

of the form τ1 = τ2 where τ1, τ2 ∈ T . A solution of τ1 = τ2 is a substitution σ such that

σ(τ1) = σ(τ2).

Although Herbrand [39] and Prawitz [95] had already used unification algorithms, the utility

of and interest in unification was essentially initiated by Robinson’s novel resolution principle

in theorem proving [105] at the heart of which was a unification algorithm.

Since then papers on unification as well as applications of unification have abounded. While

Robinson’s original algorithm took exponential time to compute the solutions, new representa-

tions and algorithms have been found (see, e. g., [89] and [72]) that achieve linear bounds on

the computation time, and the unification problem has been found to be P -complete [112]. Uni-

fication is also investigated in term algebras that are subject to equational [109] or conditional-

equational [48] laws such as associativity, commutativity, and idempotence. Several unification

algorithms (e. g., [114], [7], or see [109]) for such term algebras have been presented. Kapur

and Narendran [55] showed that most of these unification problems are NP-hard. Huet [47, 46]

investigated third- and higher-order unification and proved that it is recursively undecidable.

Goldfarb [30] showed that second-order unification is also undecidable.

Unification has permeated the field of resolution-based and even non-resolution-based the-

orem proving [5]. With the identification of a subset of First Order Logic that is especially

amenable to resolution theorem proving (Horn Clause Logic, c. f. [60]) unification plays an

eminent role in logic programming languages such as Planner [40] and PROLOG [123, 113].

A concise and clean treatment of the algebraic aspects of unification can be found in [63] or

in [26]. A recent survey on unification is [59].

Semi-unification addresses the problem of solving inequalities of the form τ1 � τ2 where

τ1, τ2 ∈ T . A substitution σ is a solution to τ1 � τ2 if there exists ρ ∈ S such that ρ(σ(τ1)) =

σ(τ2).

Whereas classical unification has numerous well-known uses and applications, semi-unification

and related problems have apparently only recently received attention. The question of finding
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proofs with a minimum number of proof steps in some classical logical systems can be reduced to

unification-like problems, in particular also to semi-unification. This sort of question has been

addressed by Parikh and Statman in the early 70’s [111] and, recently, by Krajicek, Pudlák

[96, 61] and other proof theoreticians. Kapur et al. [54] observe that solvability of a single term

inequality yields a sufficient condition for showing nontermination in term rewriting systems,

and they trace the history of this connection back to [62]. Semi-unification [15, 38, 57], has

been shown to be at the heart of type checking in implicitly typed polymorphic programming

languages. Term inequalities have also been explored as a partial order theory for constraint

logic programming [49, 88] and, in general, as a form of “partial order programming” [87]. The

decidability of uniform semi-unification (see chapter 3) is proved independently in [96], [54],

and [38] (see also section 6.4). Another special case of semi-unification, in which any identifier

may occur at most once in left-hand sides of term inequalities, is shown decidable in [57]. The

decidability of general semi-unification is currently open.
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Chapter 4

Equivalence of Mycroft Calculus and Semi-Unification

This chapter is divided into two main sections and one minor section. In the first section we

show that the type inference problems in the Milner and the Mycroft Calculi can be reduced

efficiently to semi-unification, the problem of solving systems of equations and inequalities

over the subsumption preordering of first-order terms. As a by-product we also obtain the

well-known reduction of the Hindley Calculus to unification. The main achievement of this

reduction lies in showing that the prefix-quantified theory of type correctness in the Milner and

Mycroft Calculi can be completely embedded in semi-unification, a strictly first-order concept.

Similar reductions to some sort of inequality constraints have been found by Kfoury et al. [58]

and by Leiss [64]. Their inequalities, however, carry context conditions that stem from type

quantification, whereas our reduction is to inequalities that are completely “first-order”: there

are no implicit or explicit constraints on variables in equations and inequalities. This makes

semi-unification an instance of the “Generalized Unification Problem” [56] in that all instances

have trivial context conditions, namely none.

In the second section, we present the converse reduction. In fact we show that semi-

unification can be efficiently reduced to the Flat Mycroft Calculus, a small subclass of the

general Mycroft Calculus that admits at most one occurrence of the polymorphically typed

fix-operator and no let-operator. This can be interpreted as follows:

The difficulty of type inference is completely subsumed in a single polymorphically
typed recursive definition. Neither (polymorphic) let-bindings nor nested let- and fix-
bindings add anything to this problem (in contrast to a statement by Mycroft [85]).

This shows that the Mycroft Calculus, the Flat Mycroft Calculus, and semi-unification are

polynomial-time equivalent. This equivalence has several consequences. It answers in the af-

firmative a question raised by Kanellakis whether the PSPACE-hardness result for the Milner

Calculus [53] can be extended to the Flat Mycroft Calculus. Also, we obtain a log-space reduc-

tion of unification to typability in the Hindley Calculus, and as a consequence this shows that

the Hindley Calculus is P-complete under log-space reductions. Furthermore, we feel justified
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in claiming that semi-unification is the “right” combinatorial problem to look at when inves-

tigating the algorithmic properties of Mycroft-style polymorphic type inference since it comes

with minimal machinery (no quantification, no “syntax”, no scoping), yet captures the Mycroft

Calculus up to polynomial time.

Characterizations of type inference by inequality constraints involving quantified types in the

Second Order λ-calculus have been given in [79, 28]. The characterization of polymorphic type

inference by semi-unification in this chapter has also been proved, independently, by Kfoury et

al. [57]; in fact, they have extended it to include the Second Order λ-calculus limited to “rank

2”-derivations [65].

All reductions mentioned here refer to Karp-reductions; i.e., input transformations. Our

reductions from type inference to semi-unification preserve not only the basic decision problem

(typability), but also map the structure of typings to semi-unifiers. This connection is exploited

in chapter 5 to transfer results about the structure of semi-unifiers back to typings. In particular,

proof of existence of most general semi-unifiers can be interpreted as a simultaneous “algebraic”

proof of the principal typing property for all of CH, DM, MM, and FMM.
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4.1 Reduction of Typability to Semi-Unification

The reduction from the Mycroft Calculus to semi-unification has already been described in [38].

We present here a detailed presentation of that reduction with all details supplied that were

omitted in [38]. We also correct two minor errors in [38].

4.1.1 Syntax Trees and Variable Occurrences

The first step of the reduction consists of labeling the nodes in the syntax trees of λ-expressions

with monotypes. For this purpose we have to introduce some notions to formalize the concept

of syntax tree, binding, free and bound occurrences, and so on. The machinery necessary to do

this unfortunately encumbers the overall exposition of the material with heavy notation and a

multitude of definitions. This is mostly due to the fact that the intuitively quite clear concept

of an (variable or term) occurrence in an expression is difficult to formalize. Huet [45] defines

occurrences in expressions by terms and integer sequences that specify a “path” from the “root”

of that term to a subterm. We use a different presentation that makes the connection with the

graph-theoretic image inherent in the term “syntax tree” precise.

Definition 5 (Term graph)

Let A = (F, a) be a ranked alphabet and let V be a set of variables for A. A term graph

G over A and V is a quadruple (N,NF , E, L) where N is a set, NF ⊂ N , E : NF → N∗,

L : N → F ∪ V , and the following conditions hold.

1. L(NF ) ⊂ F and (∀n ∈ NF , f ∈ F ) LF (n) = f ⇒ |E(n)| = a(f);

2. L(N −NF ) ⊂ V .

The induced (directed) graph of a term graph G = (N,NF , E, L) is defined as GI =

(N(G), E(G)) where N(G) = N,E(G) = {(n, n′) : n ∈ NF , n
′ ∈ N | E(n) = (. . . , n′, . . .)}.

The term graph G is acyclic if its induced graph GI is acyclic.

The elements of N are called nodes. A node n is a functor node if n ∈ NF , and it is a

variable node if n ∈ N −NF . The mapping E is called an edge map, and if E(n) = (n1, . . . , nk)

then n is a parent of all ni, 1 ≤ i ≤ k, and the ni are the children of n. For n ∈ N , L(n) is the

label of n; L is called a labeling.
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Term graphs are graphical representations of terms that encode the term/subterm structure

explicitly in their edge maps. Their definition is necessarily complicated since their nodes are

labeled and the out-edges of every node are ordered. The digraph induced by a term graph is

just the information left if we ignore this particular “additional” structure.

In an acyclic term graph G = (N,NF , L, E) over A and V every node represents a unique

term. This representation is given by the following mapping [.] : N → T (A, V ).1

[n] =







x, n ∈ N −NF , L(n) = x

f([n1], . . . , [nk]), n ∈ NF , L(n) = f,E(n) = (n1, . . . , nk).

Let Aλ = ({λ,@, let,fix}, {λ 7→ 2,@ 7→ 2, let 7→ 3,fix 7→ 2}). Clearly, Aλ is an appropriate

alphabet for representing λ-expressions as first-order terms. We can now define what a syntax

tree for a λ-expression is: a special kind of term graph over Aλ. Since λ-expressions have

variable-binding operators we also define some concepts we shall need later.

Definition 6 (Syntax tree, free variable occurrences, bound variable occurrence map)

We define the notions of syntax tree, its bindings and scopes, and its free variable occur-

rences (FVO) and bound variable occurrence map (BVOM) by simultaneous induction on the

structure of λ-expressions e.

e = x (variable): Any one-node term graph T with N = {n} and L(n) = x is a syntax tree for

e with root n.

FVOT = {n},

BVOMT = {};

n is not a binding.

e = λx.e′: If T ′ is a syntax tree for e′ with root n′ and Tx is a vertex-disjoint syntax tree for x

with root nx (and no other node) then the term graph T that is the union of Tx and T ′

with an additional node n and L(n) = λ,E(n) = (nx, n
′) is a syntax tree for e with root

n.

FVOT = FVOT ′ − {n′ ∈ FVOT ′ | L(n′) = x},

BVOMT = BVOMT ′ ∪ {nx 7→ {n′ ∈ FVOT ′ | L(n′) = x}};

nx is a λ-binding; its scope is N(T ′) (the nodes in T ′).

1Note that [.] is implicitly parameterized by G.
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e = e′e′′: If T ′, T ′′ are vertex disjoint syntax trees for (e′, e′′) and with roots (n′, n′′), respectively,

then the term graph T that is the union of T ′ and T ′′ with an additional node n and

L(n) = @, E(n) = (n′, n′′) is a syntax tree for e with root n.

FVOT = FVOT ′ ∪ FVOT ′′ ,

BVOMT = BVOMT ′ ∪ BVOMT ′′ .

e = let x = e′ in e′′: If Tx, T
′, T ′′ are vertex disjoint syntax trees for (x, e′, e′′) and with roots

(nx, n
′, n′′), respectively, then the term graph T that is the union of Tx, T ′ and T ′′ with

an additional node n and L(n) = let, E(n) = (nx, n
′, n′′) is a syntax tree for e with root

n.

FVOT = FVOT ′ ∪ (FVOT ′′ − {n′′ ∈ FVOT ′′ | L(n′′) = x}),

BVOMT = BVOMT ′ ∪ BVOMT ′′ ∪

{nx 7→ {n′′ ∈ FVOT ′′ | L(n′′) = x}};

nx is a let-binding; its scope is N(T ′′).

e = fix x.e′: If Tx, T
′ are vertex disjoint syntax trees for x, e′ and with roots nx, n

′, respectively,

then the term graph T that is the union of Tx and T ′ with an additional node n and

L(n) = fix, E(n) = (nx, n
′) is a syntax tree for e with root n.

FVOT = FVOT ′ − {n′ ∈ FVOT ′ | L(n′) = x},

BVOMT = BVOMT ′ ∪ {nx 7→ {n′ ∈ FVOT ′ | L(n′) = x}};

nx is a fix-binding; its scope is N(T ′).

BVOM is a finite (single-valued) mapping from nodes to finite sets of nodes, and thus it

is treated notationally as a finite set of pairs n 7→ {n1, ..., nk}. Since all syntax-trees for a

λ-expression e are isomorphic (i.e., there is a bijection between nodes that transforms any one

syntax tree for e into any other syntax tree for e) we shall denote by T (e) a canonical syntax

tree for e and by N(e) the (variable and functor) nodes in T (e).

It is easy to see that our syntax trees are indeed trees: The induced digraph T I(e) is acyclic,

and every node has at most one inedge, and exactly one node — the root — has no inedge.
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4.1.2 Syntax-Oriented Type Inference Systems

The inference systems that describe our typing calculi are not syntax-oriented. This means

that for a given expression e there may be several proof steps in a derivation that are not

compositional in terms of the syntax of λ-expressions. This is solely due to the rules (INST)

and (GEN) (see Figure 2.1 in chapter 2) since proof steps involving any one of these rules do not

change the expression in a typing. In a syntax-oriented system a derivation for expression e has

essentially the same tree structure as a syntax tree for e. The advantage of a syntax-oriented

inference system is that we can think of a derivation for e as an attribution of the syntax tree

T (e).

In this subsection we present equivalent syntax-oriented type inference systems for CH, DM,

MM, and FMM. In the next subsection we show how every derivation in these syntax-oriented

inference systems can be translated into an attribution of T (e) that satisfies certain properties,

and vice versa.

The syntax-oriented versions of CH, DM, MM, FMM will be denoted by a “prime”: CH’,

DM’, MM’, FMM’. In general if X is any one of CH, DM, MM, FMM, then X’ is the corre-

sponding syntax-oriented version of X. The list of all axiom and rule schemes that occur in the

syntax-oriented inference systems is given in Figure 4.1. Table 4.2 shows which of the axioms

and rules are present in which syntax-oriented calculus, and which ones are not.

For completeness we have included those rules that are unchanged from the original inference

systems. Changed axioms and rules are marked with a “prime” (′). We have taken some liberties

in our notation; in particular the sequence ~α = α1 . . . αn may also be regarded as a set.

Note that the syntax-oriented inference systems do not contain either (INST) or (GEN). The

ability to instantiate polytypes to monotypes has been included into the new axiom, (TAUT’),

for variables; and the ability of (GEN) to form polytypes is localized in applications of the

polymorphic typing rules (LET-P’) and (FIX-P’). An additional benefit of the syntax-oriented

versions is that derivable typings are exclusively of the form A ⊃ e : τ where τ is a monotype.

This is one step in the direction of eliminating constraints involving quantified types. Somewhat

paradoxically this corresponds to traversing chronologically backwards the evolution of the

Milner Calculus from the type system with explicitly quantified type expressions [23] to Milner’s

original “implicit” distinction of generic and nongeneric type variables [76].

We shall now prove that the new inference systems are indeed no weaker (or stronger) than

the original systems. First we will need a technical proposition, though.
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Let A range over type environments; x over variables; e, e′ over λ-expressions; ~α over sequences
of type variables; τ, τ ′ over monotypes, and ~τ over sequences of monotypes. The following are
type inference axiom and rule schemes for CH’, DH’, MM’, FMM’.

Name Axiom/rule
(TAUT’) A{x : ∀~α.τ} ⊃ x : τ [~τ/~α]

(ABS) A{x : τ ′} ⊃ e : τ
A ⊃ λx.e : τ ′ → τ

(APPL) A ⊃ e : τ ′ → τ
A ⊃ e′ : τ ′

A ⊃ (ee′) : τ

(LET-M) A ⊃ e : τ
A{x : τ} ⊃ e′ : τ ′

A ⊃ letx = eine′ : τ ′

(LET-P’) A ⊃ e : τ
A{x : ∀~α.τ} ⊃ e′ : τ ′

(~α not free in A)
A ⊃ letx = eine′ : τ ′

(FIX-M) A{x : τ} ⊃ e : τ
A ⊃ fixx.e : τ

(FIX-P’) A{x : ∀~α.τ} ⊃ e : τ
(~α not free in A)

A ⊃ fixx.e : τ [~τ/~α]

Table 4.1: Syntax-oriented axioms and rules

Axiom/rule CH’ DM’ MM’ FMM’
TAUT’

√ √ √ √
APPL

√ √ √ √
ABS

√ √ √ √
LET-M

√
LET-P’

√ √
FIX-M

√ √
FIX-P’

√ √

The mark
√

indicates the corresponding axiom/rule is present in the calculus in whose column
it appears; blank space means it is not included. The Flat Mycroft Calculus is restricted to
λ-expressions with no let-operator and with only one occurrence of a fix-operator, which must
occur at top-level.

Table 4.2: The syntax-oriented versions of the Hindley, Milner, Mycroft, and Flat Mycroft type
inference calculi
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Proposition 2 Let X be CH, DM, MM, or FMM. For any type environment A, λ-expression

e, type expressions σ, σ′, and type variables ~α = α1 . . . αk, ~α′ = α′
1 . . . α

′
k we have

1. X ⊢ A ⊃ e : ∀~α.σ ⇔ X ⊢ A ⊃ e : ∀~α′.σ[~α′/~α]

2. X ⊢ A{x : ∀~α.σ} ⊃ e : σ′ ⇔ X ⊢ A{x : ∀~α′.σ[~α′/~α]} ⊃ e : σ′

Theorem 5 Let X = CH, DM, MM, or FMM. For any type environment A, λ-expression e,

type variables ~α = α1 . . . αk not free in A, and monotypes τ we have

X ⊢ A ⊃ e : ∀~α.τ ⇔ X ′ ⊢ A ⊃ e : τ

Corollary 3 For any e ∈ Λ, e is typable in X if and only if it is typable in X’.

For X = DM this theorem is similar to theorem 2.1 in [16]; and for X = MM it is almost

identical to proposition 2.1 in [58]. Note, however, that it is technically a little bit stronger since

it states that the type of e is literally identical in its quantifier-free part, without necessitating

a renaming of type variables. Similar proofs, localizing applications of the INST rule at the

leaves (variables) of λ-expressions can be found in [80] and [9].

Somewhat unsurprisingly, the theorem is a consequence of a stronger lemma that can be

shown by structural induction on derivations.

Lemma 4 Let X = CH, DM, MM, or FMM. For any type environment A, λ-expression e, type

variables ~α = α1 . . . αk, ~α not free in A, and monotypes τ we have

X ⊢ A ⊃ e : ∀~α.τ ⇔ (∀~τ ∈Mk)X ′ ⊢ A ⊃ e : τ [~τ/~α]

Proof:

⇒: We proceed by structural induction on MM-derivations. The other cases, CH

and DM, are simplifications of this proof; FMM is a subcase of MM.

(TAUT) If we have a trivial derivation involving only (TAUT) in MM, A{x : ∀~α.τ} ⊃ x : ∀~α.τ
then, by (TAUT’) in MM’ we have

A{x : ∀~α.τ} ⊃ x : τ [~τ/~α]

(ABSTR), (APPL) Trivial.
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(INST) If A ⊃ e : ∀α2 . . . αk.τ [τ1/α1] is proved in MM invoking the (INST)

rule,

A ⊃ e : ∀~α.τ
A ⊃ e : ∀α2 . . . αk.τ [τ1/α1]

then, since we may assume by proposition 2 that α1 is free in A we have,

by the induction hypothesis, that the conclusion

A ⊃ e : τ [τ1/α1][τ2/α2, . . . , τk/αk]

is derivable in MM’, for any τ2, . . . , τk since

τ [τ1/α1][τ2/α2, . . . , τk/αk] = τ [τ ′1/α1, . . . , τ
′
k/αk]

for some τ ′1, . . . , τ
′
k.

(GEN)

If A ⊃ e : ∀~α.τ is proved in MM with the (GEN) rule,

A ⊃ e : ∀α2 . . . αk.τ

(α1 not free in A)

A ⊃ e : ∀~α.τ
then, since ~α is not free in A by assumption, we have that A ⊃ e : τ [~τ/~α]

is provable in MM’, by the induction hypothesis.

(LET-P) Assume A ⊃ let x = e in e′ : ∀~α′.τ ′ is proved with the (LET) rule;

i.e.,

A ⊃ e : ∀~α.τ
A{x : ∀~α.τ} ⊃ e′ : ∀~α′.τ ′

A ⊃ let x = e in e′ : ∀~α′.τ ′

In view of proposition 2 we may assume, w.l.o.g., that ~α′ is not free in A and

A{x : ∀~α.τ}. By induction assumption we have, for any ~τ ′, that A ⊃ e : τ

and A{x : ∀~α.τ} ⊃ e′ : τ ′[~τ ′/~α′] are derivable in MM’. Consequently,

A ⊃ e : τ

A{x : ∀~α.τ} ⊃ e′ : τ ′[~τ ′/~α′]

(since ~α not free in A)

A ⊃ let x = e in e′ : τ ′[~τ ′/~α′] (LET-P’)

(FIX-P)

Assume that A ⊃ fixx.e : ∀~α.τ is derivable in MM by the (FIX-P) rule;

that is,
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A{x : ∀~α.τ} ⊃ e : ∀~α.τ
A ⊃ fixx.e : ∀~α.τ

W.l.o.g. (proposition 2) we may assume that ~α is not free in A and A{x :

∀~α.τ}. By the induction hypothesis we know that A{x : ∀~α.τ} ⊃ e : τ is

derivable in MM’, and consequently we get

A{x : ∀~α.τ} ⊃ e : τ

(since ~α is not free in A)

A ⊃ fixx.e : τ [~τ/~α] (FIX-P’)

⇐: It is sufficient to show X ′ ⊢ A ⊃ e : τ ⇒ X ⊢ A ⊃ e : ∀~α.τ . We shall prove that

every axiom and rule in MM’ is derivable in MM. The proof for X = DM and

CH is similar.

Note that it is easy (but not completely trivial) to show that

(INSTk) A ⊃ e : ∀~α.τ
A ⊃ e : τ [~τ/~α]

and

(GEN)k A ⊃ e : τ

(~α not free in A)

A ⊃ e : ∀~α.τ
are derivable rule schemes in MM.

(TAUT’) Let MM ′ ⊢ A{x : ∀~α.τ} ⊃ x : τ [~τ/~α]. We have the following proof

tree in MM:

A{x : ∀~α.τ} ⊃ x : ∀~α.τ (TAUT)

A{x : ∀~α.τ} ⊃ x : τ [~τ/~α] (INSTk)

(APPL), (ABS) Trivial.

(LET-P’) In MM’ we have

A ⊃ e : τ

A{x : ∀~α.τ} ⊃ e′ : τ ′

(~α not free in A)

A ⊃ let x = e in e′ : τ ′

and in MM

A ⊃ e : τ

(~α not free in A)

A ⊃ e : ∀~α.τ (GENk) A{x : ∀~α.τ} ⊃ e′ : τ ′

A ⊃ let x = e in e′ : τ ′ (LET-P)
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(FIX-P’) In MM’ we have the rule

A{x : ∀~α.τ} ⊃ e : τ

(~α not free in A)

A ⊃ fixx.e : τ [~τ/~α]

and in MM

A{x : ∀~α.τ} ⊃ e : τ

(~α not free in A)

A{x : ∀~α.τ} ⊃ e : ∀~α.τ (GENk)

A ⊃ fixx.e : ∀~α.τ (FIX-P)

A ⊃ fixx.e : τ [~τ/~α] (INSTk)

Proof: (Proof of theorem)

Immediate from Lemma 4.

4.1.3 Consistently Labeled Syntax Trees

In this section we define (type) labeled syntax-trees and a notion of consistency of such labelings.

We shall prove that consistently labeled syntax-trees and derivations in the syntax-oriented

versions of our type inference systems are in a one-to-one relation.

Definition 7 (Typed syntax tree, generic/nongeneric type variable occurrences, well-typed syn-

tax tree)

A typed syntax tree T τ is a syntax tree T with a function τ : N(T ) → M , called a type

labeling.

For a given type environment A, expression e with syntax tree T = T (e), and type labeling τ

for T , we say a type variable α is nongeneric at node n′′ in T if n′′ is in the scope of a λ-binding

n, E(n) = (nx, n
′), and α occurs (free) in τ(nx); or if α occurs free in A. If α is not nongeneric

at n′′, it is generic at n′′. NGTV (n′′) denotes the set of all nongeneric type variables at n′′,

and GTV (n′′) is TV −NGTV (n′′).2

For fixed syntax-tree T = (N,NF , E, L) of λ-expression e and type labeling τ the labeled

syntax tree T τ is (MM-)consistently labeled under type assignment A if it satisfies the following

properties.

1. (Local conditions)

2Of course, NGTV (n′′) and GTV (n′′) are parameterized over A, T (e), and τ .
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For all n ∈ NF ,

(a) L(n) = λ,E(n) = (n′, n′′)⇒ τ(n) = τ(n′)→ τ(n′′)

(b) L(n) = @, E(n) = (n′, n′′)⇒ τ(n′) = τ(n′′)→ τ(n)

(c) L(n) = let, E(n) = (n′, n′′, n′′′)⇒ τ(n′) = τ(n′′) ∧ τ(n′′′) = τ(n)

(d) L(n) = fix, E(n) = (n′, n′′)⇒ τ(n′) = τ(n′′) ∧ (∃R)R|GTV (n)(τ(n
′′)) = τ(n)

2. (Scoping conditions)

For all n ∈ N ,

(a) if n is a λ-binding then

(∀n′ ∈ BVOMT (n) τ(n) = τ(n′)

(b) if n is a let-binding then

(∀n′ ∈ BVOMT (n))(∃R)R|GTV (n)(τ(n)) = τ(n′)

(c) if n is a fix-binding then

(∀n′ ∈ BVOMT (n))(∃R)R|GTV (n)(τ(n)) = τ(n′)

3. (Context condition)

For all n ∈ FVOT , if L(n) = x and A(x) = ∀~α.τ ′ then (∃R)R|~α(τ ′) = τ(n).

The labeled tree T τ is DM-consistently labeled if it is MM-consistently labeled and the con-

ditions

For all n ∈ N ,

• L(n) = fix, E(n) = (n′, n′′)⇒ τ(n′) = τ(n′′) = τ(n)

• if n is a fix-binding then

(∀n′ ∈ BVOMT (n)) τ(n) = τ(n′)

are satisfied. T τ is CH-consistently labeled if it is DM-consistently labeled and additionally the

following constraint is satisfied.

For all n ∈ N ,

• if n is a let-binding then

(∀n′ ∈ BVOMT (n)) τ(n) = τ(n′)
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Figure 4.1: A consistently labeled syntax tree

Let X = CH, DM, or MM. An expression e is X-consistently labelable if there is a type

labeling τ for syntax tree T = T (e) such that T τ is X-consistently labeled.

Consider the λ-expression g(fix f.λx.ff) in the type environment {g : ∀α.(α→ α)→ α}. A

consistently labeled syntax tree, T , for e is presented in Figure 4.1.

The syntax tree in the example has nine nodes, n1, . . . , n9. Its only free variable occurrence

is the node n2; that is, FVOT = {n2}. The node n4 is a fix-binding, and n5 is a λ-binding.

The bound variable occurrence map associates with each one of these bindings the set of all

their applied occurrences: BV OMT = {n4 7→ {n8, n9}, n5 7→ ∅}. Since A contains no free type

variable, all type variables are generic at nodes n1, n2, n3, n4, n5, and n6. Since a occurs in the

type labeling of n6, a is nongeneric at nodesn7, n8, and n9; all other type variables are generic

at n7, n8, n9. Note that T is consistently labeled since all the conditions in definition 7 are

satisfied; in particular, the types at the applied occurrences of f n8 and n9 are substitution

instances of the type at the fix-binding of f , node n4, and a, b are generic type variables at n4.

The following theorem shows that derivations in the syntax-oriented type inference systems

are characterized by corresponding consistently labeled syntax trees and vice versa.

Theorem 6 Let X = CH, DM, MM. For A, e, τ ′, X ′ ⊢ A ⊃ e : τ ′ ⇔ (∃τ) T (e)τ is an X-

consistently labeled syntax tree for e with root n, and τ(n) = τ ′.
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Proof:

We shall only give the proof for X = MM. The modifications for the other typing

disciplines are trivial.

(⇒) Let A0, e0 be fixed. Let T0 = T (e0) be a syntax tree for e0 with root n0, as

usual. Let P0 be an MM’-proof tree for A0 ⊃ e0 : τ ′0. Since MM’ is syntax-

directed, P0 and T0 are isomorphic, and consequently we can define a mapping

τ0 : N(T0)→M by

τ0(n,A ⊃ e : τ) =

case e =

x (variable):

{n 7→ τ}

λx.e′′: for E(n) = (n′, n′′), and

A{x : τ ′} ⊃ e′′ : τ ′′

A ⊃ e : τ

in the proof tree P0,

{n 7→ τ, n′ 7→ τ ′} ∪ τ0(n′′, A{x : τ ′} ⊃ e′′ : τ ′′)

e′e′′: for E(n) = (n′, n′′), and

A ⊃ e′ : τ ′

A ⊃ e′′ : τ ′′

A ⊃ (e′e′′) : τ

in the proof tree P0,

{n 7→ τ} ∪ τ0(n′, A ⊃ e′ : τ ′) ∪ τ0(n′′, A ⊃ e′′ : τ ′′)

let x = e′′ in e′′′: for E(n) = (n′, n′′, n′′′), and

A ⊃ e′′ : τ ′′

A{x : ∀~α.τ ′′} ⊃ e′′′ : τ

A ⊃ let x = e′′ in e′′′ : τ

in the proof tree P0,

{n 7→ τ, n′ 7→ τ ′′} ∪ τ0(n
′′, A ⊃ e′′ : τ ′′)

∪ τ0(n
′′′, A{x : ∀~α.τ ′′} ⊃ e′′′ : τ)
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fix x.e′′: for E(n) = (n′, n′′), and

A{x : ∀~α.τ ′′} ⊃ e : τ ′′

A ⊃ fix x.e : τ

in the proof tree P0,

{n 7→ τ, n′ 7→ τ ′′} ∪ τ0(n′′, A{x : ∀~α.τ ′′} ⊃ e : τ ′′)

and, furthermore, τ0(n0, A0 ⊃ e0 : τ ′0) = τ ′0.

Now, it is easy to check that T τ0
0 is an MM-consistently labeled syntax tree

with root n0 and τ0(n0) = τ ′0.

(⇐) Let A0, e0 be fixed. Let T τ0
0 be an MM-consistently labeled syntax tree for e0

with root n0. There is an assignment A from N(T0) to type environments that

satisfies the following properties.

A(n0) = A0 and for all n ∈ N(T0),

• if L(n) = λ,E(n) = (n′, n′′), then

A(n′) = A(n′′) = A(n){L(n′) : τ0(n
′)}

• if L(n) = @, E(n) = (n′, n′′), then

A(n′) = A(n′′) = A(n)

• if L(n) = let, E(n) = (n′, n′′, n′′′), then

A(n′) = A(n′′′) = A(n){L(n′) : ∀~α(n′).τ0(n
′)}

• if L(n) = fix, E(n) = (n′, n′′), then

A(n′) = A(n′′) = A(n){L(n′) : ∀~α(n′).τ0(n
′)}

where ~α(n′) consists of all the generic variables at node n′ that occur in τ0(n
′).

Now it is straightforward, by induction on the syntax of e0, to show that

MM ′ ⊢ A(n) ⊃ [n] : τ0(n) for all n ∈ N(T0).

The proof shows that actually something even stronger is true. We can start with a con-

sistently labeled syntax tree for e, construct a proof tree for e from it via the encoding A, and

then generate a consistent labeling for e again via τ0 from the proof tree. This labeling turns

out to be the same one we started out with.

4.1.4 Extraction of Equations and Inequalities

In this section we make the connection between the consistent tree labeling characterization

and solving a system of equations and inequalities (SEI) precise.
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αn1 = αn2 → αn9

αn9 = αn12

αn3 = αn8

αn8 = αn4 → αn7

αn5 = αn6 → αn7

αn10 = αn11 → αn12

αn2 = αn6

αn4 = αn5

αn3 ≤ αn10

αn3 ≤ αn11

Table 4.3: Incorrect SEI for untypable example

The tree labeling characterization gives us a different (yet in principle familiar) formulation

of type inference problems. If we initially associate a distinct type variable αn with every

node n in Te then the tree characterization gives us a collection of simultaneous constraints of

equational form, such as αn = αn′ → αn′′ and, essentially, of inequational form αn′′ ≤ αn. A

connection between consistent labelings and semi-unification seems close at hand. We have to

be a little bit careful, though, since the quotient substitutions in the inequational constraints

of consistent labelings carry context conditions: Their domains are restricted to generic type

variables, the collection of which in turn is a function of the position of the node in the syntax

tree where the constraint has to hold. We could always keep track of such context conditions in

the form of conditional inequalities (GTV (n))αn′′ ≤ αn — this is essentially the “Generalized

Unification Problem” of [57] — but this is not necessary. As we shall see in this subsection, the

context conditions can be encoded efficiently in terms of additional (unconditional) inequalities

the specific nature of which captures precisely the fact that the set of generic type variables is

generally different from node to node in the same syntax tree. This will indeed lead us to a

reduction of consistent labeling to semi-unification.

We shall consider a small, but instructive example due to Kfoury to see that it would be

wrong in DM and MM to naively label a syntax tree with distinct type variables and then to

collect equations from equality constraints in the consistent labeling definition and inequalities of

the form αn′′ ≤ αn when the consistent labeling constraint reads, say, R|GTV (n)(τ(n
′′)) = τ(n)

(see constraint 1d).

Let e0 ≡ λy.let f = λx.(xy) in (ff). A syntax tree T0 = T (e0) with nodes n1, . . . , n12 is

given in Figure 4.2. By proceeding in the naive manner outlined above we associate distinct

type variables αn1, . . . , αn12 with each node and collect constraints for an MM-consistent (or

DM-consistent) labeling. The equations and inequalities thus constructed are displayed in Table

4.3.
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Figure 4.2: An untypable expression

This SEI is solvable. For example, the substitution

S = {αn1 7→ (αn2 → αn9), αn3 7→ ((αn2 → αn7)→ αn7),

αn4 7→ (αn2 → αn7), αn5 7→ (αn2 → αn7),

αn6 7→ αn2, αn8 7→ ((αn2 → αn7)→ αn7),

αn10 7→ (((β1 → αn9)→ αn9)→ αn9),

αn11 7→ ((β1 → αn9)→ αn9), αn12 7→ αn9}

where β1 is a “new” type variable not occurring anywhere in the original constraints is a semi-

unifier, in fact the most general in a sense to be made precise in chapter 5. Unfortunately,

however, e0 is untypable. This can be seen by looking at the quotient substitutions for the

solution S. The quotient substitution for the first inequality is R1 = {αn2 → (β1 → αn9), αn7 →
αn9} and for the second inequality it is R2 = {αn2 → β1, αn7 → αn9}. Since αn2 is the type

of the left node of the λ-binding n1, the type variable αn2 is nongeneric at nodes n10 and n11

and consequently our quotient substitutions violate the stipulation that their domain may only

include generic type variables. Because of the two occurrences of β1 there is no way of simply

“making” αn2 equal to both R1(αn2) and R2(αn2). Since every other solution of the above
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constraints must be a substitution refinement of S (the technical details are in chapter 5) there

is also no way of doing this for any other substitution. The expression e0 is not consistently

labelable, and consequently it is untypable (in the Mycroft Calculus and thus, trivially, in the

Hindley and Milner Calculi).

If we can somehow encode with equations and inequalities the context constraint that certain

type variables (the nongeneric ones) may not be instantiated to other variables or terms by

quotient substitutions of candidate solutions then a consistent labeling can still be reduced to

pure semi-unification. This is indeed possible and actually quite simple3 Consider an inequality

τ1 ≤ τ2 containing variable α. Notice that the quotient substitution R of any uniform semi-

unifier S of {τ1 ≤ τ2, α ≤ α} will not instantiate any of the type variables occurring in S(α).

This device makes it possible for a solution to instantiate the variable α, but it “protects” the

resulting term from being instantiated any further by a quotient substitution.

With this insight we can now adjoin the inequality αn2 ≤ αn2 with each of our two inequality

constraints in Table 4.3, thus forming small groups of inequalities that have to share the same

quotient substitution.4 The resulting SEI is indeed unsolvable, in correspondence to the fact that

e0 is not consistently labelable. The technical details showing correctness of the transformation

that

1. collects equational and inequality constraints in a “naive” manner (in accordance with

the consistent labeling requirements), and

2. adjoins inequalities of the form α ≤ α for every “naively” collected inequality that arises

from a node that is in the scope of a λ-binding,

is presented below.

Definition 8 Let T0 = T (e0) be a syntax tree for e0 with root n0, and let t : N(T0) → TV be

an injective mapping from the nodes in T0 to the set of type variables. The canonical system of

equations and inequalities SEIt(e0) = SEIMM
t (e0) is (E , I) where

E = {t(n) = t(n′)→ t(n′′) : n, n′, n′′ ∈ N(T0) | L(n) = λ,E(n) = (n′, n′′)}

∪ {t(n′) = t(n′′)→ t(n) : n, n′, n′′ ∈ N(T0) | L(n) = @, E(n) = (n′, n′′)}

3But it has been overlooked by others approaching the same problem (see [58]).

4This is the reason why we opted to introduce SEI’s with groups of inequalities instead of simple inequalities.



50

∪ {t(n′) = t(n′′), t(n′′′) = t(n) : n, n′, n′′, n′′′ ∈ N(T0) | L(n) = let,

E(n) = (n′, n′′, n′′′)}

∪ {t(n′) = t(n′′) : n, n′, n′′ ∈ N(T0) | L(n) = fix, E(n) = (n′, n′′)}

∪ {t(n′) = t(n′′) : n′λ-binding, n′′ ∈ BVOMT0(n
′)}

for every let- or fix-binding n, n′ ∈ BVOMT0(n), we define

In,n′ = {t(n) ≤ t(n′)} ∪ {t′′ ≤ t′′ : t′′ ∈ NGTV (n)};

for n, n′, n′′ ∈ N(T0) such that L(n) = fix and E(n) = (n′, n′′),

Ifix

n,n′′ = {t(n′′) ≤ t(n)} ∪ {t′′ ≤ t′′ : t′′ ∈ NGTV (n)};

and finally,

I = {In,n′ : (n, n′) ∈ BVOMT (e0)} ∪ {Ifix

n,n′′ : n, n′, n′′ ∈ N(T0)|L(n) = fix, E(n) = (n′, n′′)}.

We shall usually drop the subscript from SEIMM
t (e) and simply write SEIMM (e) since the

specific nature of t is obviously irrelevant. In a similar fashion we can define SEIX(e) for X =

CH, DM.

Theorem 7 Let X = CH, DM, or MM; let T0 = T (e0) be a syntax-tree for e0 with root n0; let

t : N(T0)→ TV be an arbitrary injective map; and let τ be an arbitrary monotype.

There is an X-consistent type labeling τ0 for T0, with τ0(n0) = τ , if and only if there is a

solution S of SEIX
t (e) such that S(t(n0)) = τ .

Proof:

As always we shall only consider the case X = MM.

(⇒) Assume T τ0
0 is a well-typed syntax tree for e0 such that τ0(n0) = τ . Let

SEIt(e0) = (E , I) as defined above. Define S = {t(n) 7→ τ0(n) : n ∈ N(T0)}.
By assumption, S(t(n0)) = τ . Furthermore it is easy to see, by checking all

four major cases, that all equations in E are satisfied. Now consider In,n′ where

n is a let- or fix-binding and n′ is a bound occurrence of n. We have

S(In,n′) = {S(t(n)) ≤ S(t(n′))} ∪ {S(t′′) ≤ S(t′′) : t′′ ∈ NGTV (n)}

= {τ0(n) ≤ τ0(n′)} ∪ {τ0(n′′) ≤ τ0(n′′) :

FV (τ0(n
′′)) ⊂ NGTV (n)}
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Since T τ0
0 is consistently labeled there is a substitution Rn,n′ such that

Rn,n′ |GTV (n)(τ0(n)) = τ0(n
′).

This implies thatRn,n′ |GTV (n)(τ0(n
′′)) = τ0(n

′′) for all n′′ such that FV (τ0(n
′′)) ⊂

NGTV (n). A similar analysis can be performed for every Ifix

n,n′′ . This shows

that S is a (proper, nonuniform) semi-unifier of SEIt(e0).

(⇐) Assume S is a solution of SEIt(e0) such that S(t(n0)) = τ . Let T0 be a

syntax tree for e0 with root n0 as always. Define τ0(n) = S(t(n)), n ∈ N(T0).

Clearly, τ0(n0) = τ by assumption. We shall show that T (e0)
τ0 is a well-typed

syntax tree. Since S is a solution of SEIt(e0) = (E , I) all equalities in S(E) are

satisfied and it is easy to see that all equational constraints hold for T (e0)
τ0

to be well-typed. Observe that, by definition of NGTV, the set of non-generic

type variables at a node n in T τ0
0 is exactly the set of type variables occurring

in any τ0(n
′) where n′ is a λ-binding whose scope contains n. We also know

that for any In,n′ ∈ I there is a quotient substitution Rn,n′ such that

Rn,n′(S(t(n))) = S(t(n′))

Rn,n′(S(t′′)) = S(t′′), t′′ ∈ NGTV (n).

This implies

Rn,n′(τ0(n)) = τ0(n
′)

Rn,n′(τ0(n
′′)) = τ0(n

′′), n′′is a λ-binding whose scope contains n.

By the observation above we can conclude thatRn,n′ is the identity onNGTV (n),

which shows that Rn,n′ = Rn,n′ |GTV (n) and thus Rn,n′ |GTV (n)(τ0(n)) = τ0(n
′).

A similar argument holds for Ifix

n,n′′ ∈ I.

It is obvious that analogous transformations, only with “more” equational constraints and

fewer inequality constraints, can be performed that give reductions from DM-consistent labeling,

respectively CH-consistent labeling, to semi-unification. Actually, in the Hindley Calculus there

is no problem with context conditions on inequalities in labeled syntax trees since there are

no inequational constraints in the first place: all constraints are equational. Consequently

the resulting SEI contains only equations, and classical unification produces the most general

unifier rapidly for an appropriate representation of type expressions (namely term graphs) and

substitutions (“downward closed” equivalences on term graphs). This establishes the connection
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of type inference with unification (e. g., see [90]). More specifically, it is easy to see that for an

expression e of size n we can generate in linear or almost-linear time on a RAM (depending on

the encoding of variables) a set E of monotype equations of size O(n) such that e is typable if

and only if E is unifiable. E can be checked for unifiability in linear [89, 72] or almost-linear time

[43]. This leads to a linear or almost-linear upper bound for the time complexity of deciding

typability in the Hindley Calculus. Since the additional inequational constraints in the Milner

Calculus seem rather innocuous at first sight, this may have led researchers to incorrectly claim

linear or quadratic bounds on type inference for the whole Milner Calculus [65, 81].

Theorem 8 Let X = CH, DM, MM, or FMM. Typability in X is polynomial-time reducible to

semi-unifiability.

Proof:

Note that constructing SEI(e) for X can easily be done in polynomial-time. By the

three previous theorems SEI(e) is solvable if and only if e is typable in X.

Corollary 5 Semi-unifiability is PSPACE-hard (for polynomial-time reductions).

Proof:

Kanellakis and Mitchell show that the Milner-Calculus is PSPACE-hard [53]. The

result follows by theorem 8.
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4.2 Reduction of Semi-Unification to the Flat Mycroft Calculus

Semi-unification is a problem without nesting, scoping, context conditions on inequalities, or

quantification of (type) variables. These play an eminent role in the definition of typability in

the Mycroft Calculus. Nonetheless, as we have seen, the Mycroft Calculus can be efficiently

reduced to semi-unification. The Flat Mycroft Calculus is a typing discipline without nesting of

polymorphically typed language constructs. Since semi-unification is a basically “flat” problem

— scoping and nesting do not enter into its definition — it should not come as a surprise

that semi-unification cannot only be reduced to the Mycroft Calculus, but in fact to the Flat

Mycroft Calculus. Reductions from unification-like problems to typing problems have grown in

importance since they allow us to prove lower bounds on the combinatorially simpler unification-

like problems and then extend them to their “corresponding” typing problems. Kanellakis and

Mitchell proved a combinatorial problem they called polymorphic unification to be PSPACE-

hard and extended this lower bound via a polynomial-time reduction to the Milner Calculus

[53]. We provide log-space reductions from unifiability to typability in the Hindley Calculus,

and from semi-unifiability to typability in the Flat Mycroft Calculus. This shows that

1. typability in the Hindley Calculus is P-complete,

2. the Milner Calculus can be reduced to the Flat Mycroft Calculus thus extending the

PSPACE-hardness result for the Milner Calculus to the Flat Mycroft Calculus and thereby

answering a question raised by Kanellakis, and

3. the Mycroft Calculus, the Flat Mycroft Calculus, and semi-unification are polynomial-time

equivalent.

4.2.1 Simplification of Systems of Equations and Inequalities

So far we have used the term “semi-unification” as if it was a single problem while actually it is

parameterized by the ranked alphabet over which terms range. In this subsection we show that

our usage is justified in that every SEI over any alphabet can be reduced to an equivalent (see

below) SEI over the alphabet A2 = ({f}, {f 7→ 2}) that contains only a single binary functor. In

chapter 5 we shall see that this is the “minimal” possible alphabet, since no nonlinear alphabet

can encode enough information to admit the same kind of reduction. To make these reductions

effective and efficient we shall assume that infinite ranked alphabets have functors encoded by

the binary numerals.
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Definition 9 (Equivalent systems of equations and inequalities)

Let S and S′ be SEI’s, possibly over different alphabets. S and S′ are equivalent if

1. S is semi-unifiable if and only if S′ is semi-unifiable, and

2. S is uniformly semi-unifiable if and only if S′ is uniformly semi-unifiable, and

3. S is unifiable if and only if S′ is unifiable.

Replacement of Functors by Constants

Let A[] be an alphabet that has exactly one functor for any given arity k ≥ 0. We shall always

write [M1, . . . ,Mk] for the term built up from M1, . . . ,Mk the unique k-ary functor in A[]. We

shall address the collection of all these constructors as the list functor since we may view [. . .]

as a single functor that has no arity requirements. W.l.o.g., we may always assume that A[] is

disjoint5 from any other alphabet we may consider. Let A be any ranked alphabet, and let Ac

be the alphabet that consists of A[] and all the functors from A, but such that every functor

from A has its arity changed to 0. Define the transformation function µc : T (A, V )→ T (Ac, V ),

µc(x) = x, if x ∈ V
µc(f(M1, . . . ,Mn)) = [f, [µc(M1), . . . , µc(Mn)]], otherwise

The transformation µc is obviously well-defined and can be extended to SEI’s. We have the

following lemma.

Lemma 6 For all S ∈ Γ(A, V ), S and µc(S) are equivalent.

The translation of f5(f2(x1), x2) via µc returns [f5, [[f2, [x1]], x2]]. It is easy to see that µc

can be implemented by a one-way finite state transducer (1FSM-reduction).

Elimination of Constants

Since we have assumed that the constants in Ac are encoded over the binary (unranked) alphabet

{0, 1}, we can represent any constant by a list over 0 and 1.

Let Ac be as above, and let A01 = ({0, 1}, {0 7→ 0, 1 7→ 0}) ∪A[], and define

5One can think of ranked alphabets as sets whose elements carry an attribute. In this sense we will often
treat ranked alphabets simply as sets.
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µ01(x) = x, x ∈ V
µ01(f) = [b1, . . . , bk], f is encoded by b1 . . . bk ∈ {0, 1}∗

µ01([M1, . . . ,Mn]) = [µ2(M1), . . . , µ2(Mn)]

Again, µ01 can be canonically extended to SEI’s over Ac. The correctness of this transfor-

mation is guaranteed by the next lemma.

Lemma 7 For all SEI’s S ∈ Γ(Ac, V ), S and µ01(S) are equivalent.

The encoding of [f5, [[f2, [x1]], x2]] via µ01 is [[1, 0, 1], [[[1, 0], [x1]], x2]]. Again, this translation

can be implemented by a one-way finite state machine.

Elimination of List Constructor

So far all reductions were 1FSM-reductions. In [37] we presented a 1FSM-reduction of A01 into

the set of pure (let- and fix-free) λ-expressions that translated unifiability of SEI’s into CH-

typability. Of course, this reduction is very sensitive to the particular representation of terms,

SEI’s and λ-expressions, but it is interesting to note that this translation is a purely “lexical”

process with respect to the standard “string” representation of terms and λ-expressions that we

have assumed throughout. Roughly, the only place where “parsing” is necessary in the following

steps is in eliminating the list constructor. Even this parsing is “harmless” in that it can be

performed by a log-space bounded transformation.6 The transformation below is inspired — in

fact a direct transliteration — of the encoding into the λ-calculus that we used in [37].

Let A01 be as above. Recall that A2 is the alphabet with only one functor, which is binary.

Let x0 be a variable in V , and let i : V → V be an injective map whose range does not contain

x0. Define µ2 as follows.

µ2(x) = i(x), if x ∈ V
µ2(0) = f(x0, f(x0, x0))

µ2(1) = f(x0, f(x0, f(x0, x0)))

µ2([]) = f(x0, x0)

µ2([M1, . . . ,Mn]) = f(f(µ2(M1), N), x0)

if µ2([M2, . . . ,Mn]) = f(N, x0)

6Context-free languages are in general not known to be contained in DLOG [2].
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The different encodings of 0, 1 and [] indicate why this reduction works: functor “clashes”

(failure due to different functors) in unification or semi-unification instances are encoded by so-

called “occurs” checks (see chapter 6). No two of the encodings of 0, 1, [] can unify or semi-unify.

The x0 in the first argument position of all encodings requires that any quotient substitution

map x0 to x0, and the second argument position would force an instantiation of x0 were it to

succeed, which is impossible (this is akin to the “adjoining” trick in the reduction of typability to

semi-unification).7 Lists of one length can never be unified or semi-unified with lists of another

length (or 0 and 1) for essentially the same reason, only this time the x0 that forces quotient

substitutions to map x0 to x0 is in the second argument position (for no particular reason but to

maintain the analogy to the above-mentioned translation into the λ-calculus). Since x0 occurs

also — deeply nested — in the first argument of the encodings of lists, semi-unification of lists of

different length could only succeed if a quotient substitution maps a nonvariable term containing

x0 to x0, which is manifestly impossible, or if it maps x0 to a nonvariable term containing x0,

which is also impossible since x0 is “fixed” in the second argument. These considerations lead

to the following lemma.

Lemma 8 For all SEI’s S ∈ Γ(A01, V ), S and µ2(S) are equivalent.

For lemmas 6, 7, and 8 we may assume, by proposition 21 in chapter 3, that any given SEI

S is in “normal form”; that is, it has only one equation and one inequality per inequality group.

The proofs then proceed by induction on the number of inequalities and within each inequality

by structural induction on terms.

Theorem 9 Semi-unifiability, uniform semi-unifiability, and unifiability over any ranked al-

phabet A are log-space reducible to semi-unifiability, uniform semi-unifiability, and unifiability,

respectively, over alphabet A2.

Proof:

By lemmas 6, 7, and 8, and the definition of equivalence of SEI’s.

Henceforth we shall assume that, w.l.o.g., our ranked alphabet over which terms are formed

is A2, the minimal nonlinear alphabet that contains only one functor, f , which is binary.

7Of course, this argument remains valid if we substitute any term whatsoever for x0 (but the same one for
every occurrence of x0).
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4.2.2 Reduction of Term Equations to the Hindley Calculus

Terms over A2 (or even A[]) can be encoded in the familiar way in which lists are usually

represented in the pure λ-calculus. We will show that this encoding is in fact a log-space

reduction of unifiability to the typability problem in the Hindley Calculus (with only pure

λ-expressions), which we will also call the simple typability problem.

λ-representation of Terms

We shall assume, w.l.o.g., that the set V of variables we have used in terms is identical to the set,

also denoted by V , of variables that can occur in λ-expressions. Let also x0 be a distinguished

element of V , and i : V → V an injective mapping whose range does not contain x0. Define the

mapping µλ : T (A2, V )→ Λ as follows.

µλ(x) = i(x), if x ∈ V
µλ(f(M1,M2)) = λx0.x0µλ(M1)µλ(M2)

We shall abbreviate λx0.x0e1e2 to [e1, e2]. Generally, the expression λx0.x0e1 . . . ek will be

written [e1, . . . , ek]. Instead of µλ(M) we may also write M̄ . We let x0 be a “reserved” variable

that cannot occur in any term, whence we may assume that i is the identity function.

The map µλ not only gives us an encoding of terms as λ-expressions, but also in the form

of the types of these λ-expressions in CH, DM, MM, and FMM: there is no difference as to

which typing system we choose since the encodings are only pure λ-expressions, and for pure

λ-expressions the typing rules in our type calculi are identical. To encode a term equation

M = N as a pure λ-expression all we have to do now is to “force” the types of the M and N

to be equal. This is easily achieved by applying λ-bound variable, g, to both M and N . Since

we can assume that a nontrivial unifiability problem instance consists of only one equation (see

proposition 21 in chapter 3) we can thus extend µλ to a map µλ : Γ(A2, V )→ Λ by

µλ(M = N) = λg.[gM̄ , gN̄ ] where g 6∈ FV (M̄) ∪ FV (N̄) ∪ {x0}.

For convenience’ sake (and by abuse of notation) we will simply write M̄ = N̄ for λg.[gM̄, gN̄ ]

(which is already an abbreviation).

Correctness

It is easy to see that µλ can be computed in logarithmic space. To complete the reduction from

unifiability to simple typability, it remains to be shown that µλ is indeed a problem reduction;
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more precisely, we will show that for all M,N ∈ T (A2, V ), it holds that the SEI (M = N) is

solvable if and only if there is a typing for the λ-expression λ~x.M̄ = N̄ derivable in the Hindley

Calculus where ~x = FV (M̄) ∪ FV (N̄) Again, as in the first half of this chapter, any sequence

~x may also be viewed as a set.

There are many possible proofs of correctness. For example, we can try to show that the

principal types of M̄ and N̄ are unifiable if and only if M,N are unifiable. This is quite

apparently true, but it is technically rather messy to prove since there are in general many

more type variables in the principal types of M̄ and N̄ than there are variables in M and

N . For this reason we take an approach in which we get rid of these extra type variables by

“normalizing” principal types.

As a proviso to the following discussion let us note that λ~x.(M̄ = N̄) is a closed λ-expression,

and it is simply typable if and only if {~x : ~τ} ⊃ M̄ = N̄ : τ ′ is derivable where ~τ is a sequence

of monotypes and τ ′ is also a monotype.8 For this reason we shall only work with monotype

environments A here; that is, A(x) ∈M for all x ∈ domA.

Unifiability Implies Typability

First we show that if a pair of terms is unifiable then the λ-representation of this unifiability

instance is simply typable.

Define the canonical type mapping τ that maps type environments and terms to monotypes

as follows.

τ(A, x) = A(x), x ∈ V
τ(A, [M1, . . . ,Mk]) = (τ(A,M1)→ . . .→ τ(A,Mk)→ α0)→ α0

Here α0 denotes a fixed type variable. Once more, we abbreviate (τ1 → . . .→ τk → α0) → α0

to [τ1, . . . , τk]. The following proposition is easy to prove by structural induction over terms.

Proposition 9 Let A,A′ be type environments, and M,N1, . . . , Nk terms whose variables are

contained in the domain of A.

1. τ(A,M) is well-defined and unique.

2. If A is injective then τ is injective with respect to its second argument; i.e., τ(A,N1) =

τ(A,N2) implies N1 = N2.

8The notation {~x : ~τ} is an obvious short-hand.
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3. The typing A ⊃ M̄ : τ(A,M) is derivable.

4. If {x1, . . . , xn} is the domain of A then A = {x1 : τ(A, x1), . . . , xn : τ(A, xn)}

Given a substitution σ : V → T (A2, V ) on terms (not type expressions) we define σ(A), the

application of σ to a type environment A = {x1 : τ1, . . . , xn : τn}, as follows.

σ(A) = {x1 : τ(A, σ(x1)), . . . , xn : τ(A, σ(xn))}.

Note that according to proposition 9, part 4, ι(A) = A for all A where ι denotes the identity

substitution.

Lemma 10 For all termsM , type environments A, and term substitutions σ, whenever domA ⊃
FV (M̄) ∪ FV (N̄), then τ(A, σ(M)) = τ(σ(A),M).

Proof:

We prove this lemma by structural induction on M .9

• (Base case) If M is a variable, xi, then

τ(σ(A),M) = τ(σ(A), xi)

= σ(A)(xi)

= τ(A, σ(xi)) (by definition of σ(A))

= τ(A, σ(M))

• (Inductive case) If M = [N1, . . . , Nk] for some terms N1, . . . , Nk, then

τ(σ(A),M) = τ(σ(A), [N1, . . . , Nk])

= [τ(σ(A), N1), . . . , τ(σ(A), Nk)]

= [τ(A, σ(N1)), . . . , τ(A, σ(Nk))](ind. hyp.)

= τ(A, [σ(N1), . . . , σ(Nk)])

= τ(A, σ([N1, . . . , Nk]))

= τ(A, σ(M))

This completes the proof.

9It is actually more like a “proof by notation”.
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Lemma 11 For all M,N ∈ T (A2, V ), if M and N are unifiable then λ~x.(M̄ = N̄) is simply

typable (typable in the Hindley Calculus).

Proof: By assumption of the lemma there is a unifier υ ofM,N ; i.e., υ(M) = υ(N).

Let A be a type environment whose domain contains sufficiently many variables

(that is, at least all variables in FV (M̄) ∪ FV (N̄)). By proposition 9, part 3, both

υ(A) ⊃ ρ(M) : τ(υ(A),M) and υ(A) ⊃ ρ(N) : τ(υ(A), N) are derivable typings.

According to lemma 10 and by the fact that υ is a unifier we have τ(υ(A),M) =

τ(A, υ(M)) = τ(A, υ(N)) = τ(υ(A), N). Call this type τ ′. Consequently, for any

α′ ∈ TV ,

A′{g : τ ′ → α′} ⊃ [gM̄ , gN̄ ] : [α′, α′]

and

A′ ⊃ (M̄ = N̄) : τ ′ → [α′, α′]

are derivable typings, the latter of which shows that λ~x.(M̄ = N̄) is simply typable.

Typability Implies Unifiability

We now proceed to prove that if λ~x.(M̄ = N̄), for given terms M and N , is typable then M

and N are unifiable.

Some preliminary results on the normalization of typings are helpful in facilitating a trans-

lation of types to terms and from typings to substitutions. The normalization function ν on

types is defined as follows.

ν(τ) = α, if τ = α and α ∈ TV
ν(τ) = [ν(τ1), . . . , ν(τn)], if τ = (τ1 → . . .→ τn → τ ′)→ τ ′

for some τ1, . . . , τn, τ
′

ν(τ) = α0, otherwise

Proposition 12 1. ν is well-defined and unique.

2. For any set of type expressions τ1, . . . , τk there is an injective type environment A and

terms N1, . . . , Nk such that ν(τi) = τ(A,Ni) for all i such that 1 ≤ i ≤ k.
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The mapping ν can be extended to type environments in the standard way: ν(A) = {x1 :

ν(τ1), . . . , xn : ν(τn)} if A = {x1 : τ1, . . . , xn : τn}.

Lemma 13 For any derivable typing A ⊃ M̄ : τ , the typing ν(A) ⊃ M̄ : ν(τ) is also derivable,

and ν(τ) = τ(ν(A),M).

Proof: This can be shown by simple induction on the structure of M .

Lemma 14 For all M,N ∈ T (A2, V ), if λ~x.(M̄ = N̄) is simply typable then M and N are

unifiable.

Proof: By assumption, there is a derivable typing A ⊃ (M̄ = N̄) : τ . By the

definition of µλ this expands to

A ⊃ λg.λx0.(x0(gM̄)(gN̄)) : τ.

Since the typing rules of the Hindley Calculus are syntax-directed, we can conclude,

by “backwards reasoning”, that there are type expressions τ ′, τ2, τ3 such that τ =

(τ ′ → τ2)→ (τ2 → τ2 → τ3)→ τ3 and, with A′ = A{g : τ ′ → τ2, f : τ2 → τ2 → τ3},
both

A′ ⊃ M̄ : τ ′

and

A′ ⊃ N̄ : τ ′

are derivable. Let us define A′′ = ν(A′) and τ ′′ = ν(τ ′). By lemma 13, the typings

A′′ ⊃ M̄ : τ ′′

and

A′′ ⊃ N̄ : τ ′′

are both derivable. If A′′ = {x1 : τ ′′1 , . . . , xk : τ ′′k }, proposition 12, part 2, implies

that there are terms M,N1, . . . , Nk and an injective type environment A0 such that
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τ(A0,M) = τ ′′, τ(A0, N1) = τ ′′1 , . . . , τ(A0, Nk) = τ ′′k . If we define σ = {x1 →
N1, . . . , xk → Nk}, the previous two typings can be rephrased as

σ(A0) ⊃M : τ(σ(A0),M)

and

{x1 : τ(A0, σ(x1)), . . . , xk : τ(A0, σ(xk))} ⊃ M̄ : τ(A′′,M)

Also by lemma 13 we can conclude τ(σ(A0),M) = τ(A′′,M) = τ(σ(A0), N). Finally,

this yields τ(A0, σ(M)) = τ(A0, σ(N)) by lemma 10 and, since A0 is injective, by

proposition 9, part 2, σ(M) = σ(N). Consequently, M and N are unifiable.

Theorem 10 For all M,N ∈ T (A2, V ), M and N are unifiable if and only if λ~x.(M̄ = N̄) is

simply typable.

Proof: Lemma 11 shows one direction, lemma 14 the other.

Corollary 15 Simple typability (typability in the Hindley Calculus) is P-complete under log-

space reductions.

Proof:

Since simple typability is log-space reducible to unification, it is in P. By theorem

10 the result follows from the fact that unification is P-complete [25].

4.2.3 Reduction of Uniform Semi-Unification

To gain an intuition into the more complicated reduction of general (nonuniform) semi-unification

problem instances to the Flat Mycroft Calculus we shall consider a special case here that yields

an interesting characterization of uniform semi-unification in terms of a restricted version of the

Flat Mycroft Calculus.

Let 1FMM (“Flat Milner-Mycroft Calculus with at most one occurrence of the fix-bound

variable”) denote MM restricted to expressions of the form fixy.e where e is a pure λ-expression

containing at most one free occurrence of y. By extending the λ-encodings of terms we can also

encode inequalities between terms. For this we need the polymorphic typing rule (FIX-P),

though, and consequently we shall assume the (Flat) Mycroft Calculus when we talk about

typability in the rest of this chapter.
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The consistent labeling formulation for MM already gives an indication of how term inequal-

ities can be captured in the constraints associated with a fix-binding. Note that the type for y

in fixy.e in some sense “comes from” the type of e since they have to be equal. Now if we can

“force” e to have the type of the λ-encoding M̄ of M and if we can “hide” (in the sense that

it does not affect the type of e) somewhere in e the λ-encoding y = N̄ , then the y in y = N̄

is bound to have the same type as N̄ , but by the typing rules for fix the occurrence of y must

also be a substitution instance of the type of e. In other words, we will have encoded the single

term inequality M ≤ N as an instance of the 1FMM typability problem. Since M and N , and

consequently M̄ and N̄ contain in general a lot of free variables we have to be a little bit more

careful than this. To make sure that different occurrences of a free variable x, say, in M have

the same type everywhere (which corresponds to a semi-unifier uniformly applying the same

substitution to all occurrences of a variable), the variables in M̄ and N̄ have to be λ-bound

some place, as was the case for encodings of equations (for the same reason, by the way). The

λ-bindings for these variables cannot go outside of the whole expression, as in λ~x.fix y.e, since

— now we are in MM — this would mean that the fix-binding is in the scope of the λ-bindings,

and essentially no type variable in the type of e could be instantiated. Consequently the place

where the λ-bindings have to go is just after the fix-binding: fixy.λ~x.e. This in turn complicates

the encoding of the equation y = N̄ above, but fortunately everything works out.

Theorem 11 Uniform semi-unifiability and 1FMM-typability are log-space equivalent.

Proof:

An inspection of the reduction of MM-typability to semi-unification shows that the

instances of 1FMM are reduced to instances of uniform semi-unifiability. Conversely,

consider a single inequality M ≤ N and the λ-expression

fix y.λ~x.KM̄(λ~z.(y~z) = N̄),

which is clearly an instance of 1FMM-typability. Here ~x again is the sequence of all

free variables in M̄ and N̄ in any order, and ~z is a sequence of variables with the

same length as ~x , but completely disjoint from it. K denotes the term λx.λy.x.

Since M̄ and N̄ can be computed in logarithmic space, this expression can clearly

be computed in logarithmic space from M ≤ N . The correctness of this reduction

automatically falls out the general case of reducing nonuniform semi-unification to

FMM-typability, which is shown towards the end of this chapter.
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Corollary 16 1FMM-typability is P-complete under log-space reductions.

Proof:

Kapur et al. [54] give a complicated algorithm for deciding uniform semi-unifiability

in polynomial time (see chapter 6 for more information on their algorithm). Since

unification is a subcase of uniform semi-unification this implies the theorem.

This corollary shows that, theoretically, uniform semi-unification is no harder than unifi-

cation, although, in practice there is a big difference: The polynomial-time algorithm in [54]

is very complicated and executes in a polynomial of some higher degree whereas unification

has a theoretically and practically very fast algorithm, namely the equivalence class merging

algorithm with delayed occurs checking and the union/find data structure (see, e.g., [1, section

6.7]) which seems to be continuously rediscovered (see, e.g., [107]). A theoretically faster, but

less practical algorithm is the linear time decision algorithm of [89] and [72].

4.2.4 Reduction of Semi-Unification

We have seen how a single inequality can be encoded in the Flat Mycroft Calculus, even under

the restriction that a fix-bound variabe may only occur once. Intuitively, it is clear how to

proceed from here to encode a whole system of equations and inequalities:

1. Encode every inequality individually as a recursive definition and view the collection of

all such recursive definitions as a single mutually recursive definition,

2. encode the mutually recursive definition as a single recursive definition in a “standard”

way,

3. and along the way be careful about λ-binding the free variables in the given SEI and do

not forget to add encodings for the equations.

The following technical proposition is used later in the proof of correctness of the reduction

outlined above. We make use of another abbreviation: For fixed k > 0, ī = λz1 . . . zk.zi is the

i-th projection function for 1 ≤ i ≤ k.

Proposition 17 Let X = CH, DM, MM, FMM. Let ~τ = [τ1, . . . , τk].

X ⊢ A ⊃ e : ~τ ⇔
X ⊢ A ⊃ eī : τi, i ∈ {1, . . . , k}



65

X ⊢ A ⊃ [e1, . . . , ek] : ~τ ⇔
X ⊢ A ⊃ ei : τi, i ∈ {1, . . . , k}

(∃τ ′) A ⊃ e1 = e2 : τ ′ ⇔
(∃τ ′′)A ⊃ e1 : τ ′′ andA ⊃ e2 : τ ′′

Theorem 12 Semi-unification is log-space reducible to typability in the Flat Mycroft Calculus.

Proof:

Without loss of generality we may assume that A = A2. As noted in chapter 2 it is

sufficient to show that any SEI S = (M0 = N0,M1 ≤ N1, . . . ,Mk ≤ Nk) is reducible

to FMM. Let ~x = x1 . . . xm where x1, . . . , xm are all the distinct variables occurring

in S; let ~z = z1 . . . zm be m distinct variables not occurring in S.

Now consider

λ(S) = fixy.λ~x.K[M̄1, . . . , M̄k],

[M̄0 = N̄0, λ~z.(y~z1̄ = N̄1), . . . , λ~z.(y~zk̄ = N̄k)]

where K = λx.λy.x, as usual. λ(S) can clearly be constructed in logarithmic space.

We will show that S has a solution if and only if λ(S) is typable in the Flat Mycroft

Calculus.

Lemma 18 There is a type τ such that

FMM ⊢ {} ⊃ fix y.λ~x.K[M̄1, . . . , M̄k],

[M̄0 = N̄0, λ~z.(y~z1̄ = N̄1), . . . , λ~z.(y~zk̄ = N̄k)] : τ

if and only if there are monotypes ~τ = τ1 . . . τk, τM0 , τM1 , . . . , τMk
, τN0 , τN1 , . . . , τNk

such that

{~x : ~τ} ⊃ M̄i : τMi

{~x : ~τ} ⊃ N̄i : τNi

τM0 = τN0

τMi
≤ τNi

, i ∈ {1, . . . , k}
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Proof:

{} ⊃ fix y.λ~x.K[M̄1, . . . , M̄k],

[M̄0 = N̄0, λ~z.(y~z1̄ = N̄1), . . . , λ~z.(y~zk̄ = N̄k)] : τ

is derivable for some τ if and only if there is a τy with type variables ~α = α1 . . . αn

such that τ is a substitution instance of τy and

{y : ∀~α.τy} ⊃ λ~x.[. . .]1̄ : τy

is derivable in FMM. This, in turn, is derivable if and only if there are ~τ = τ1 →
. . .→ τk and τM such that τy = ~τ → τM and

{y : ∀~α.~τ → τM , ~x : ~τ} ⊃ [. . .]1̄ : τM

are derivable. According to proposition 17, this is the case if and only if

{y : ∀~α.~τ → τM , ~x : ~τ} ⊃ [M1, . . . ,Mk] : τMand

{y : ∀~α.~τ → τM , ~x : ~τ} ⊃ [λ~z.(y~z1̄ = N̄1), . . . , λ~z.(y~zk̄ = N̄k)] : τ=

for some type τ=. Again, by proposition 17, this holds if and only if τM = (τM1 →
. . .→ τMk

→ τ0)→ τ0 and

{y : ∀~α.~τ → τM , ~x : ~τ} ⊃Mi : τMi
, i ∈ {1, . . . , k},

{y : ∀~α.~τ → τM , ~x : ~τ , ~z : ~τ (i)} ⊃ y~zī : τNi
, i ∈ {1, . . . , k}, and

{y : ∀~α.~τ → τM , ~x : ~τ , ~z : ~τ (i)} ⊃ Ni : τNi

for some types τM1 , . . . , τMk
, τN1 , . . . , τNk

and suitable types ~τ (i) = τ
(i)
1 . . . τ

(i)
m . Note

that, w.l.o.g.,

{y : ∀~α.~τ → τM , ~x : ~τ , ~z : ~τ (i)} ⊃ y~zī : τNi
, i ∈ {1, . . . , k}

holds if and only if

{y : ∀~α.~τ → τM , ~x : ~τ, ~z : ~τ (i)} ⊃ y : ~τ (i) → (α1 → . . . αk → αi)→ τNi
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Since the type of any occurrence of y must be a substitution instance of the type of

y in the type assumption, it follows that τNi
must be a type instance of τMi

. It is

easy to check that this is also sufficient. Since neither Mi nor Ni contain y or any

of the z’s, for any i, we can summarize that a necessary and sufficient condition for

{} ⊃ fix y.λ~x.K[M̄1, . . . , M̄k],

[M̄0 = N̄0, λ~z.(y~z1̄ = N̄1), . . . , λ~z.(y~zk̄ = N̄k)] : τ

to be FMM-typable is that for some ~τ = τ1 . . . τk and for some monotypes τM0 , τM1 , . . . , τMk
, τN0 , τN1 , . . . , τN

we have

{~x : ~τ} ⊃ M̄i : τMi
, 0 ≤ i ≤ k

{~x : ~τ} ⊃ N̄i : τNi
, 0 ≤ i ≤ k

τM0 = τN0

τMi
= τNi

, 1 ≤ i ≤ k

Proof: (Proof of theorem continued)

With this lemma it is sufficient to show that whenever there is a solution of S then

the above constraints can be satisfied, and vice versa.

(⇒) Assume there is a solution σ of S. Let A0 be a type environment that maps

every variable in ~x into a distinct type variable. (Any other type environment

that is injective on ~x will also do.) Now define τMi
= τ(A, σ(Mi)) for 0 ≤

i ≤ k where τ is the canonical type mapping from section 4.2.2, and let τi =

σ(A0)(xi). We have

σ(A0) ⊃ M̄i : τ(σ(A0),Mi)

σ(A0) ⊃ N̄i : τ(σ(A0), Ni)

By lemma 10, we have τ(σ(A0),Mi) = τ(A0, σ(Mi)) and τ(σ(A0), Ni) =

τ(A0, σ(Ni)). Since σ is a semi-unifier of S it furthermore follows for every

i that there is a ρi such that ρi(σ(Mi)) = σ(Ni). It is easy to show that the

canonical type mapping τ above is monotonic (with respect to term subsump-

tion) in its second argument.

(⇐) Recall the function ν : M → M , which normalizes type expressions. Given

types as required such that
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{~x : ~τ} ⊃ M̄i : τMi
, 0 ≤ i ≤ k

{~x : ~τ} ⊃ N̄i : τNi
, 0 ≤ i ≤ k

τM0 = τN0

τMi
= τNi

, 1 ≤ i ≤ k

by lemma 12 we know that

{~x : ν(~τ )} ⊃ M̄i : ν(τMi
), 0 ≤ i ≤ k

{~x : ν(~τ )} ⊃ N̄i : ν(τNi
), 0 ≤ i ≤ k

are also derivable. Following the proof of lemma 14, we can define a substitution

σ (on terms). In the previous step we saw that τ is monotonic in its second

argument. This argument can be strengthened to show, for injective A, M1 ≤
M2 ⇔ τ(A,M1) ≤ τ(A,M2).

This completes the proof of the theorem

Corollary 19 The following three problems are polynomial-time equivalent:

1. Typability in the Mycroft Calculus;

2. (nonuniform) semi-unifiability;

3. typability in the Flat Mycroft Calculus.

Proof:

The steps (1) ⇒ (2) and (2) ⇒ (3) are proved in theorems 8 and 12; (3) ⇒ (1) is

trivial since FMM-typability instances are a subclass of MM-typability instances.

This corollary stands in contradiction to a statement by Mycroft who suggests prohibiting

nested polymorphically typed fix-definitions “due to the exponential cost of analysing nested

fix definitions” [85]. Indeed nesting does not make things any worse than they already are in a

single fix definition.

Corollary 20 1. The Milner Calculus is polynomial-time reducible to the Flat Mycroft Cal-

culus.

2. The Flat Mycroft Calculus is PSPACE-hard.
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Proof:

1. By theorem 8 the Milner Calculus is polynomial-time reducible to semi-unification,

which in turn is polynomial-time reducible to the Flat Mycroft Calculus by the-

orem 12.

2. By (1) and the PSPACE-hardness result of Kanellakis and Mitchell [53] for the

Milner Calculus.



70

4.3 Type Inference in B and Semi-Unification

The programming language B [75] (now called ABC) has a polymorphic typing rule for recursive

definitions and relies on type inference to determine the type correctness of programs. In

contrast, Hope [8] also has a polymorphic typing rule for recursively defined functions, but

mandates that their types be explicitly declared.

Even though there is no type inference system that specifies “logically” type correctness

in B, it is clear from algorithm AA in [74] that the type computed in a recursive definition is

the principal type in a “Flat” Milner-Mycroft style typing system. In fact, AA can be viewed

as a variant of Mycroft’s semi-algorithm for computing principal types in the Milner-Mycroft

Calculus [85]. AA is provably nonterminating, and Meertens proceeds to refine it by adding a

criterion reminiscent of our extended occurs check, but actually of much broader applicability,

that guarantees termination of the resulting algorithm. Meertens argued that the absence of

higher-order functions, nesting, and recursive types in B permitted uniform termination of his

type inference algorithm.

Higher-order functions and their typing requirements usually create syntactic and semantic

problems due to the fact that they are nonmonotonic in their domain types. This is of signifi-

cance in the Second Order λ-calculus, but not in the Milner-Mycroft Calculus (since argument

types cannot be required to be polymorphic). In the previous sections we have seen that nesting

of definitions does not greatly change basic questions of type inference. This suggests that

the type inference problem in B is actually no simpler than type inference in the Flat Mycroft

Calculus and the complete Milner-Mycroft Calculus, in contrast to Meertens’ general consid-

erations. Indeed we shall show that semi-unification can be reduced to type inference for a

small subset of B, which substantiates that neither higher-order functions nor nested definitions

greatly influence the type inference problem. Since B has a syntactically simpler type system

than MM the converse reduction is immediate. This implies that Meertens’ uniformly termi-

nating algorithm either proves decidability of semi-unification or it is not correct. In fact we

shall show that Meertens’ algorithm errs on the safe side. There are cases where the algorithm

flags type-incorrectness while in fact there is a derivable typing for it (and AA would compute

it).

In subsection 4.3.1 we introduce Pure B and its typing system. In subsection 4.3.2 we

show that type inference in B and semi-unification are polynomial time equivalent. We also

explain Meertens’ termination criterion in terms of a criterion for our semi-unification algorithm
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(without extended occurs check) and give an example, both as a semi-unification problem and

as a Pure B program, that shows where that criterion errs.

4.3.1 Pure B

Pure B is only a minute subset of B, yet big enough to capture the power of the polymorphic

typing rule for recursive definitions. Pure B programs are given by the following grammar.

p ::= HOW’TO xOF x′ : c

c ::= xOF e | cc | PUT e in e

e ::= x | (e, e)

where x ranges over a predefined lexical category of identifiers. Even though the semantics of

a language, as we have seen, is not all necessary to explain B’s typing discipline, it helps to get

an intuition for it. HOW’TOxOFx′ : c defines a procedure x with formal (variable) parameter

x′. The body of the procedure is the command c. A command is either the application of a

procedure to an expression, xe, or a sequence of commands. An expression is either a variable

or a pair of expressions. The PUT command copies its first argument to the second argument

by pattern matching. This is all we need in Pure B to encode semi-unification. B, of course,

has more complicated control structures and data types that make it usable in practice.

The type expressions in Pure B are defined by

τ ::= t | (τ, τ ′)

σ ::= τ → unit | ∀t.σ

Once again, we shall say type expressions derivable from τ are monotypes, and type ex-

pressions derivable from σ are polytypes. The type expression τ → unit denotes the type of

procedures whose argument is of type τ . Note that procedures are strictly first-order, since they

can only take inputs whose types are built up from type variables and pairing and that only

procedures can be polymorphic.10 The typing rules of Pure B are given in Table 4.4.

A Pure B program p is typable if ⊃ p is derivable in the type inference system for Pure B.

10This is, in general, an inessential restriction since polymorphic “data” such as “nil” in Pascal can be treated
as nullary polymorphic functions.
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Let A range over type environments; x over variables; e, e′ over λ-expressions; t over type
variables; τ, τ ′ over monotypes; σ, σ′ over polytypes. The following are type inference axiom
and rule schemes for Pure B.

Name Axiom/rule
(TAUTD) A{x : τ} ⊃ x : τ

(TAUTP) A{x : ∀~t.τ → unit} ⊃ x : τ [~τ/~t]→ unit

(PUT) A ⊃ e : τ
A ⊃ e′ : τ
A ⊃ PUT e IN e′

(PAIR) A ⊃ e : τ
A ⊃ e′ : τ ′

A ⊃ (e, e′) : (τ, τ ′)

(APPL) A ⊃ x : τ → unit
A ⊃ e : τ
A ⊃ xOF e

(SEQ) A ⊃ c
A ⊃ c′
A ⊃ cc′

(PROG) A{x : ∀~α.τ → unit} ⊃ c
A{x : ∀~α.τ → unit} ⊃ x′ : τ
⊃ HOW’TOxOF x′ : c

Table 4.4: Type inference axioms and rules for Pure B
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4.3.2 Equivalence of Pure B and Semi-Unification

Recall the reduction of semi-unification to the Flat Milner-Mycroft Calculus. To facilitate the

encoding of a term inequality in Pure B we need a representation of first-order terms by Pure

B expressions whose types correspond to these terms, and an encoding of equations between

the types representing terms (the PUT command will do). Term subsumption inequalities can

be represented by the polymorphic typing rule for Pure B procedures. Indeed these are all the

ingredients we need, and they are readily available in the type system for Pure B.

Consider, as usual, first-order terms over the ranked alphabet A2. Define the encoding

function ρ : T (A2, V )→ E, where E denotes the Pure B expressions, as follows.

ρ(x) = x, if x ∈ V

ρ(f(M,N)) = (ρ(M), ρ(N), otherwise

We shall denote ρ(M) simply by M̄ . Given a term inequality M ≤ N the Pure B program

HOW’TO p OF x:

PUT x in M̄

p OF N̄

where x and p are identifiers not occurring in M or N , is typable if and only if M ≤ N is

solvable. More generally, the program

HOW’TO p OF x:

PUT x IN (M̄1, . . . , M̄k)

PUT M̄0 IN N̄0

p OF (N̄1, y
(2)
1 , . . . , y

(k)
1 )

. . .

p OF (y
(1)
i , . . . , y

(i−1)
i , N̄i, y

(i+1)
i , . . . , y

(k)
i )

. . .

p OF (y
(1)
k , . . . , y

(k−1)
k , N̄k)

with p, x, and additional Pure B variables y
(j)
i , i 6= j not occurring in any of the Mi or Ni, is

typable if and only if the SEI S = (M0 = N0,M1 ≤ N1, . . . ,Mk ≤ Nk) is solvable.
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Theorem 13 Typability in Pure B and semi-unification are polynomial-time equivalent.

Proof:

If we choose the encodings described above then the reductions can be easily adapted

from the general reductions from MM to semi-unification, and from semi-unification

to FMM.

Meertens’ non-terminating algorithm AA computes the principal type for Pure B in the

sense that it computes a type expression σ for the procedure p defined in HOW’TO p OF x: c

such that this definition is typable and for any other type derivation the type of p, σ′, will be

such that σ ⊑ σ′ in the generic instance preordering of chapter 2.

Instead of explaining algorithm AA and the refinement that results in a uniformly terminat-

ing algorithm we shall translate the termination criterion for AA into a termination criterion

for our algorithm A and explain its effects in terms of semi-unification. For this, we assume

the reader is familiar with the material in chapter 6. The independent sources of every arrow

graph in an execution of algorithm A are nodes that are already present in the “initial” ar-

row graph that represents a given SEI; i.e., the independent sources of any node are “original”

nodes. Meertens’ “second circularity check” [74, p. 272] can be translated into a circularity

check for algorithm A as follows. For any arrow graph Gi in an execution (G1, . . . , Gi, . . .) of

algorithm A, let us define a directed graph CVi = (N,Ei) where N is the set of original nodes

(i.e., the nodes in G1) and (n, n′) ∈ Ei if and only if there are nodes m,m′ in Gi such that n

is a source of m, n′ is a source of m′ and m is a parent of m′. If, for some Gi, the digraph

CVi contains a proper cycle (i.e., nodes n1, . . . , nk, k ≥ 2, such that n1 = nk, (ni, ni+1) ∈ Ei for

1 ≤ i ≤ k − 1, and the nodes n1, . . . , nk−1 are pairwise distinct), then terminate the execution

and signal unsolvability. Clearly, this criterion subsumes our extended occurs check since every

time the occurs check is applicable and reduction to 2 takes place, this circularity check is also

applicable and unsolvability — reduction to 2 — is indicated.

This algorithm is sound in the sense that whenever it produces a normal arrow graph that is

not 2, the input SEI is solvable. Furthermore, by analogy with Meertens’ proof of termination,

algorithm A with the extended occurs check replaced by the above circularity check is uniformly

terminating. Unfortunately, though, the circularity check is too restrictive, and the resultant

algorithm is incomplete: there are solvable SEI’s that “trigger” the circularity check. A simple

example is the SEI
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S = (g(x) = y, g(z) ≤ x, g(z) ≤ y)

where g is a unary functor.11 It is clearly solvable, the substitution υ = {x 7→ g(z′), y 7→
g(g(z′))} being a most general semi-unifier, yet, since z is source of both z′ and g(z′) in this

semi-unifier, the CV -graph contains a proper loop from (the node containing) z to z itself.

This SEI can be translated into a Pure B program via the encoding above and submitted for

type checking by the B type inference system. According to the typing discipline described in

[74] and partially formalized by the typing rules for Pure B in Table 4.4, the resulting program

should be considered type correct, but the type inference algorithm with the “second circularity

check” should flag a type error. At present we have not reconfirmed this with the locally

available B interpreter.

11Recall from chapter 4, section 4.2 that we can claim the existence of a functor of any arity in any nonlinear
alphabet.
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Chapter 5

Algebraic Properties of Semi-Unifiers

In chapter 4 we saw that semi-unification characterizes type inference both in the Mycroft Cal-

culus and the Flat Mycroft Calculus. Since semi-unification has a simpler definitional structure

than any of the typing problems we will shift our attention in designing algorithms to semi-

unification. This is justified since every algorithm for semi-unification yields a type inference

algorithm, and vice versa. Since SEI’s have potentially many solutions it is not a priori clear

which one of the solutions an algorithm should compute. Naturally we expect to find an analog

of the principal typing property for semi-unification: that every solvable SEI has a most general

semi-unifier that is unique in some sense. In this chapter we shall see in which sense there are

indeed unique most general semi-unifiers — and in which there are not.

A correct treatment of the algebraic structure of semi-unifiers — solutions of term inequal-

ities — is trickier than is apparent at first sight. This is evidenced by technically incorrect

treatments and statements in the literature [88, 15]. In this chapter we present some results on

the algebraic structure of semi-unifiers. Our main goal is to convince the reader that, in the

same fashion in which strong equivalence classes of idempotent substitutions (see below for def-

initions) characterize the solutions of term equations and vice versa (see theorem 17), the weak

equivalence classes of all substitutions characterize the solutions of term inequalities and vice

versa (see theorem 18). In particular, we cannot replace “strong” by “weak” in this statement.

Two substitutions σ1 and σ2 are strongly equivalent if there are substitutions α and α′ such

that α ◦ α′ = ι, where ι denotes the identity substitution, and α ◦ σ = σ′. Strong equivalence

is the preferred formalization of the common phrase “equivalent up to renaming of variables”

[14, 63]. We will show that, unlike term equations, term inequalities do not have most general

solutions that are unique modulo strong equivalence. A natural, weaker notion of equivalence,

however, admits unique most general solutions and, more generally, induces a complete lattice

onto the set of all solutions of term inequalities.
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5.1 Generality of Substitutions

Henceforth let W denote an arbitrary, but fixed subset of V .

Definition 10 (Generality, W -equivalence, strong equivalence)

The preordering ≤W of generality on Sω over W is defined by

σ1 ≤W σ2 ⇔ (∃ρ ∈ Sω) (ρ ◦ σ) |W = σ2 |W .

The equivalence relation ∼=W on Sω over W is defined by

σ1
∼=W σ2 ⇔ σ1 ≤W σ2 ∧ σ2 ≤W σ1.

for all σ1, σ2 ∈ Sω. We write σ1 <W σ2 if σ1 ≤W σ2, but σ1 6∼=W σ2. For any σ ∈ Sω,

[σ]W denotes the ∼=W -equivalence class of σ in Sω. The equivalence relation ∼=W is called

W -equivalence; if W = V , it is called strong equivalence.

If σ1 ≤W σ2 we say that σ1 is at least as general as σ2 on W . E. g., for σ1 = {x 7→
f(x)}, σ2 = {x 7→ f(y)},W ⊂ V −{y}, the substitution σ1 is at least as general as σ2 on V , but

σ2 is only at least as general as σ1 on W , not on V . Consequently, σ1 and σ2 are W -equivalent,

but not strongly equivalent. For M ≤ N there is a unique most general substitution ρ, called

the quotient substitution of N over M such that ρ(M) = N . We shall denote ρ by N/M .

Solutions of SEI’s (semi-unifiers and unifiers) are closed with respect to “reasonable” sub-

stitution equivalences. More precisely we have

Proposition 21 If V (S) ⊂W ⊂ V then for any σ1 and σ2 such that σ1
∼=W σ2 we have

1. σ1 ∈ U(S)⇔ σ2 ∈ U(S)

2. σ1 ∈ USU(S)⇔ σ2 ∈ USU(S)

3. σ1 ∈ SU(S)⇔ σ2 ∈ SU(S)

Thus the solutions of any SEI S are closed with respect to equivalence relation ∼=W as long

as W contains at least all variables occurring in S, and every unifier/uniform semi-unifier/semi-

unifier can viewed as (a representative) of a whole equivalence class of solutions.

As in the case of terms, the preordering ≤W induces a partial order on Sω/∼=W
= {[σ]W | σ ∈

Sω}, denoted also by ≤W . Since the definitions of term subsumption (TΩ,≤) and of generality
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Let Φ be a bijection between T × T and V .

mscai(M,N) =






f(mscai(M1, N1), . . . ,mscai(Mk, Nk)),
ifM = f(M1, . . . ,Mk), N = f(N1, . . . , Nk)

Φ(M,N), otherwise

Figure 5.1: Anti-unification algorithm

of substitutions (Sω ,≤W ) appear analogous we can ask whether an analog of theorem 4 holds

for substitutions. The answer to this question is three quarters positive, one quarter negative:

the analog of theorem 4, part 1, holds (see theorem 14), but the analog of part 2 holds if W is

co-infinite (with respect to V ) (see theorem 16) or A is linear (see theorem 15). These results

are presented below.

Eder proved that (Sω,≤V ) is Noetherian [26, corollary 2.19]. Although it is not an immediate

consequence that (Sω ,≤W ) is Noetherian whereW is any subset of V , Eder’s proof can be easily

adapted to take care of this case, too.

Theorem 14 (Tω/∼=W
,≤W ) is Noetherian for any W ⊂ V .

Proof: See [26, 45, 46].

As already indicated the analog of theorem 4, part 2 holds if A is linear.

Theorem 15 If A is linear then (Sω/∼=W
,≤W ) is a complete lattice.

Here and later we shall make use of Huet’s anti-unification algorithm [46, 63]. The recursive

algorithm mscai on T × T is defined recursively in Figure 5.1.

It is easy to show that mscai(M,N) computes a most specific common anti-instance [63,

theorem 5.8].

Proof: (Proof of theorem)

In view of theorem 14 it is sufficient to show that (Sω/∼=W
,≤W ) is a lower semi-

lattice. We shall only show this here for W = V , which is the most interesting case

anyway.

For a finite set of variables X the notation ~X shall denote a term with a “new” |X |-
ary functor whose arguments are the distinct elements ofX in some order determined

by X . For finite X , for example, σ( ~X)/ ~X is another way of writing σ|X .
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Let σ1, σ2 be two proper substitutions. We will first construct a substitution σ and

then show that σ is a lower bound and that any other lower bound is at least as

general as σ.

Define Z = dom σ1 ∪ dom σ2, X = {x ∈ Z : σ1(x) = σ2(x)}, Y = {x ∈ Z :

σ1(x) 6= σ2(x)}, and let M̄ = mscai(σ1(~Y ), σ2(~Y )). Since A is linear we have for

the variables in the range of σ1 (or σ2) under X , V ′ = V (σ1(X)), that |V ′| ≤ |X |
and consequently, with V ′′ = (X ∪ Y )− V ′, that |V ′′| ≥ |Y |. Thus there is M̄ ′ such

that M̄ ′ ∼= M̄ and V (M ′) ⊂ V ′′. Now we can construct σ as

σ(x) =







σ1(x), x ∈ X
(M̄ ′/~Y )(x) otherwise

Notice that σ(~Z) ≤ σ1(~Z) and thus ρ1 = σ1(~Z)/σ(~Z) is well-defined. Furthermore,

domρ1 ⊂ Z. Since ρ1 ◦σ = σ1 this shows that σ is a lower bound of σ1 with respect

to ≤V . Similarly σ is a lower bound of σ2.

To see that σ is a greatest (most specific) lower bound consider another lower bound

σ′ of σ1, σ2. Define Z ′ = Z ∪ dom σ′. It is easy to see that σ( ~Z ′) is a most specific

common anti-instance of σ1( ~Z ′) and σ2( ~Z ′). Consequently δ = σ( ~Z ′)/σ′( ~Z ′) is well-

defined. Furthermore we have, for x ∈ X , σ′(x) = σ(x) or V (σ′(x)) ⊂ Z ′, and, for

x ∈ Z ′ −X , it is always the case that V (σ′(x)) ⊂ Z ′ since otherwise the domain of

either σ1 or σ2 would have to contain an element from outside Z ′ (being that σ′ is a

lower bound of both of them by assumption); but this cannot be as Z ′ contains the

domains of both σ1 and σ2 by construction. This, in turn, implies that dom δ ⊂ Z ′

and thus δ ◦ σ′ = σ, which is to say σ′ ≤V σ.

For nonlinear A this structure theorem fails in a major way if W is co-finite: Sω/∼=W
is

neither a lower nor an upper semi-lattice under the partial order ≤W if |V −W | < ∞. This

shall be proved in the following two propositions.

Proposition 22 For nonlinear A, if W is co-finite, |V − W | < ∞, then there is a pair of

substitutions σ1, σ2 ∈ S with two minimal upper bounds υ1, υ2 ∈ S with respect to ≤W such that

υ1 6∼=W υ2.

Proof: Eder [26] shows that the pair of substitutions
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{x 7→ f(x, f(y, z)), y 7→ f(x, f(y, z)), z 7→ f(x, f(y, z))}

and

{x 7→ f(f(x, y), z), y 7→ f(f(x, y), z), z 7→ f(f(x, y), z)}

has an infinite set of minimal upper bounds, but no least upper bound with respect

to ≤V .

A simple generalization of Eder’s pair will do the trick. Let W be a co-finite set.

Without loss of generality we can assume that V −W = {w1, . . . , wn} for some n

and that {x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1} is a subset of W . Now with ρi =

{xi 7→ f(xi, f(yi, zi)), yi 7→ f(xi, f(yi, zi)), zi 7→ f(xi, f(yi, zi))} and σi = {xi 7→
f(f(xi, yi), zi), yi 7→ f(f(xi, yi), zi), zi 7→ f(f(xi, yi), zi)} consider the substitutions

ρ = ∪i∈{1,...,n+1}ρi

and

σ = ∪i∈{1,...,n+1}σi

.1

The minimal upper bounds of ρ and σ are the substitutions

∪i∈{1,...,n+1} {xi 7→ f(f(si, ti), f(ui, vi)),

yi 7→ f(f(si, ti), f(ui, vi)),

zi 7→ f(f(si, ti), f(ui, vi))}

for pairwise distinct variables W ′ = {s1, t1, u1, v1, . . . , sn+1, tn+1, un+1, vn+1}. Con-

sider one such minimal upper bound, say τ1. Simple counting shows that there must

be some variable w ∈ W ′ such that

w 6∈ {w1, . . . , wn, x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1}.

1More formally, ρ = ρ1 ◦ . . . ◦ ρn+1 and σ = σ1 ◦ . . . ◦ σn+1. Since the order of composition is insignificant
the informal set union operation on the canonical representations of the ρi’s and σi’s is well-defined.
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Thus w is in W . If we consider another minimal upper bound, τ2, with range

variables

V (τ2({x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1}))

disjoint from

V (τ1({x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1})),

then it is clear that τ1 6≤W τ2 because w 6∈ V (τ2(dom (τ2))).

This shows that (Sω/∼=W
,≤W ) is not an upper semi-lattice for |V −W | <∞. We can also

show that it fails to be a lower semi-lattice.

Proposition 23 For nonlinear A, if W is co-finite, |V − W | < ∞, then there is a pair of

substitutions σ1, σ2 ∈ S with two maximal lower bounds υ1, υ2 ∈ S with respect to ≤W such that

υ1 6∼=W υ2.

Proof:

We shall only treat the case W = V . The general case is a generalization analogous

to the previous proof.

Let y1, . . . , y4, z1, . . . , z4 be eight pairwise distinct variables and let f be an arbitrary

functor with arity 2.2 Consider

σ1 = {x1 7→ f(f(y1, y2), f(y3, y4)),

x2 7→ f(f(y1, y2), f(y3, y4)),

x3 7→ f(f(y1, y2), f(y3, y4))}

and

σ2 = {x1 7→ f(f(z1, z2), f(z3, z4)),

x2 7→ f(f(z1, z2), f(z3, z4)),

x3 7→ f(f(z1, z2), f(z3, z4))}.

2Note that there must be at least one functor with arity at least 2 since we assume that (F, a) is nonlinear in
this section; w. l. o. g. we can assume that F contains a functor with arity exactly 2.
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Both

υ1 = {x1 7→ f(x1, f(x2, x3)),

x2 7→ f(x1, f(x2, x3)),

x3 7→ f(x1, f(x2, x3))}

and

υ2 = {x1 7→ f(f(x1, x2), x3),

x2 7→ f(f(x1, x2), x3),

x3 7→ f(f(x1, x2), x3)}

are maximal lower bounds since, at first sight maybe somewhat unexpectedly,

{x1, x2, x3 7→ f(f(v1, v2), f(v3, v4))}

does not form a lower bound of σ1 or σ2 for any variables v1, . . . , v4. Clearly, υ1 and

υ2 are not equivalent under ∼=V .

The reason for this “misbehavior” of (Sω/∼=W
,≤W ) for co-finite W is due to the fact that we

cannot “hide” enough variables from “consideration” under ≤W if there is not enough “room”

in V −W . For subsets W of V that leave “enough” variables hidden in V −W — for co-infinite

W ’s — the partial orders (Sω/∼=W
,≤W ) have indeed a lattice structure. The proof of this is a

consequence of the more general theorem 18 proved in section 5.2.

Theorem 16 For nonlinear A the following statements are equivalent.

• (Sω/∼=W
,≤W ) is a complete lattice.

• W is co-infinite; that is, |V −W | =∞.

Henceforth we shall deal almost exclusively with nonlinear alphabets. As we have already

seen the theory of substitutions and (semi-)unifiers is very different for linear and nonlinear

alphabets. In fact, the case of term inequalities over linear alphabets is algebraically and

computationally much simpler than for nonlinear alphabets. It is treated in [15] under the

name prefix inequalities.
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5.2 The Structure of Semi-Unifiers

It is often quoted that most general unifiers are unique “up to renaming of variables”. As

pointed out in [63] there are several distinct notions of what this innocuous-looking little phrase

can be taken to mean. The most commonly used notion is strong equivalence (i.e., equivalence

modulo ∼=V ). While different notions lead to a slightly different structure of unifiers for a given

system of equations, they all admit the existence of most general unifiers, though most general

unifiers with respect to one notion (e.g., [113]) are not necessarily most general with respect to

another equivalence.

The fact that there are most general unifiers under any of the different notions of renaming

may have prompted Chou to write that, similarly, “it is evident” that the most general semi-

unifier of an SEI is unique modulo strong equivalence, if it exists at all [15, page 11]. The

breakdown in the analogy of the structure of T/∼= and S/∼=V
(see theorem 16 and the discussion

before it), however, already suggests that this claim may not be true in general, and, indeed,

it is incorrect.3 A weaker notion of equivalence (see, e.g. [113, chapter 4]), however, admits

the existence of most general semi-unifiers and an equivalent to the main structure theorem for

unifiers.

5.2.1 Strong Equivalence

Strong equivalence, ∼=V , corresponds to renaming of substitutions by composition of permuta-

tion substitutions; i.e., by substitutions α for which there is α−1 such that α◦α−1 = α−1◦α = ι.

Two substitutions σ1 and σ2 are strongly equivalent if and only if there is such a permutation

substitution α such that α◦σ1 = σ2. Strong equivalence has attracted a lot of attention because

of its close connection to idempotent substitutions, which in turn are strongly related to systems

of equations.

In this subsection the terms “minimal” and “most general” always refer to ≤V .

3We feel tempted to say that, in view of theorem 16, uniqueness of most general unifiers with respect to
strong equivalence is a “lucky coincidence”; or, less dramatically, a very specific property of unification that
cannot simply be “transferred” to other problems; or, in more neutral terms, an outgrowth of the fact that the
theory of unifiers can be viewed as a representation theory for idempotent substitutions, which indeed form a
lattice with respect to ≤V [26, theorem 4.9].
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Strong Equivalence and Unifiers

We recapitulate the most important result on the structure of unifiers modulo strong equivalence

from [26] (see also [63]). Note that every SEI has a minimal unifier .4 This follows immediately

from theorem 14. We call a minimal unifier σ of S a most general unifier of S if for all unifiers

υ of S there is a substitution ρ such that ρ ◦ σ = υ.

A substitution σ is idempotent if it satisfies σ ◦ σ = σ. The set of proper idempotent

substitutions is denoted by IS(A, V ) (or just IS), and the set of all idempotent substitutions is

denoted by ISω(A, V ) (or simply ISω). The significance of idempotent substitutions and their

relation to unification is summarized in the main structure theorem of systems of equations.

Theorem 17 1. Every system of equations S has a most general unifier that is idempotent,

and for every idempotent substitution σ there is a system of equations S′ such that σ is a

most general unifier of S′ (with respect to ≤V ).

2. ((ISω ∩U(S))/∼=V
,≤V ) is a complete lattice for every system of equations S.

Proof: By refinement of the proof of theorem 4.9 in [26].

Since there are substitutions that are not strongly equivalent to any idempotent substitution,

we have as a consequence of theorem 17 that there are substitutions in S that are not most

general unifiers. For example, {z1 7→ f(z1), . . . , zn 7→ f(zn)} is not strongly equivalent to any

idempotent substitution.

Part 1 of theorem 17 expresses not only that every system of equations has a most general

unifier, but that there is always an idempotent most general substitution. An instance of the

theorem is Eder’s original structure theorem for idempotent substitutions.

Corollary 24 (ISω/∼=V
,≤V ) is a complete lattice.

Proof: Consider S = () in theorem 17.

Strong Equivalence and Semi-Unifiers

The set of idempotent unifiers of any system of equations forms a lattice. The fact that every

system of equations has an idempotent most general unifier justifies in some sense the restriction

of consideration to idempotent substitutions and unifiers, as is done from the outset in [104].

4A unifier σ of an SEI S is minimal if for every other unifier σ′ of S it holds that σ′ ≤ σ ⇒ σ ≤ σ′.
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In this subsection we show that idempotent substitutions and strong equivalence fail to

capture the structure of semi-unifiers in a major way; namely,

1. for any SEI S neither U(S) nor USU(S) nor SU(S) induce a lower or upper semi-lattice

(under ≤V ).

2. there are systems of equations and inequalities that have a most general semi-unifier, but

no idempotent one;

3. there are systems of equations and inequalities with no most general semi-unifier;

Proposition 25 For nonlinear A neither (U(S)/∼=V
,≤V ) nor (USU(S)/∼=V

,≤V ) nor (SU(S)/∼=V
,≤V

) forms a lower or upper semi-lattice for any SEI S.

Proof: Almost directly from the proofs of propositions 22 and 23.

Proposition 26 For nonlinear A there is an infinite family of SEI’s S1, . . . , Si, . . . such that,

for all i ∈ N , Si has uniform and nonuniform minimal semi-unifiers σi1 and σi2, but σi1 6∼=V σi2.

Proof:

Consider Si = (f(x1, . . . , xi) ≤ y). The substitutions

σi1 = {y 7→ f(u1, . . . , ui)}

and

σi2 = {y 7→ f(v1, . . . , vi)}

are minimal semi-unifiers of Si since only for ρ = {} we have ρ <V σi1 or ρ <V σi2

and {} is not a semi-unifier of Si. But there is no substitution α ∈ S such that

α ◦ σi1 = σi2 or α ◦ σi2 = σi1.

Proposition 27 There is an infinite family of SEI’s S1, . . . , Si, . . . such that, for all i ∈ N , Si

has a most general uniform and nonuniform semi-unifier, but no idempotent one.

Proof:

Consider Si = (f(y1) ≤ z1, . . . , f(yi) ≤ zi). The substitution
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σi = {z1 7→ f(z1), . . . , zi 7→ f(zi)}

and its ∼=V -equivalent substitutions are the only most general uniform and nonuni-

form unifiers of Si. As we remarked earlier there is no idempotent substitution

amongst them.

The reason why Sω ,U(S),USU(S),SU(S) fail to be lattices under ≤V are intuitively rather

pathological and cast some doubt on the appropriateness of choosing strong equivalence as the

“proper” notion of renaming on substitutions for semi-unification.

5.2.2 Weak Equivalence

In this section we define an equivalence relation on substitutions relative to systems of equa-

tions and inequalities that is properly weaker than strong equivalence. We will show that this

relation, weak equivalence, ties general substitutions and systems of equations and inequali-

ties together just as strong equivalence ties idempotent substitutions and systems of equations

together (theorem 17).

Definition 11 (Weak equivalence)

Substitutions σ1 and σ2 are called weakly equivalent with respect to SEI S (or simply S-

equivalent) if σ1
∼=V (S) σ2.

A k-ary context C[] is a term with k “holes” in it such that C[M1, . . . ,Mk] is the (complete)

term with the terms M1, . . . ,Mk in place of the holes in C[]. More formally, a k-ary context is a

term C[] ∈ T (A, V ∪MV ) where MV is a k-element set {y1, . . . , yk} of meta-variables disjoint

from V and F . For subsitution σ : V ∪MV 7→ T (A, V ), σ = {y1 7→ M1, . . . , yk 7→ Mk} the

result of applying σ to C is denoted by C[M1, . . . ,Mk].

Recall that (TΩ/∼=,≤) is a complete lattice with ∧ and ∨ denoting the infimum and supre-

mum operator, respectively.

Lemma 28 There is an operation ∧ : T × T 7→ T such that

1. [M ∧N ] = [M ] ∧ [N ] for all M,N ∈ T .

2. C[M1, . . . ,Mk]∧C[M ′
1, . . . ,M

′
k] = C[M1 ∧M ′

1, . . . ,Mk ∧M ′
k] for all k, k-ary contexts C,

and terms M1, . . . ,Mk and M ′
1, . . . ,M

′
k.
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Proof:

1. Consider the anti-unification algorithm in Figure 5.1 and define M ∧ N =

mscai(M,N). (See [46]; see also [63].)

2. The definition of ∧ has the property f(M)∧f(N) = f(M∧N) for every functor

f . The result follows by structural induction on C[].

For every operation that satisfies lemma 28, part 1, the following proposition holds.

Proposition 29 For all terms M1,M2, N1, N2 ∈ T such that M1 ≤ M2 and N1 ≤ N2 it holds

that M1 ∧N1 ≤M2 ∧N2.

For any SEI S, we call a (uniform) semi-unifier σ of S a most general (uniform) semi-unifier of

S if for all (uniform) semi-unifiers υ of S there is a substitution ρ such that (ρ◦σ) |V (S)= υ |V (S).

Similarly, from now on a unifier of S will be called most general if it is minimum with respect

to ≤V (S) instead of ≤V as in the previous section.

Now we are ready to prove the main theorem of this section.

Theorem 18 1. Every system of equations and inequalities S has a most general (uniform)

semi-unifier, and for every substitution σ there is a system of equations and inequalities

S′ such that σ is a most general (uniform) semi-unifier of S.

2. (SU(S)/∼=V (S)
,≤V (S)) (as well as (USU(S)/∼=V (S)

,≤V (S)) and U(S)/∼=V (S)
) is a complete

lattice for every system of equations and inequalities S.

As an immediate consequence we have

Corollary 30 Every solvable SEI S has a most general idempotent semi-unifier.

Proof: (Proof of corollary)

Take a most general semi-unifier σ of S. If V (S) = {x1, . . . , xn} define σ′ = {x1 7→
x′1, . . . , xn 7→ x′n} ◦ σ where x′1, . . . , x

′
n are pairwise distinct variables not occurring

in S. Then σ′ is idempotent and a most general semi-unifier of S.

The theorem can be strengthened and still holds if we replace ∼=V (S) (weak equivalence) and

≤V (S) by ∼=W and ≤W , respectively, where W is any co-infinite subset of V containing V (S).

This strengthened version of theorem 18, part 2, implies theorem 16 (let S = ()).



88

Proof: (Proof of theorem)

For part 2, since every complete semi-lattice is automatically a complete lattice

and since every Noetherian lower semi-lattice is a complete lower semi-lattice, it is

sufficient to show that (SU(S)/∼=V (S)
,≤V (S)) is a lower semi-lattice.

Let σ1 and σ2 be semi-unifiers of S. Let x1, . . . , xk be the set V (S) of variables

occurring in S. Denote σ1(xi) by Mi and σ2(xi) by Ni for 1 ≤ i ≤ k. Now define

σ = {x1 7→M1 ∧N1, . . . , xk 7→Mk ∧Nk} with ∧ defined as in lemma 28.

First we show that σ is a semi-unifier of S. Without loss of generality (see proof

of proposition 1) we can assume that S consists of one equation and n inequalities.

There are contexts C0, C1, . . . , Cn and C′
0, C

′
1, . . . , C

′
n such that S is equal to

{

C0[x1, . . . , xk] = C′
0[x1, . . . , xk]

}

(equation)







C1[x1, . . . , xk] ≤ C′
1[x1, . . . , xk]

. . .

Cn[x1, . . . , xk] ≤ C′
n[x1, . . . , xk]







(inequalities)

By assumption both σ1 and σ2 are semi-unifiers of S, and so

C0[M1, . . . ,Mk] = C′
0[M1, . . . ,Mk]

C1[M1, . . . ,Mk] ≤ C′
1[M1, . . . ,Mk]

. . .

Cn[M1, . . . ,Mk] ≤ C′
n[M1, . . . ,Mk]

holds as well as

C0[N1, . . . , Nk] = C′
0[N1, . . . , Nk]

C1[N1, . . . , Nk] ≤ C′
1[N1, . . . , Nk]

. . .

Cn[N1, . . . , Nk] ≤ C′
n[N1, . . . , Nk]

By proposition 29 this implies that
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C0[M1, . . . ,Mk] ∧ C0[N1, . . . , Nk] = C′
0[M1, . . . ,Mk] ∧ C′

0[N1, . . . , Nk]

C1[M1, . . . ,Mk] ∧ C1[N1, . . . , Nk] ≤ C′
1[M1, . . . ,Mk] ∧ C′

1[N1, . . . , Nk]

. . .

Cn[M1, . . . ,Mk] ∧ Cn[N1, . . . , Nk] ≤ C′
n[M1, . . . ,Mk] ∧ C′

n[N1, . . . , Nk]

holds, and by lemma 28, part 2, we conclude that

C0[M1 ∧N1, . . . ,Mk ∧Nk] = C′
0[M1 ∧N1, . . . ,Mk ∧Nk]

C1[M1 ∧N1, . . . ,Mk ∧Nk] ≤ C′
1[M1 ∧N1, . . . ,Mk ∧Nk]

. . .

Cn[M1 ∧N1, . . . ,Mk ∧Nk] ≤ C′
n[M1 ∧N1, . . . ,Mk ∧Nk]

holds true. This, in turn, shows that σ is a semi-unifier of S.

We now show that any other semi-unifier σ′ that is a lower bound of both σ1 and σ2

is also a lower bound of σ. Define σ′(xi) = Li for 1 ≤ i ≤ k. Since σ′ is a lower bound

of σ1 (with respect to ≤V (S)) it holds that [L1, . . . , Lk] ≤ [M1, . . . ,Mk] for some arbi-

trary functor [. . .] written in bracket-notation; similarly, [L1, . . . , Lk] ≤ [N1, . . . , Nk].

Consequently, [L1, . . . , Lk] ≤ [M1, . . . ,Mk] ∧ [N1, . . . , Nk] and, by lemma 28, part

2, we have [L1, . . . , Lk] ≤ [M1 ∧ N1, . . . ,Mk ∧ Nk]; i.e., there is a substitution ρ

such that ρ([L1, . . . , Lk] = [M1 ∧ N1, . . . ,Mk ∧ Nk]. But this immediately implies

ρ(σ′(xi)) = σ(xi) for 1 ≤ i ≤ k, and thus σ′ ≤V (S) σ.

Part 2 implies one half of part 1, that every system of equations and inequalities

has a most general semi-unifier. Conversely, let σ be an arbitrary substitution.

If σ = ω then clearly σ is a most general semi-unifier of {f(x) = x}. If σ =

{x1 7→ M1, . . . , xk 7→ Mk} let α = {x1 7→ x′1, . . . , xk 7→ x′k} where x′1, . . . , x
′
k are

pairwise distinct variables disjoint from x1, . . . , xk. Now define S = {α(M1) ≤
x1, . . . , α(Mk) ≤ xk}. Clearly, σ is a most general semi-unifier of S.

There are more constructive proofs of the uniqueness of most general semi-unifiers modulo

weak equivalence, but they do not yield the powerful structure theorem 18. The algorithmic

specifications (functional, rewriting, and graph-theoretic) for computing most general semi-

unifiers in chapter 6, for example, can be turned independently into proofs of the existence
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of most general semi-unifiers. In fact their proofs of correctness constitute alternative proofs,

although additional care is necessary since the specifications may not be uniformly terminating.

5.3 The Structure of Typings and Typing Derivations

It is interesting that the main structure theorem for semi-unifiers, theorem 18, yields a “simul-

taneous” proof of the principal typing property of CH, DM, MM, and FMM via the reduction

in theorem 8 of chapter 4. Something even stronger can be said about typings and their deriva-

tions in the syntax-oriented versions of our type disciplines since the reduction in theorem 8

translates every typing derivation into a solution of the corresponding semi-unification problem

instance.

Consider a substitution on monotypes, S : TV → M . S can be applied to a polytype σ

by simultaneously replacing only the free variables in σ all the while renaming bound type

variables in σ to avoid capture of (necessarily free) type variables from S. Such a substitution

can thus be extended to type assignments, S(A)(x) = S(A(x)), x ∈ dom A, to typings, S(A ⊃
e : σ) = S(A) ⊃ e : S(σ) and to whole derivation trees. We can also extend the generic instance

preordering on polytypes of chapter 2, σ1 ⊑ σ2, to type assignments by A ⊑ A′ ⇔ (∀x ∈
domA) A(x) ⊑ A′(x). Finally, we define the relation (A ⊃ e : σ) ≤ (A′ ⊃ e′ : σ′): it holds if

and only if there is a substitution S such that

1. S(A) ⊑ A′,

2. e = e′,

3. S(σ) ⊑ σ′.

Finally for two proof trees (in a fixed typing calculus), P and P ′, we define P ≤ P ′ if P and P ′

are structurally isomorphic and there is a substitution S such that (A ⊃ e : σ) ≤ (A′ ⊃ e′ : σ′)

holds for every corresponding pair of typings (A ⊃ e : σ) ∈ P and (A′ ⊃ e′ : σ′) ∈ P ′. Clearly

≤ defines a preorder that induces canonically a partial order, also denoted by ≤.

Corollary 31 Let X = CH, DM, MM, or FMM, and let X’ denote the syntax-oriented version

of X. For any expression e ∈ Λ that is X-typable,

1. the set of derivable typings for e in X, respectively X’, forms a complete lattice w.r.t. the

partial order ≤ on typings;
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2. the set of all proof trees for e in X’ forms a complete lattice w.r.t. the partial order ≤ on

proof trees.

Proof: Because of theorem 5 part (2) implies part (1). An inspection of the proofs

of theorems 6 and 7 reveals that proof trees for e and solutions of the canonical

system of equations and inequalities SEI(e) are in a one-one correspondence and

the composition of the two reductions is strongly monotonic in the sense that if P

and P ′ are derivations for e and S and S′ are the corresponding semi-unifiers of

SEI(e) then P ≤ P ′ ⇔ S ≤ S′.

The first part of this corollary implies that there is a least typing A ⊃ e : σ for every typable

e. This can be read as a generalized principal typing property since it is not relative to a

fixed type assignment [23]. The second part may have practical applications in an incremental

compiler: it should be quite practical to maintain the principal type information with any well-

defined program fragment and perform a “meet”-operation with new type information once it

is available. The corollary certifies that this is always possible (see also [74]).
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Chapter 6

Algorithmic Specification of Most General Semi-Unifiers

In chapter 4 we showed that semi-unification is at the heart of polymorphic type inference in the

Mycroft Calculus. In chapter 5 we saw that every system of equations and inequalities (SEI) has

a most general semi-unifier, which is unique up to weak equivalence. In this chapter we address

the problem of computing most general semi-unifiers. It appears natural to expect that in order

to solve the decision problem of semi-unifiability it is essentially necessary to compute most

general semi-unifiers since they represent the least commitment to substitution decisions. It is

interesting then to see that Kapur et al. achieve a polynomial-time algorithm for uniform semi-

unification by exploiting a property that makes it possible to “abandon” most general (uniform)

semi-unifiers and compute a more specific semi-unifier. This is possible because the more specific

semi-unifier is guaranteed to exist if and only if the most general semi-unifier exists, which is

the case if and only if there is any (uniform) semi-unifier at all. This property does not hold

for two or more inequalities, and hence computing most general semi-unifiers seems the best

approach for obtaining a correct decision algorithm for semi-unification. The functional problem

of semi-unification — computing a most general semi-unifier — is of independent importance

in its application in type inference. In ML, for example, a program that is submitted for type

checking is annotated with type information, its principal type. We would also like to have

complete type information for all the program fragments making up the whole program. This

amounts to computing the most general semi-unifier of the SEI encoding the typing constraints

of the program and printing it out as an annotation of the program.

We present three algorithmic specifications for computing the most general semi-unifier of

an SEI in this chapter. The first one is a functional specification that is proved partially

correct by fixed point induction. The second one is an SEI-rewriting specification whose partial

correctness follows from a soundness and completeness theorem that shows that the class of

solutions is invariant under rewritings. The third specification is a graph-theoretic version of

the SEI-rewriting specification. Its encoding of SEI’s by arrow graphs, which are term graphs
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with some additional structure, not only saves execution time and space over the SEI-rewriting

formulation, it also seems more appropriate for analyzing its termination properties since all

these specifications make use of a basically “nonlocal” failure criterion called the extended occurs

check. These three specifications can be viewed as manifestations (or implementations) of one

abstract algorithm. We conjecture that this algorithm is uniformly terminating, and that thus

semi-unification and the Mycroft Calculus are decidable.

We have been implicitly suggesting that it is acceptable to talk about type inference and

semi-unification interchangeably. This informality may be unwarranted if the reduction of

type inference to semi-unification, as in chapter 4, needs to be done “off-line”, as a proper

preprocessing step to semi-unification, since this would be very undesirable in an interactive

environment. Fortunately, it is quite easy to see that this reduction can be done “on-line”,

just as lexical, syntax, and semantic analysis in compilers can usually be “jammed” to a large

degree. This enables compilers to operate in interactive and incrementable environments. Since

a “direct” syntax-oriented type inference algorithm, based on algorithm A, is quite easy to

obtain, yet raises a different set of issues that are more practical than those addressed in this

thesis, we shall refrain from delving into details and only present algorithmic specifications for

semi-unification.

6.1 Functional Specification

We now provide a functional specification of a most general semi-unifier of an SEI S, which we

prove partially correct. W.l.o.g. we may assume that SEI’s have at most one equation and at

most one inequality per inequality group and that the SEI’s are over alphabet A2. We start

with some definitions and notational conventions used later.

Definition 12 1. A k-dimensional constraint mapping R is a sequence (R1, . . . , Rk) of finite

maps from V to T that are undefined almost everywhere.1 The domain D(Ri) of Ri is

the set of variables x for which Ri(x) is defined.2 A component of a constraint mapping

can be applied to a term τ ∈ T by recursively applying it to the subterms of τ as long as

it is defined for every variable occurring in τ ; otherwise, the result is undefined.

1Recall that T = T (A2, V ).

2Note the difference between the domain of a substitution, which is defined everywhere, and a component of
a constraint mapping, which is undefined almost everywhere.
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2. Let R = (R1, . . . , Rk) and R′ = (R′
1, . . . , R

′
k) be constraint mappings; let τ1, τ2 ∈ T

be terms. A substitution U is an R-compatible semi-unifier in the i-th dimension (R-

compatible unifier) of τ1 and τ2 via R′ if 3

(a) R′
i(U(τ1)) = U(τ2)(respectively, U(τ1) = U(τ2))

(b) (∀j ∈ {1, . . . , k})(∀x ∈ D(Rj))R
′
j(U(x)) = U(Rj(x))

In the mutually recursive function specifications V (Figure 6.1) and U (Figure 6.2) we use

quite standard notational conventions from both ALGOL-like and functional languages. Some

notations are specific to our applications domain, though. Ri{x : τ2} means the same thing

for constraint mappings as it does for type environments: it denotes the constraint mapping

identical to R with the only (possible) difference that Ri{x : τ2}(x) is τ2 no matter whether

Ri(x) is defined or undefined. The function “new” takes two arguments, a term τ1 and a set of

variables Φ. It returns a term τ ′1 that is obtained from τ1 by replacing all variables in τ1 with

variables not in Φ; for convenience, it also returns the set of new variables thus introduced.4

The operator ◦ denotes functional composition.

The function V takes five arguments: a set of variables Φ, an index i between 1 and k, a

k-dimensional constraint mapping R, and two terms τ1 and τ2. U takes the same arguments

except for the index. Both functions return a substitution and a (new) constraint mapping.

In both cases the first argument, Φ, is only there for technical reasons to facilitate a “true”

functional specification (and the correctness proof of the following lemma). For all practical

purposes, a LISP-like “gensym” function used inside of the function “new” would be sufficient

(and preferable). For simplicity both V and U are formulated for the functors f and c with

arities 2 and 0, respectively.

Without going into too much detail we interpret the definitions of V and U as the least fixed

points over suitable flat domains or, more prosaically, by any one of a number of computation

rules (c. f. [71]).

Lemma 32 Let τ1, τ2 ∈ T be terms. Let Φ be a recursive subset of V containing all variables

occurring in τ1 and τ2 such that V − Φ is infinite. Let R be a constraint mapping.

3The order of τ1 and τ2 is significant for the definition of R-compatible semi-unifiers, but not for unifiers.

4Any function with these properties will do in place of “new”. In fact, “new” encapsulates the nondetermin-
ism of the problem (most general semi-unifiers are only unique up to weak equivalence) in this deterministic
specification.
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V (Φ, i, R, τ1, τ2) =

if τ1 = x (variable) then
if Ri(x) is undefined then

({}, Ri{x : τ2})
else

U(Φ, R,Ri(x), τ2)
fi

elseif τ2 = y (variable) then
if (∃v ∈ R∗(y))τ1 contains v then

ERROR: occurs-check
else

let (τ ′1,Φ
′) = new(Φ, τ1) in

let (U1, R1) = V (Φ ∪ Φ′, i, R, τ1, τ
′
1) in

let (U2, R2) = U(U1(Φ), R1, U1(y), U1(τ
′
1)) in

(U2 ◦ U1, R2)
fi

elseif τ1 = τ2 = c (constant) then
({}, R)

elseif τ1 = f(υ1, ψ1), τ2 = f(υ2, ψ2) then
let (U1, R1) = V (Φ, i, R, υ1, υ2) in
let (U2, R2) = V (U1(Φ), i, R1, U1(ψ1), U1(ψ2)) in

(U2 ◦ U1, R2)
else

ERROR: functor clash
fi

R∗(y) =

the least X | {y} ⊂ X and
(∀x ∈ X)(∀i ∈ {1, 2, . . . k})Ri(x) is a variable

⇒ Ri(x) ∈ X

Figure 6.1: Functional specification of V
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U(Φ, R, τ1, τ2) =

let (τ1, τ2) =
if τ2 = y (variable) then

(τ2, τ1)
else

(τ1, τ2) in

if τ1 = x (variable) then
if x = τ2 then

({}, R)
elseif τ2 contains x then

ERROR: occurs-check
else

(Ut, Rt) := ({x : τ2}, {x : τ2}(R));
for i = 1 to k do

if Ri(x) is defined then
(Ut′ , Rt′) := V (Ut(Φ), i, Rt, Ut(τ2), Ut(Ri(x)));
(Ut, Rt) := (Ut′ ◦ Ut, Rt′);

fi
rof;
(Ut, Rt)

elseif τ1 = τ2 = c (constant) then
({}, R)

elseif τ1 = f(υ1, ψ1), τ2 = f(υ2, ψ2) then
let (U1, R1) = U(Φ, R, υ1, υ2) in
let (U2, R2) = U(U1(Φ), R1, U1(ψ1), U1(ψ2)) in

(U2 ◦ U1, R2)
else

ERROR: functor clash
fi

Figure 6.2: Almost-functional specification of U
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1. If V (Φ, i, R, τ1, τ2) terminates with an error, then there is no R-compatible semi-unifier in

the i-th dimension of τ1 and τ2. If (U ′, R′) = V (Φ, i, R, τ1, τ2) terminates without error,

then U ′ is a Φ-maximal R-compatible semi-unifier in the i-th dimension (via R′) of τ1

and τ2; that is,

(a) R′
i(U

′(τ1)) = U ′(τ2)

(b) (∀i ∈ {1, . . . , k})(∀x ∈ D(Ri))R
′
i(U(x)) = U(Ri(x))

(c) For any R-compatible semi-unifier T in the i-th dimension of τ1 and τ2 there is a

substitution S such that (∀x ∈ Φ)S(U ′(x)) = T (x)

2. If U(Φ, R, τ1, τ2) terminates with an error, then there is no R-compatible unifier of τ1

and τ2. If (U ′, R′) = U(Φ, R, τ1, τ2) terminates without error, then U ′ is a Φ-maximal

R-compatible unifier (via R′) of τ1 and τ2; that is,

(a) U ′(τ1) = U ′(τ2)

(b) (∀i ∈ {1, . . . , k})(∀x ∈ D(Ri))R
′
i(U(x)) = U(Ri(x))

(c) For any R-compatible unifier T of τ1 and τ2 there is a substitution S such that

(∀x ∈ Φ)S(U ′(x)) = T (x)

The proof of this lemma is by simultaneous computational induction over the definitions of V

and U . Its details are truly tedious, but they are available as a manuscript [35]. The constraint

mapping R passed as an argument to V and U encodes the inequational constraints encountered

during the course of the computation. Any further substitution has to be compatible with

these constraints in the sense that they must preserve these inequational constraints. This

“preservation” of constraints is captured in the notion ofR-compatible semi-unifiers and unifiers.

The lemma states that V and U return the most general semi-unifiers and unifiers, respectively,

that are compatible with the input constraints R. From this lemma we obtain immediately a

routine W (see figure 6.3) that computes a most general semi-unifier for every “normal form”

SEI S with at most one equation and one inequality per inequality group.

Theorem 19 Let S be a system of equations and inequalities consisting of singleton sets only.

If W (S) does not terminate or terminates with an error then S has no solution. If U ′ =

W (S) terminates without error then U ′ is a most general semi-unifier of S.

This specification has already appeared in [38]. We have also implemented it in SETL [108]

and tested it on several examples.
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W (S) =
(Assume S = (τ0 = τ ′0, τ1 ≤ τ ′1, . . . , τk ≤ τ ′k))

(Ut, Rt) := ({}, ({}, . . . , {}
︸ ︷︷ ︸

ktimes

));

(Ut, Rt) := U(vars(S,Rt, τ0, τ
′
0);

for i = 1 to k do
(Ut′ , Rt′) := V (Ut(Φ), i, Rt, τi, τ

′
i);

(Ut, Rt) := (Ut′ ◦ Ut, Rt′);
rof;
return Ut;

Figure 6.3: Pseudo-functional specification of most general semi-unifier

6.2 SEI-Rewriting Specifications

In this section we present basic, implementable rewriting specifications for most general semi-

unifiers. The first is a natural and straightforward extension of the rewriting specification for

most general unifiers from [39], which was expounded by Martelli and Montanari and used as

the starting point for the development of efficient unification algorithms [72]. This system is

in general, though, nonterminating. The second rewriting specification refines the first one by

adding an “extended” occurs check. It is conjectured to be uniformly terminating.

6.2.1 The Naive Rewriting Specification

The first specification, given in Figure 6.4 is straightforward, and similar versions can be found

in the literature (e.g., [15]). This rewriting system preserves semi-unifiers in a sense that we

shall make precise below.

Definition 13 Let ⇒ be a reduction relation on systems of equations and inequalities.

1. The relation ⇒ is sound if for every S, S′ such that S ⇒ S′ and for every semi-unifier σ′

of S′ there is a semi-unifier σ of S such that σ |V (S)= σ′ |V (S) (and thus σ ∼=V (S) σ
′).

2. The relation ⇒ is complete if for every S, S′ such that S ⇒ S′ and for every semi-unifier

σ of S there is a semi-unifier σ′ of S′ such that σ |V (S)= σ′ |V (S) (and thus σ ∼=V (S) σ
′).

Informally speaking, soundness expresses that a reduction step does not add semi-unifiers,

and completeness means that no semi-unifiers are lost in a reduction step.
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Given an SEI S with k sets of inequalities we initially tag all the inequality symbols with
distinct “colors” 1, . . . , k to indicate to which group of inequalities they belong. This is
done by superscripts of the inequality symbol; e.g., ≤(1) Then nondeterministically choose
an equation or inequality and take a rewriting action depending on its form.a

1. f(M1, . . . ,Mk) = f(N1, . . . , Nk):

Replace by the equations M1 = N1, . . . ,Mk = Mk.

2. f(M1, . . . ,Mk) = g(N1, . . . , Nl) where f and g are distinct functors:

Replace current SEI by 2 (functor clash).

3. f(M1, . . . ,Mk) = x:

Replace by x = f(M1, . . . ,Mm).

4. x = f(M1, . . . ,Mk) where x occurs in at least one of M1, . . . ,Mk:

Replace current SEI by 2 (occurs check).

5. x = M where x does not occur in M , but occurs in another equation or inequality:

Replace x by M in all other equations or inequalities.

6. x = x:

Delete it.

7. f(M1, . . . ,Mk) ≤(i) f(N1, . . . , Nk):

Replace by inequalities M1 ≤(i) N1, . . . ,Mk ≤(i) Mk.

8. x ≤(i) M and x ≤(i) N :

Delete one of the two inequalities and add the equation M = N .

9. f(M1, . . . ,Mk) ≤(i) x:

Add the equation x = f(x′1, . . . , x
′
k) where x′1, . . . , x

′
k are new variables not occurring

anywhere else.

aWithout loss of generality we restrict ourselves to the minimal nonlinear alphabet A = (f, {f 7→ 2}).
Recall that 2 denotes the canonical unsolvable SEI.

Figure 6.4: Naive rewriting specification
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Proposition 33 The reduction relation defined by the naive rewriting system (in Figure 6.4)

is sound and complete.

Proof: Induction on the number of rewriting steps.

Any SEI S is in normal form with respect to a reduction relation ⇒ if there is no S′ such

that S ⇒ S′. If an SEI is in normal form with respect to the naive rewriting system or the

canonical rewriting system below it is easy to extract a most general semi-unifier from it.

Proposition 34 Let S be a system of equations and inequalities in normal form with respect

to the reduction relation defined by the naive (canonical) rewriting system in Figure 6.4.

If S = {x1 = M1, . . . , xk = Mk, y1 ≤ N1, . . . , yl ≤ Nl} then the substitution σ = {x1 7→
M1, . . . , xk 7→Mk} is a most general idempotent semi-unifier of S.

Proof: By inspection.

To determine a most general semi-unifier of an SEI S we can apply the naive rewriting

system to it and if it terminates in a normal form S′ we can extract a most general semi-unifier

of S′. If S′ = 2 then S is unsolvable; otherwise there is a most general semi-unifier σ′ of S′

according to proposition 34. As a result of proposition 33 the restriction σ′ |V (S) (or σ′ itself)

is a most general semi-unifier of S.

6.2.2 The Canonical Rewriting Specification

There are systems of equations and inequalities for which there is no finite rewriting derivation

in the naive rewriting system; that is, no sequence of rewriting steps such that after a finite

number of steps no more rewritings are possible. Consider, for example, the system S0 =

{f(x, g(y)) ≤ f(y, x)}. It is easy to see that there is always at least one rule applicable.

The main reason for nontermination is that the last inequality rule, rule (9), introduces new

variables every time it is executed. Replacing it with the deceivingly pleasing rule [97]

f(M1, . . . ,Mk) ≤ x:

Add the equation x = f(M1, . . . ,Mk).

indeed eliminates the nontermination problem of rewriting derivations, but also its completeness.

To see this, consider, for example, the system S1 = (f(g(y), g(y)) ≤ f(x, g(g(y)))). There is a

derivation that would lead us to claim, incorrectly, that S1 has no semi-unifiers.
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(9.1) f(M1, . . . ,Mk) ≤(i0) x and there are variables x0, . . . , xn such that x = x0, xi ≤(ji)

xi+1 are inequalities in the current SEI for 0 ≤ i ≤ n−1 and some colors i1, . . . , in−1,
and there exists an i such that xn occurs in Mi:

Replace current SEI by 2 (extended occurs check).

(9.2) f(M1, . . . ,Mk) ≤(i0) x and there is no sequence of variables x0, . . . , xn such that
x = x0, xi ≤(ji) xi+1 are inequalities in the current SEI for 0 ≤ i ≤ n− 1 and some
colors j1, . . . , jn−1, and xn occurs in some Mi:

Add the equation x = f(x′1, . . . , x
′
k) where x′1, . . . , x

′
k are new variables not occurring

anywhere else.

Figure 6.5: Extended occurs check

If we reconsider system S0 it is easy to see that it is unsolvable. This is due to the fact that

the inequalities

g(y) ≤ x

x ≤ y

are not uniformly or nonuniformly solvable. If we denote the length of a term M by |M |, then

any solution M1 for x and M2 for y would have to satisfy the numeric inequalities |M1| ≤ |M2|
and |M1| ≥ |g(M2)| ≥ |M2|+ 1, which is clearly impossible. We can catch this case by refining

rule (9) with an “extended” occurs check. More precisely, let us call the rewriting system with

rule (9) replaced by the rules in Figure 6.5 the canonical rewriting system.

Proposition 35 The reduction relation defined by the rewriting system in Figure 6.4 with rule

(9) replaced by the rules (9.1) and (9.2) from Figure 6.5 is sound and complete.

Proof: See discussion of system S0.

For any reduction relation ⇒ with a notion of normal form, an effective (one-step) normal-

izing strategy is a polynomial-time computable function F such that if F (S) = S then S is a

normal form and, otherwise, if F (S) = S′ then S ⇒ S′; and furthermore, if S
∗⇒ S′, S′ a normal

form, then Fn(S) = Fn+1(S) for some n ∈ N .

Even though there are still infinite rewriting derivations possible in the canonical rewriting

system we conjecture that there is an effective normalizing strategy for the canonical rewriting

system.

Conjecture 1 There exists an effective normalizing strategy for the canonical rewriting system

such that the strategy admits only finite rewriting derivations.
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In fact we believe that any strategy that executes rule (9.2) only if there are no other rules

applicable satisfies this conjecture (see chapter 7).

An immediate consequence of this conjecture is the decidability of semi-unification.

Conjecture 2 The set of all solvable systems of equations and inequalities is decidable.

6.3 Graph Rewriting Specification

It is probably easier to analyze the extended occurs check in both the functional specification

and the SEI-rewriting specification in a graph-theoretic setting since it is a (syntactically)

nonlocal condition. This formulation is a good starting point for both the analysis of termination

properties, for practical implementations, and for optimizations for subcases of general semi-

unification, such as uniform semi-unification.

6.3.1 Arrow graphs

Recall that term graphs are (nonunique) representations for sets of terms. Arrow graphs are

term graphs with additional structure to represent SEI’s.

Definition 14 A (k-colored) arrow graph G is a sextuple (N,NF , E, L,A,∼) where |G| =

(N,NF , E, L) is a term graph (over A2), A = (A1, . . . , Ak) is a k-tuple, Ai ⊂ N × N , for

1 ≤ i ≤ k; the elements of Ai are called arrows; and ∼ is an equivalence relation on N .

We can think of an arrow in A as colored by 1, . . . , k indicating to which Ai it belongs. We

may write m
i→ n for (m,n) ∈ Ai whenever A and Ai are understood from the context.

An arrow graph representation of SEI S = (M0 = N0,M1 ≤ N1, . . . ,Mk . . . Nk) is a an arrow

graph G whose underlying term graph, |G|, represents all the terms occurring in S; G contains

arrows mi
i→ ni if [mi] = Mi, [ni] = Ni for 1 ≤ i ≤ k; and ∼ in G is the smallest equivalence

relation containing m0 ∼ n0 if [m0] = M0, [n0] = N0. In other words, the colored arrows encode

inequalities, and the equivalence relation encodes equations.

Let A = A2 be the usual ranked alphabet.

Definition 15 An interpretation I of an arrow graph G = (N,NF , L, E,A,∼) is a mapping of

nodes to first-order terms (with variables) over the ranked alphabet A. I is valid if there exist

quotient substitutions R1, . . . , Rk such that
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1. (∀n ∈ NF , n1, n2 ∈ N) L(n) = f,E(n) = (n1, n2)⇒ I(n) = f(I(n1), I(n2));

2. (∀n, n′ ∈ N) n ∼ n′ ⇒ I(n) = I(n′);

3. (∀n, n′ ∈ N, 1 ≤ i ≤ k) n i→ n′ ⇒ Ri(I(n)) = I(n′).

It is easy to see that an SEI S has a semi-unifier if and only if G, an arrow graph represen-

tation of S, has a valid interpretation.

6.3.2 Algorithm A

Algorithm A in Figure 6.6 applies the closure rules depicted in Figure 6.7, repeatedly rewriting

the initial arrow graph representation of an SEI S until the arrow graph does not change any

more.

An equivalence relation on the nodes of a term graph can be interpreted as a substitution

relative to a system of (equivalence class) representatives as long as the equivalence relation

is a structural equivalence, i.e., satisfies closure rule 1 and does not trigger rule 4a. This

correspondence has been widely used in graph-theoretic formulations of unification algorithms

(c. f. [89]), and we will refrain from making it precise here.

Proposition 36 Let G be an arrow graph representation of SEI S. If algorithm A (Figure

6.6) terminates on input G with an arrow graph G′ 6= 2, then the resulting equivalence relation

represents a most general semi-unifier of S. If G′ = 2 then S is unsolvable.

Proof:

Every graph rewriting step corresponds to SEI rewriting steps in the canonical

rewriting system in Figure 6.4 with the extended occurs check rules from Figure

6.5 replacing rule (9) on the terms represented by the term graph |G|, and vice

versa. By proposition 35 the canonical SEI-rewriting system computes a most gen-

eral semi-unifier.

In contrast to Mycroft’s original type inference algorithm for the Mycroft Calculus there

are no known inputs that lead to nontermination of algorithm A. Nonetheless it is currently

unknown whether algorithm A terminates uniformly or whether there is any uniformly termi-

nating algorithm for semi-unifiability at all. Since we conjecture that both questions have an

affirmative answer, we believe that key to the establishment of this result is an in-depth investi-

gation of the deep structure of sequences of arrow graphs that arise from the (nondeterministic)
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Let G = (N,NF , E, L,A,∼). Apply the following rules (depicted also in Figure
6.7) until convergence:

1. If there exist nodes m and n labeled with a functor f and with chil-
dren m1,m2 and n1, n2, respectively, such that m ∼ n then merge the
equivalence classes of m1 and n1 and of m2 and n2.

2. If there exist nodes m and n labeled with a functor f and with children

m1,m2 and n1, n2, respectively, such that m
i→ n then place arrows

m1
i→ n1 and m2

i→ n2.

3. If there exist nodes m1, m2, n1, and n2 such that

(a) m1 ∼ n1, m1
i→ m2 and n1

i→ n2 then merge the equivalence
classes of m2 and n2;

(b) m1 ∼ n1, m1
i→ m2 and m2 ∼ n2 then place an arrow n1

i→ n2.

4. (a) (Extended occurs check) If there is an path consisting of arrows of
any color (arrow path) from n1 to n2 and n2 is a proper descendant
of n1, then reduce to the improper arrow graph 2.

(b) If the extended occurs check is not applicable and there exist nodes
m and n such that m is labeled with functor f and has children
m1,m2, n is not equivalent to a functor labeled node, and there

is an arrow m
i→ n then create new nodes n′, n′

1, n
′
2 (each initially

in their own equivalence class) and label n′ with functor f , label
n′

1 and n′
2 with new variables x′ and x′′, respectively; make n′

1, n
′
2

the children of n′; and merge the equivalence classes of n and n′.

Figure 6.6: Algorithm A
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Figure 6.7: Closure rules
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execution of algorithm A. For this reason we call a sequence G = (G1, . . . , Gi, . . . , ) of arrow

graphs an execution (of algorithm A) if every component in the sequence is derived from its

predecessor by one of the rewriting rules in Figure 6.6, respectively Figure 6.7. Some elementary

approaches and preliminary results are reported in chapter 7.

6.4 Arithmetic Compression for Uniform Semi-Unification

For uniform semi-unification we will show that it is possible to establish decidability. In fact

algorithm A (Figure 6.6) terminates uniformly for every input in exponential time and space if

the initial arrow graph is only 1-colored (see below). By a form of “arithmetic” compression it

is possible to compute most general uniform semi-unifiers in polynomial space, as shown in this

chapter. The decidability of uniform semi-unification has also been discovered by Pudlák [96].

If it is only desired to decide uniform semi-unifiability it is possible to simplify the algorithm

and run it in polynomial time by a result of Kapur et al. [54].

6.4.1 An exponential time algorithm for uniform semi-unification

It can be shown that algorithm A terminates in exponential time for uniform semi-unification

under a deterministic rewriting strategy we shall describe below. It is inspired by normalized

executions, in which rule 4 of algorithm A is only executed when none of the other rules are

applicable. What permits a relatively simple termination proof (and the exponential upper

bound) is that, for arrow graphs of one color, for every node without an outarrow there can be

at most one “new” node created by execution of rule 4. This property does not hold for arrow

graphs with two or more colors.

Proposition 37 The algorithm “solve” in Figure 6.8 is an exponential-time uniform semi-

unification algorithm.

Proof:

Let us say a discrepancy in an arrow graph is a node where rule 4 can be applied;

i.e., it is a functor node n with an outarrow to variable node n′ that is not equivalent

to any functor node. We associate with every arrow graph G of one color the triple

(ew/o, w, e), called the characteristic of G, where
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1. ew/o is the number of equivalence classes in G that has no node with an out-

arrow (i.e., for no node n in the equivalence class is there an arrow n
1→ n′ for

any n′);

2. w is the number of equivalence classes that contain only variable nodes at least

one of which is reachable from a discrepancy via an arrow path (discrepancy

weight);

3. e is the number of equivalence classes.

These triples are lexicographically well-ordered.

The procedure “solve” in Figure 6.8 implements a specific strategy for applying the

closure rules of algorithm A. In particular, rules 1 and 3, which merge equivalence

classes, are always applied exhaustively after any of the other steps as a “normal-

ization” step. Furthermore, when rule 4 is applicable at some discrepancy n then it

is clear that it can be applied recursively at every descendant of n after execution of

rule 2 at node n, until the variable leaves of n are reached; this is accomplished by

the procedure “copy”. Since every new node created by copy(n) is not a descendant

of n, it is easy to see that an invocation of copy(n) creates k new nodes, if n has k

descendants (descendant equivalence classes) with no outarrow at the time copy(n)

is called.

Let us call exhaustive application of rules 1 and 3 a normalization step. We call

merging an equivalence class with an outarrow and an equivalence class without an

outarrow a skewed merge.

Now note that the exhaustive application of rules 1 and 3, if applicable at least once,

decreases the number of equivalence classes at least by one. Furthermore, if normal-

ization contains a skewed merge, then the discrepancy weight, w, may be increased,

but the number of equivalence classes without an outarrow, ew/o, is decreased by

at least one. If normalization contains no skewed merge, the number of equiva-

lence classes reachable from any discrepancy does not increase and, consequently,

the discrepancy weight does not increase, either. In all cases the total number of

equivalence classes does not increase.

Application of rule 2 with subsequent normalization leads to consideration of two

cases: either the tail of the new arrow propagated has already an outarrow, or it
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does not. In the first case, clearly ew/o is decreased by one. In the second case

e is properly decreased, and there are two possibilities to consider depending on

whether the normalization contains a skewed merge. If a skewed merge occurs, ew/o

is properly decreased. If no skewed merge occurs, it can be seen that the discrepancy

weight is not increased.

Finally, a discrepancy n is minimal if there is no discrepancy n′, a sequence of nodes

n1, . . . , nk such that n′ = n1, n = nk and ni
1→ ni+1 or ni is a child of ni+1 for

1 ≤ i ≤ k − 1 with the additional constraint that there is a j such that nj is a

child of nj+1 (see chapter 7). If there is a discrepancy, but no minimal one, then

reduction to 2 is performed, since this corresponds to a “preemptive” application of

the extended occurs check. If a minimal discrepancy exists, then rule 4b is applicable

at a minimal discrepancy (there may be several minimal discrepancies). Instead of

applying rule 4b only once algorithm “solve” applies routine “copy”, which is an

exhaustive application of rule 4b to the original discrepancy and, recursively, all its

descendants, facilitated by intermediate applications of rule 2 and 3. Application

of “copy” to the children of a minimal discrepancy terminates in time O(ew/o) and

decreases the discrepancy weight by one. Although e is properly increased, ew/o is

not.5

This shows that every iteration through the loop strictly decreases the character-

istic of the rewritten arrow graph. Consequently the procedure solve terminates

uniformly. Furthermore, since w is bounded by e, and e is only increased by execu-

tion of “copy”, it can be seen that e at most doubles every time ew/o decreases by

one. Clearly every iteration of the loop in “solve” is executed in polynomial time

with respect to the size (number of nodes) of the arrow graph before the iteration.

This shows that solve(G) terminates in exponential time; i.e., in time O(2cnk

), for

some c, k, where n is the number of nodes in G.

6.4.2 Interaction Graphs

Notice that a 1-colored arrow graph G will be transformed by algorithm A into a possibly

exponentially bigger arrow graph with many “new” nodes (introduced by rule 4 in Figure 6.6).

5The fact that ew/o is not increased by application of “copy” is at heart of why this termination proof works

for uniform semi-unification, but not for general semi-unification.
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Recall the closure rules of algorithm A, Figure 6.6, also depicted in Figure 6.7.

solve(G) =
repeat

apply rules 1 and 3 exhaustively;
if rule 2 is applicable then

apply it (once);
else if rule 4 is applicable then

if there is a minimal discrepancy n then
(L(n) = f,E(n) = (n1, n2))
create a new functor node n′, L(n′) = f ,
with children copy(n1) and copy(n2);
place an arrow from n to n′;

else
reduce to 2 (extended occurs check);

end if
end if

until no more rules are applicable;

copy(n) =
if n has an outarrow to some node n′ then

return n′;
else if n is equivalent to a functor node n′,

L(n′) = f,E(n′) = (n′
1, n

′
2) then

create new functor node n′′, L(n′′) = f,
with children copy(n′

1) and copy(n′
2);

return n′′;
else

create new variable node n′, L(n′) = x′, where x′ is a new variable;
return n′;

end if

Figure 6.8: Exponential-time uniform semi-unification algorithm
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Let us call the nodes that are in the input graph G “original” nodes and all other nodes that

are added by A “new” nodes. If we consider all arrow paths in the “evolved” graph after

a number of graph rewriting steps it can be seen from the closure rules that almost all the

relevant information about arrow paths in an execution of algorithm A can be computed from

other information about arrow paths. For the most part, it is sufficient to consider only arrow

paths from original nodes to original nodes. Since there may be arrow graphs from two original

nodes to a common new node we have to consider, more generally, all the possible ways in

which arrow graphs from two original nodes “merge” together, if at all. Consequently it is not

necessary to explicitly construct new nodes, only all relevant information about arrow paths

from pairs of original nodes. Since we assume only 1-colored graphs the arrow paths in question

are completely characterizable by their starting point, end point and their length. Since the

length can be stored in space O(log n) where n is the length itself, this representation of arrow

paths yields a space compression due to this “arithmetization” of arrow paths. Indeed we can

thus devise an algorithm that computes a most general uniform semi-unifier in polynomial space.

The details are below.

Definition 16 (Interaction graph)

An interaction graph (of degree 1) is a term graph over A2 with an additional consistency

mapping C : N × N → 2N×N . A normal interaction graph is an interaction graph whose

consistency sets satisfy the rules in Figure 6.9.

An interaction graph representation of an SEI S is very similar to an arrow graph represen-

tation (for uniform semi-unification problems). In particular, both inequalities and equations

can be encoded in a single consistency mapping. Specifically, an interaction graph representa-

tion of S = (M0 = N0,M1 ≤ N1) is an interaction graph G whose underlying term graph, |G|,
represents all the terms occurring in S; and the consistency mapping in G is the smallest C

such that (0, 0) ∈ C(m0, n0), (1, 0) ∈ C(m1, n1) if [mi] = Mi, [ni] = Ni, 0 ≤ i ≤ 1.

Let A = A2 be the usual ranked alphabet.

Definition 17 An interpretation I of an interaction graph G = (N,NF , L, E,C) is a mapping

of nodes to first-order terms (with variables) over the ranked alphabet A. I is valid if there is a

quotient substitution R such that

1. (∀n ∈ NF , n1, n2 ∈ N) L(n) = f,E(n) = (n1, n2)⇒ I(n) = f(I(n1), I(n2));
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Let G = (N,NF , L, E,C) be an interaction graph. G is normal if it satisfies the following
closure rules.

1. For n, n1, n2, n
′, n′

1, n
′
2 ∈ N such that E(n) = (n1, n2), E(m) = (m1,m2), if (l, l′) ∈

C(n, n′) then (l, l′) ∈ C(n1, n
′
1) and (l, l′) ∈ C(n2, n

′
2).

2. For n1, n2, n3, n4 ∈ N , if (l01, l10) ∈ C(n0, n1), (l23, l32) ∈ C(n2, n3), (l02, l20) ∈
C(n0, n2)

then (l10 + (l02 − l01), l32 + (l20 − l23)) ∈ C(n1, n3)

if the differences above are nonnegative.

3. If (l, l′) ∈ C(n, n′) then (l′, l) ∈ C(n′, n).

4. (0, 0) ∈ C(n, n).

5. If (l, l′) ∈ C(n, n′) then (l + 1, l′ + 1) ∈ C(n, n′).

Figure 6.9: Consistency rules for uniform semi-unification

2. (∀n, n′ ∈ N, l, l′ ∈ N ) (l, l′) ∈ C(n, n′)⇒ Rl(I(n)) = Rl′(I(n′)).

It is clear that for every interaction graph G with consistency mapping C there is a unique

smallest normal interaction graph Ḡ with the same term graph as G and a consistency mapping

C̄ that contains C. It is also easy to check that I is a valid interpretation for G if and only if I

is a valid interpretation for Ḡ, and SEI S has a uniform semi-unifier if and only if an interaction

graph representation G of S has a valid interpretation.

Now, a somewhat more complicated analog of the extended occurs check of algorithm A,

applied to a normal interaction graph Ḡ, determines whether there is a valid interpretation for

Ḡ and, consequently, whether the SEI that Ḡ represents has a uniform semi-unifier.

For n′ ∈ NF , n, n
′
1, n

′
2 ∈ N,E(n′) = (n′

1, n
′
2) we say (n′

1, l
′) (respectively (n′

2, l
′) is a direct

left (right) descendant of (n, l) with respect to C if (l, l′) ∈ C(n, n′). The transitive closure of

this relation defines proper descendancy, and the reflexive-transitive closure defines descendancy.

Theorem 20 Let G be an interaction graph representing an SEI S over A2, and let Ḡ be the

smallest normal interaction graph containing G, where the consistency mapping in Ḡ is C̄.

Then S is uniformly semi-unifiable if and only if for no n ∈ N and l, d ∈ N , (n, l + d) is a

proper descendant of (n, l) in C̄.

Proof:

First we shall prove that if there is n ∈ N and l ∈ N such that (n, l) is a proper
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I(n, l) =
if (n, l) has no proper descendant then

(n is variable labeled)
let (n′, l′) be the least (n′′, l′′) such that

(n′′, l′′) ≤ (n, l);

return y(l′′) (where L(n) = y)
else

let (m′, l′), (m′′, l′′) be direct left,
respectively right, descendants of (n, l);

return f(I(m′, l′), I(m′′, l′′))
end if

Figure 6.10: Interaction graph interpretation

descendant of (n, 0) in C̄, then Ḡ has no valid interpretation. Assume I is a valid

interpretation with quotient substitution R. If (n′, l′) is a direct descendant of (n, l)

in C̄, then |Rl′(I(n′))| < |Rl(I(n))|, and, by induction, this holds also if (n′, l′)

is a proper descendant of (n, l) in C̄. If (n, l + d) is a proper descendant of (n, l)

this means that |Rd(Rl(I(n)))| < |Rl(I(n))|; but this is manifestly impossible since

applying a substitution to a term cannot make the (tree) size of a term smaller.

Consequently there cannot be a valid interpretation for Ḡ.

Conversely, if there is no (n, l+ d) that is a proper descendant of (n, l), then we can

define a valid interpretation for Ḡ. Assume all variables in V are totally ordered in

some fashion. We may assume that the underlying term graph of Ḡ has exactly one

node labeled x for every variable x occurring in S. Thus the ordering on variables

extends uniquely to nodes. We can also extend it lexicographically to node-number

pairs, where the ordering on numbers is the standard arithmetic ordering.

Consider the function I defined in Figure 6.10. It is routine to check that I(n) =

I(n, 0) defines a well-defined valid interpretation since the closure properties of the

consistency rules guarantee that the definition is well-defined, and the recursion

must terminate if there is no (n, l) that has (n, l+d), d ≥ 0, as a proper descendant.
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Let C ⊂ N ×N . C is consistently closed if the following closure rules are satisfied.

1. If (l1, l2), (l3, l2), (l3, l4) ∈ C then (l1, l4) ∈ C.

2. If (l, l′) ∈ C then (l + d, l′ + d) ∈ C, d ≥ 0,.

Figure 6.11: Consistently closed relations

6.4.3 A polynomial space algorithm for uniform semi-unification

The consistency mapping in an interaction graph maps pairs of nodes to infinite sets. In order

to transform the closure rules for interaction graphs into an algorithm it is necessary to find a

finite representation and effective means of manipulating it. We can consider a given set C(n, n′)

and “close” it with respect to the consistency rules in the “trivial” term graph consisting only

of nodes n and n′ (and no edges or other nodes). In this sense every set of pairs of nonnegative

numbers generates, independent of any term graph, a unique smallest set of pairs of numbers

that are closed with respect to the consistency rules. We shall show that every such closed set

can be represented by at most two pairs of numbers, and the consistency rules that involve the

structure of a given term graph, namely rule 1 and rule 2 can be encoded by effective operations

on such pairs of numbers. The details are below.

A binary relation C on the natural numbers is consistently closed if the closure rules in

Figure 6.11 are satisfied.

For consistently closed relations we have the following proposition.

Proposition 38 Let C be a consistently closed relation, and let l1, l2, d, d
′ ∈ N , d′ ≥ d > 0.

Then

1. (l1, l2), (l1 + d, l2) ∈ C ⇒ (l1, l2 + d) ∈ C and (l1, l2), (l1, l2 + d) ∈ C ⇒ (l1 + d, l2) ∈ C;

2. (l1, l2), (l1, l2 + d), (l1, l2 + d′) ∈ C ⇒ (l1, l2 + (d′ − d)) ∈ C;

3. (l1, l2), (l1, l2 + d), (l1, l2 + d′) ∈ C ⇒ (l1, l2 + gcd(d, d′)) ∈ C.

Proof:

1. If (l1, l2), (l1 + d, l2) ∈ C, then (l1 + d, l2 + d) ∈ C by rule 2 of the definition

of consistently closed relations (Figure 6.11), and, by rule 1, (l1, l2 + d). The

other case is symmetric.
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2. If (l1, l2), (l1, l2 +d), (l1, l2 +d′) ∈ C, then (l1 +(d′−d), l2 +d+(d′−d)) = (l1 +

(d′−d), l2+d′) ∈ C by rule 2. Since (l1+(d′−d), l2+d′), (l1, l2+d′), (l1, l2) ∈ C
we have (l1 + (d′ − d), l2) ∈ C by rule 1. The result follows by case 1 above.

3. Note that, by induction on Euler’s gcd-algorithm, if for any property P (d)

over the natural numbers we have (∀d, d′ ∈ N , d′ ≥ d) P (d) and P (d′) ⇒
P (d′ − d) then it also holds that P (d)and P (d′) ⇒ P (gcd(d, d′)). If we let

P (d) ≡ (l1, l2 + d) ∈ C, then the result follows from case 2.

The significance of consistently closed relations is summarized in the following proposition.

Proposition 39 Let Ḡ be a normal interaction graph with consistency mapping C̄. Then

C̄(n, n′) is consistently closed for all nodes n, n′.

Proof:

Closure property 2 is established by simple induction on d and rule 5 in the consis-

tency rules for normal interaction graphs (Figure 6.9).

Property 1 is a special case of rule 2 in Figure 6.9. Consider C̄(n, n′). If (l1, l2), (l3, l2), (l3, l4) ∈
C̄(n, n′), then (l2, l3) ∈ C̄(n′, n) by rule 3 of Figure 6.9. With n0 = n′, n1 = n, n2 =

n, n3 = n′, l10 = l1, l01 = l02 = l2, l20 = l23 = l3, l32 = l4 it follows by rule 2 that

(l10, l32) = (l1, l4) ∈ C̄(n, n′).

Drawing on terminology from algebra, we shall say a relation B spans a consistently closed

C if the smallest consistently closed relation containing B is C; we shall denote this by 〈B〉 = C.

If no set with cardinality smaller than B spans C, then B is a basis of C. A set B is independent

if no proper subset of B is a basis.

The following theorem is at the heart of our uniform semi-unification algorithm.

Theorem 21 1. Every consistently closed relation C has a basis of cardinality at most 2;

i.e., there exist l1, l2, l
′
1, l

′
2 ∈ N such that 〈(l1, l2), (l′1, l′2)〉 = C.6

2. For every consistently closed relation C there exist unique l, l′, c ∈ N , k ≥ −c such that

C = 〈(l, l′), (l + k, l′ + k + c)〉.

6As is conventional, we shall elide the set former brackets in finite bases.



115

Proof:

Part 1 follows immediately from part 2, of course.

Let C be consistently closed relation. If C is empty, then the empty set is a basis

of C, and we are done. Otherwise, let l′ be the smallest number with (l′′, l′) ∈ C
for some l′′, and let l be the smallest l such that (l, l′) ∈ C. If 〈(l, l′)〉 = C, we

are done. Otherwise, let c be the smallest positive number such that (l + k′′, l′ +

k′′ + c) ∈ C for some (possibly negative) integer k′′. Let k be the smallest k such

that (l + k, l′ + k + c) ∈ C. Note that k > −c by definition of l′ and l. Clearly,

〈(l, l′), (l + k, l+ k + c)〉 ⊂ C.

We shall now show that 〈(l, l′), (l + k, l+ k + c)〉 ⊃ C. Let (l1, l2) be any pair in C.

There exist unique integers k′, c′ such that (l1, l2) = (l + k′, l′ + k′ + c′). There are

three cases to consider: c′ = 0, c′ > 0, and c′ < 0.

c′ = 0: If c′ = 0, then it must be that k′ ≥ 0. But then (l1, l2) ∈ 〈(l, l′)〉 (by rule 2

of consistently closed relations) and (l1, l2) ⊂ 〈(l, l′), (l + k, l′ + k + c)〉.

c′ > 0: By construction of l′ and l it must be that k′ > −c′. Consequently (k+ c)+

(k′ + c′) > 0, c+ (k′ + c′) > 0, c′ +(k+ c) > 0. By rule 2 for consistently closed

relations we can conclude that (l+(k+c)+(k′+c′), l′+(k+c)+(k′+c′)), (l+k+

c+(k′+c′), l′+k+c+(k′+c′)+c), (l+k′+c′+(k+c), l′+k′+c′+(k+c)+c′) ∈ C.

From the previous proposition we have (l + (k + c) + (k′ + c′), gcd(c, c′)) ∈ C.

By definition of c this implies that c ≤ gcd(c, c′) and thus c′ = ic for some

i ∈ N . With the looping rule we can show that (l+k′, l′ +k′ + c′ + c) ∈ C and,

consequently, (l + k′, l′ + k′ + c) ∈ C. This shows that k′ ≥ k by definition of

k. And furthermore, since (l + k′, l′ + k′ + c′) = (l + k + d, l′ + k + d+ ic) for

some d, i ∈ N this shows that (l + k′, l′ + k′ + c′) ∈ 〈(l, l′), (l + k, l′ + k + c)〉.

c′ < 0: This case can be reduced to the case c′ > 0, since, by the previous proposi-

tion, if k ≥ 0 then {(l, l′), (l+ k+ c, l′ + k)} is also in 〈(l, l′), (l+ k, l′ + k+ c)〉;
if k < 0 then (l + k, l′ + c+ k), (l + k + (−(c+ k)) + c, l′ + c+ k + (−(c+ k)))

is another way of writing (l+ k, l′ + c+ k), (l, l′) that is of the symmetric form

with the “looping factor” c in the first component.

We can use this finite representation to construct a polynomial-space algorithm for comput-

ing most general uniform semi-unifiers as follows. Let G be an interaction graph representation
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of SEI S with consistency mapping C. Add pairs (0, 0) into C(n, n) for every node n. Maintain

at most two number pairs per node pair. If the set of node pairs B is associated with (n, n′),

whose left children are m and m′, respectively, then take the number pairs B′ associated with

(m,m′) and compute a new basis B′′ of 〈B ∪ B′〉 and associate it with (m,m′), replacing B′.

This corresponds to “executing” rule 1 of Figure 6.9. A similar trick can be applied for rule

2. Since the remaining rules are independent of the structure of G, they are already taken

care of by the fact that the number pairs associated with node pairs are interpreted as bases of

consistently closed relations. The critical part that remains to be shown is how B′′ is calculated

from B and B′.

For three pairs (l1, l2), (l
′
1, l

′
2), (l

′′
1 , l

′′
2 ) it is easy to check whether one of them is in the span

of the other two. The only interesting case that has to be treated is if this is not the case. Then,

w.l.o.g., B = {(l1, l2), (l1+k, l2+k+c), (l1+k′, l2+k
′+c′} where l1, l2, c, c

′ > 0, k > −c, k′ > −c′.

Proposition 40 Let B = {(l1, l2), (l1 + k, l2 + k + c), (l1 + k′, l2 + k′ + c′)} where l1, l2, c, c
′ >

0, k ≥ −c, k′ ≥ −c′.

Then B′ = {(l1, l2), (l1 + k′′, l2 + k′′ + c′′)}, with k′′ = min{k, k′}, c′′ = gcd(c, c′), is a basis

of 〈B〉.

Proof:

It is sufficient to show that 〈B′〉 = 〈B〉. This is analogous to the proof of theorem

21.

This proposition shows that it is possible to compute a basis of a consistently closed re-

lation spanned by three number pairs; of course, this construction can be applied repeatedly

to calculate the basis of any finite set of number pairs. We shall denote the basis B above of

〈B′〉 by b(B′). We can now translate the closure rules of Figure 6.9 to operations on bases of

consistently closed relations and arrive at the following theorem.

Theorem 22 There is an algorithm A1 that computes the most general uniform semi-unifier

(in a suitable representation) of any SEI S ∈ Γ(A2, V ) in polynomial space.

Proof:

Construct an initial interaction graph G for S. Apply the rewriting steps in algo-

rithm A1 in Figure 6.12 to G′ until convergence. The biggest number occurring in

any consistency set during its execution is bounded by 22m2

, where m is the number
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of nodes in G′ (which does not change). This can be shown by observing that the

rewrite rules guarantee that numbers only decrease unless the cardinality of some

C(n, n′) is increased, in which case the biggest number can be at most doubled in

the rewritten interaction graph. An increase of cardinality of one of these sets can

happen at most 2m2 times. This shows that A1 uses at most polynomial space

during the first stage. The second stage — checking for a violation of the descen-

dancy check — is a backtracking algorithm that also uses at most polynomial space.

Consequently, algorithm A1 executes in polynomial space.

We believe that the first stage of algorithm A1 can be further improved to run in polynomial

time, although we cannot see how to speed up the second stage without simplifying the interac-

tion graph from the first stage further by normalizing it with respect the “inverse” rule below,

which has been proposed by Kapur et al. [54] to arrive at a polynomial-time decision algorithm

for uniform semi-unification. Note that our algorithm permits us to extract a most general

uniform semi-unifier by “running” the interpretation “program” I in the proof of theorem 20.

The inverse of rule 3, specifically

“If there exist nodes m1, m2, n1, and n2 such that m2 ∼ n2, m1
i→ m2 and n1

i→ n2

then merge the equivalence classes of m1 and n1,”

is sound, but not complete in our sense. It appears to preserve semi-unifiability in the uniform

case (one inequality), even though it does not preserve semi-unifiabilty for two or more inequal-

ities and thus is not correct for nonuniform semi-unification. Now arithmetization of algorithm

A’, which consists of A and the new “inverse” rule above, yields a polynomial-time algorithm.

Theorem 23 Uniform semi-unifiability is polynomial-time decidable.

Proof: See [54].
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(First stage) Apply the following operations to G′ until G′ does not change any
more.

1. For n, n1, n2, n
′, n′

1, n
′
2 ∈ N such that E(n) = (n1, n2), E(m) = (m1,m2),

C(n1, n
′
1) := b(C(n1, n

′
1) ∪ C(n, n′))

C(n2, n
′
2) := b(C(n2, n

′
2) ∪ C(n, n′))

2. For n1, n2, n3, n4 ∈ N , if (l01, l10) ∈ C(n0, n1), (l23, l32) ∈
C(n2, n3), (l02, l20) ∈ C(n0, n2),

if d is the smallest natural number such that l02 + d ≥ l01 and l20 + d ≥ l23,
then C(n1, n3) := b(C(n1, n3)∪{(l10 +(l02 +d− l01), l32 +(l20 +d− l23))}).

3. C(n′, n) := b(C(n′, n) ∪ C−1(n, n′))

where C−1(n, n′) = {(l2, l1), (l′2, l′1)} if C(n, n′) = {(l1, l2), (l′1, l′2)}.

(Second stage) Execute check(n, 0), with an initially empty stack, for all nodes n
and see whether an error is signaled. If so, the normal interaction graph after
the first stage has no valid interpretation; if not, it has a valid interpretation.

check(n, l) =
if there is (n, l′) in stack then

if C(n, n) 6= {(0, 0)} or l′ ≥ l then
signal error and terminate;

else
return;

end if
else

if there is (n′, l′) such that (l, l′) ∈ C(n, n′) and
L(n′) = f,E(n′) = (n′

1, n
′
2) then

push (n, l) onto stack;
check(n′

1, l
′);

check(n′
2, l

′);
pop (n, l) off stack;

else
return;

end if
end if

Figure 6.12: Algorithm A1
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Chapter 7

Decidability: Elementary Combinatorial Properties and

Approaches

Semi-unification is, at present, not known to be decidable. There have been several attempts at

proving its decidability (or decidability of one of the problems we have shown to be polynomial-

time equivalent), but they all failed. In this chapter we introduce graph-theoretic notions that

may simplify the analysis of the combinatorial properties of semi-unification and eventually

lead to a proof of decidability. Semi-unification is widely believed to be decidable; in fact, we

conjecture that algorithm A is uniformly terminating. In the first section of this chapter, we

present a “normalization” of executions of algorithm A that may be helpful in getting good

insight into this problem. In the second section we present a generalization of executions of

algorithm A, called graph developments, that are simpler in the sense that they abstract from

the specific effect of the rules that affect the equivalence relation in arrow graphs. Our feeling

is that this generalized problem is still decidable and may indeed prove easier to solve than the

more involved structure of executions of algorithm A.

7.1 Normalized Executions

The satisfiability problem for arrow graphs is the problem of deciding whether there is a valid

interpretation for a given arrow graph. Since arrow graph representations can be constructed

efficiently from SEI’s it is clear that semi-unification is polynomial-time reducible to satisfiability

of arrow graphs.

A k-colored arrow graph G = (N,NF , L, E,A,∼) over A is downward closed if the following

closure rules hold.

1. (∀m,n ∈ NF ,m1,m2, n1, n2 ∈ N if L(m) = L(n) = f,E(m) = (m1,m2), E(n) = (n1, n2)

then m ∼ n⇒ mi ∼ ni for 1 ≤ i ≤ 2 and m
j→ n⇒ mi

j→ ni for 1 ≤ i ≤ 2, 1 ≤ j ≤ k;

2. (∀m,m′, n, n′ ∈ N, 1 ≤ j ≤ k) (m ∼ m′,m
j→ n,m′ j→ n′ ⇒ n ∼ n′) and (m

j→ n,m ∼
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m′, n ∼ n′ ⇒ m′ j→ n′).

It is easy to see that every arrow graph G has a unique smallest downward closure, clo-

sure(G), which is simply the arrow graph reached by repeatedly applying the above closure

rules as rewrite rules until no longer possible.1

Downward closure preserves valid interpretations.

Proposition 41 I is a valid interpretation of arrow graph G if and only if I is a valid inter-

pretation of closure(G).

We can factor out the equivalence relation ∼ in downward closed arrow graphs to arrive at

an essentially equivalent, but simplified, arrow graph. Specifically, we define

G/∼ = (N/∼, NF/∼, L/∼, E/∼, A/∼, ι)

where

1. N/∼ is the set of equivalence classes of ∼; [n]∼ denotes the equivalence class of n ∈ N ;

2. NF /∼ is the set of equivalence classes that contain some functor node;

3. L/∼([n]∼) = f if L(n′) = f for some n′ ∼ n; otherwise L/∼([n]∼) = x if x is the least

variable contained in any n′ ∼ n (w.r.t. to a given fixed total order on V );

4. E/∼([n]∼) = ([n′
1]∼, [n

′
2]∼) if n ∼ n′ and E(n′) = (n′

1, n
′
2);

5. ([n]∼, [n
′]∼) ∈ (A/∼)i if and only if (n, n′) ∈ Ai for 1 ≤ i ≤ k;

6. ι is the trivial equivalence relation on N/∼;

if the following three conditions are satisfied:

1. (∀n, n′ ∈ NF ) n ∼ n′ ⇒ L(n) = L(n′) (no functor clash);

2. The extended occurs check (rule 4a in Figure 6.6) is not triggered.

If either of these conditions is violated we define G/∼ = 2 where 2 denotes a fixed arrow

graph with no valid interpretation. We call any arrow graph with a trivial equivalence relation

(i.e., only the identity pairs (n, n), n ∈ N(G), are in the equivalence relation) normalized.

1This can be made precise by defining arrow graph morphisms and proving uniqueness and minimality by
induction on the depth — with respect to dag edges — of the arrow graph.
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Proposition 42 Let G be a downward closed arrow graph with equivalence relation ∼. Then

G/∼ = 2 or

1. G/∼ is downward closed; and

2. G/∼ is normalized; and

3. any valid interpretation of G canonically induces a valid interpretation of G/∼ and vice

versa.

Proof:

(1) and (2) are trivial. For (3) we can verify that for any valid interpretation I of G,

I(n) = I(n′) if n ∼ n′, and consequently I([n]∼) is well-defined; conversely, a valid

interpretation I of G/∼ extends to G by simply defining I(n) = I([n]∼).

Given any arrow graph G we denote by Ḡ the normalized, downward closed arrow graph

defined by closure(G)/∼ where ∼ is the equivalence relation in closure(G).

Proposition 43 Ḡ is polynomial-time computable.

Proof:

A simple adaptation of the union-find based unification algorithm [43, 1] yields an

algorithm that executes in time O(knα(n, n)) where α is an extremely slow-growing

function (see [115]).

We can now define a reduction relation on normalized, downward closed arrow graphs simply

by executing rule 4b (Figure 6.6) with subsequent exhaustive application of rules 1, 2, 3, and 4a,

which corresponds to computing Ḡ′ from G′ after G has been transformed into G′ by application

of rule 4b at some discrepancy. We say G reduces to Ḡ′ and write G⇒ Ḡ′.

Proposition 44 Let G be an arrow graph, and let G′ be defined as above. Denote the nodes

of G with N , and the nodes of G′ with N ′. Then for any valid interpretation I of G there is a

valid interpretation I ′ of G′ such that I ′ |N= I, and, conversely, for every valid interpretation

I ′ of G′, I ′ |N is a valid interpretation of G.

Proof: Obvious
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Note that⇒ defines a reduction relation on downward closed, normalized arrow graphs. The

previous propositions guarantee that this reduction relation preserves valid interpretations. A

sequence (G1, . . . , Gi, . . .) of downward closed, normalized arrow graphs is a normalized ex-

ecution if Gi ⇒ Gi+1 for i ≥ 1 and, if it is finite, its last element is irreducible. We say

a downward closed, normalized arrow graph G is solvable if there exists a finite normalized

execution (G1, . . . , Gk) such that G = G1 and Gk 6= 2.

Proposition 45 Semi-unification is polynomial-time reducible to arrow graph solvability.

Proof:

By the correctness of algorithm A.

The reduction relation ⇒ on downward closed, normalized arrow graphs effectively “col-

lapses” the compound effect of exhaustive application of rules 1, 2, and 3 in Figure 6.7 of

chapter 6. Note also that the exhaustive application of these rules can be done very efficiently

since an extended occurs check — which subsumes the ordinary occurs check — is only done

once, after rules 1, 2, and 3 are applied exhaustively. The propositions above follow immedi-

ately from the fact that algorithm A is just a graph-theoretic reformulation of the “canonical”

SEI-rewriting system for computing most general semi-unifiers in section 6.2.

Our hope is that this reduction relation, maybe in connection with the combinatorial struc-

ture in the following section, is possible starting point for a much deeper understanding of the

algebraic and combinatorial structure of executions of algorithm A that will eventually lead to

a proof of uniform termination of A and, consequently, of decidability of semi-unification.

7.2 Graph Developments

Inspired by the construction of Kanellakis and Mitchell that shows that ML typing is PSPACE-

hard [53] our intuition is that the reduction rules 1 and 3 incorporate the computational “in-

telligence” of algorithm A in that they “steer” the execution whereas rule 4 and, to a lesser

degree, rule 2, simply create the necessary space resources. For this reason we first introduce the

notion of (arrow) graph developments. Following, we show that every execution of algorithm A

induces an arrow graph development, the finiteness of which can be “lifted back” to show that

any execution sequence describing A is finite.

In this section we shall consider arrow graphs without an equivalence relation and with

arrows of only one color; i.e., they consist of a term graph and arrows (all of the same color)
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Let G = (N,NF , L, E,A) be a graph.a Define the reduction relation →r by the following
two rules.

1. If there exist m,m′,m′′, n, n′, n′′ ∈ N such that L(m) = L(n) = f,E(m) =
(m′,m′′), E(n) = (n′, n′′) and m→ n, but m′ 6→ n′ (or m′′ 6→ n′′), then

G→r G[A := A ∪ (m′, n′)](orG→r G[A := A ∪ (m′′, n′′)], respectively).

2. (a) If there exist m,n ∈ N such that n is a proper descendant of m and there is a
(possibly empty) arrow path from m to n, then

G→r 2.

(b) if rule 2a above does not apply and there exist m,m′,m′′, n ∈ N such that
L(m) = f,E(m) = (m′,m′′), L(n) ∈ V , then

G →r G[N := N ∪ {n′, n′′}, L := L{n 7→ f, n′ 7→ l′, n′′ 7→ l′′},
E := E{n 7→ (n′, n′′)}].

where n′ (or n′′) is either an old node, n′ ∈ N , or a new node, n′ 6∈ N , and if
n′ is a new node then l′ = x′ for a new variable x′, otherwise l′ = L(n′); similar
for n′′.

In all these cases the node m is the hinge of the rule application.

aWe shall write n → m for (n, m) ∈ A.

Figure 7.1: Graph development Rules

only. For convenience’ sake we shall simply call them graphs. These graphs can be identified

with arrow graphs that have only a trivial equivalence relation on their nodes. In this sense the

notions of descendant, arrow path and so forth carry over from arrow graphs to graphs.

We shall now introduce a reduction relation, also denoted by →r, between graphs. It is

defined by two rules given in Figure 7.1. The surface similarity of these rules with arrow graph

reduction rules 2 and 4 in Figure 6.7 is not coincidental and will be made precise just below.

Graphs for which no rule is applicable (in particular 2) are normal graphs.

Definition 18 (Graph development)

A graph development is a (possibly infinite) sequence G = (G1, . . . , Gi, . . .) of graphs where

Gi+1 is derived from Gi by application of one of the rules in Figure 7.1 for all i ≥ 1 and, if G

is finite then the last component in G is a normal graph.

The limit graph limG of a graph development G = (G1, . . . , Gi, . . .) where Gi = (N i, N i
F , L

i, Ei, Ai)
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is 2 if G is finite and its last component is 2; otherwise it is defined by (N,NF , L, E,A) where

N = {n : (∃i)n ∈ N i}

NF = {n : (∃i)n ∈ N i
F }

L(n) =







f, if (∃i)Li(n) = f

x, otherwise, and Li(n) = x for some i

E(n) = (n′, n′′) if (∃i) Ei(n) = (n′, n′′).

The first component, G1, of a graph development G = (G1, . . . , Gi, . . .) is called the initial

graph of G. A node in limG or in any of the graphs in G is an original (or old) node if it occurs

in the initial graph of G; otherwise it is a new node.

Every execution of algorithm A whose final, normal arrow graph is not 2 defines a graph

development in a canonical fashion. Consider the final arrow graph G of an execution and its

equivalence relation. This equivalence relation can be “factored” out from every arrow graph

in the execution leading up to G in almost the same way in which normalized arrow graphs are

formed from downward-closed arrow graphs in section 7.1.

Let us now consider graph developments whose limit graph is not 2. For any G = (G1, . . . , Gi, . . .)

we can define an equivalence relation on the nodes in G and a partial order on the resulting

equivalence relations. For limG = (N,NF , L, E) define n ≤ n′ for n, n′ ∈ N if n→ n′ (in limG )

or E(n′) = (n, n′′) or E(n′) = (n′′, n) for some n′′ ∈ N . We can take the reflexive-transitive clo-

sure of ≤ and then factor out the equivalence relation ∼=, n ∼= n′ ⇔ n ≤ . . . ≤ n′andn′ ≤ . . . ≤ n,

which defines a partial order, also denoted by ≤, on equivalence classes of ∼=. The equivalence

class containing node n shall be denoted by [n].

We call a graph development G fair if for every node in G that becomes a hinge for a rule

application the corresponding rule is eventually executed.

Proposition 46 Let G be a fair graph development with limG = (N,NF , L, E) 6= 2, and let ≤
be the partial order on ∼=-equivalence classes of N defined above.

For all nodes n, n′, n′′ ∈ N , if E(n) = (n′, n′′) then [n′] < [n] and [n′′] < [n].

Proof:

It is clear by definition that [n′] ≤ [n] and [n′′] ≤ [n]. We need to show that

[n] 6≤ [n′]. Let us assume [n] ≤ [n′]. By definition of ≤ there is a sequence of nodes

(n00, n01, n10, n11, . . . , nk0, nk1), k ≥ 0 such that n00 = n, nk1 = n′ and for 0 ≤ i ≤ k
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there is a (possibly empty) arrow path from ni0 to ni1 and for 0 ≤ i ≤ k − 1 the

node ni1 is a child of n(i+1)0. Since G is fair we can show by induction on the length

of these sequences that there exists a proper descendant m of nk0 in G such that

there is an arrow path from n′(= nk1) to m. Consequently there is an arrow path

from nk0 to m. But this means that nk0 must be a hinge for applying the “extended

occurs check” rule 2a in a component of G. Since G is fair by assumption this means

that the extended occurs check rule is applied at some point in G and consequently

limG = 2. But this is in contradiction to our assumption that the limit graph is

not 2.

This proposition shows that proper <-inequalities hold between (the equivalence class) of

a child and (the equivalence class of) its parent. This is critically due to the extended occurs

check rule, rule 2a, since the notion of fairness mandates that every rule that can possibly be

executed at some node eventually is. In fact it is easy to give a (necessarily infinite and unfair)

graph development in which the resulting (infinite) limit graph has equivalence classes that

contain a child and its parent.

This separation of equivalence classes along parent-child edges is crucial in the following

lemma. For G = (N,NF , L, E,A) and C ⊂ N we define EnvG(C) = {(n, n′) ∈ A | n ∈
Cor n′inC}.

Lemma 47 Let G be a fair graph development with limG = (N,NF , L, E,A) 6= 2 and let

G′ = (N ′, N ′
F , L

′, E′, A′) be the initial graph of G.

For any maximal equivalence class C in limG we have

1. For all n ∈ C, n ∈ N ′ and n is not a child in G′ of any node n′ ∈ N ′.

2. EnvlimG(C) = EnvG′(C)

Proof:

1. By assumption, C is a maximal equivalence class in limG with respect to ≤.

If n ∈ C is not in N ′, then it must have been introduced by rule 2b since this

is the only rule that adds new nodes. But then n would have to be the child

of some node n′ in a component of G and, consequently, in limG, which, by

proposition 46, would contradict the assumption that the equivalence class, C,
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of n is maximal in limG. If n were the child of a node n′ in G′ then, again, C

could not be maximal since n would also be a child of n′ in limG.

2. By inspection of the graph development rules it is clear that the containment

EnvlimG(C) ⊃ EnvG′(C) holds. Assume it is a proper superset. Then a new

arrow, with a node n ∈ C at its head or at its tail, must have been introduced

by rule 1 since this is the only rule that introduces new arrows. But this means

that n has a parent in limG and, again, it follows by proposition 46 that C is

not maximal contradicting our assumption.

This lemma guarantees that any group of nodes that turns out to be a maximal equivalence

class in the limit graph of a fair graph development, all the arrows between them, and all the

arrows whose head is one of these nodes are actually already present in the initial graph of the

graph development. We cannot predict which group that will be by looking at the initial graph

since rule 2b can wildly pick any old node for a child (thus making that node an element of

a nonmaximal equivalence class), but the lemma guarantees that there exists one, no matter

what (literally) unpredictable turns rule 2b takes. Note that we have not proved that the limit

graph of a fair graph development actually has maximal equivalence relations.

Before we present the main theorem we need another lemma. In a graph G the sources of

a node n is defined to be the set of all nodes n′ in G such that there is a (possibly empty)

arrow path from n′ to n. The independent sources of n are all those sources of n that have only

themselves as a source. Note that every finite graph development is necessarily fair.

Lemma 48 Let G be a finite graph development with limG 6= 2 and initial graph G′. Then,

for any node n in limG, all independent sources of n are nodes in G′.

Proof:

This can be shown by (finite) induction on the index of the component graphs in

the graph development. If we insisted on “normalized” graph developments, in

which rule 2b is only executed when none of the other rules is applicable (which

is a good idea anyway since it simplifies the process of looking for hinges for the

extended occurs check rule, rule 2a), this would indeed be straightforward to prove.

Since there is a slight complication in “unnormalized” graph developments, we shall

momentarily generalize the notion of a source. In rule 2b we say there is a “hop”

from m′ to n′ and from m′′ to n′′. A node m in Gj is a phantom source of n if there
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is a sequence of nodes (n0, . . . , nk) such that m = n0, n = nk, and, for 1 ≤ i ≤ k,

there is a hop from ni−1 to ni or ni−1 → ni in Gj . Independent phantom sources

are defined analogously to independent sources. We claim that for all graphs in a

graph development the set of independent phantom sources is already contained in

the initial graph.

The claim holds trivially for the empty prefix of a given graph development of length

n.

1. If rule 1 is applied to get Gi from Gi−1, let us denote the tail of the new arrow

by m and its head by n. The sources of m are added to the sources of every

node n′ that n is a source of. Since the independent sources of n′ are then a

subset of the independent sources of m and of the independent sources n′ had

before the rule application, by induction we can conclude that the independent

sources of n′ are contained in the initial graph G. (For the other nodes, not

affected by this rule application, nothing changes.)

2. If rule 2b is applied and no new node is introduced the claim remains true

trivially. If a new node n is introduced, then there is a hop from a node m

already in Gi−1 to n, and the claim remains true.

Since G is a finite graph development the claim holds true for the final graph of

G. But, in the final graph, for every hop there is also a corresponding arrow, and

consequently, the set of independent phantom sources is also the set of independent

sources. This proves the lemma.

Let us now define the size of a graph, |G|, simply as the number of nodes it contains. (The

size of 2 is undefined.)

Lemma 49 For every finite graph development G with limG 6= 2 and | limG| = s whose initial

graph G′ has size |G′| = t > 1 and that has a maximal equivalence class E of size k with a node

n ∈ E that is functor labeled in the initial graph of G there is a graph development G∞ with

limG∞ 6= 2 and | limG∞| = s− k and the initial graph G′
1 of G∞ has size |G′

1| = t− k.

Proof:

Since G is finite, it is fair, and its limit graph has a maximal equivalence relation

C. Now, by assumption there is an equivalence class E with a functor labeled node
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n. Let us only treat the case where k = 1; i.e., n is the only node in E. Since n

is functor labelled in the initial graph of G, there are children n′, n′′ of n. Now, let

N ′ and N ′′ be the independent source of n′, respectively n′′ in the limit graph. By

lemma 48, all elements of N ′ and N ′′ are also in the initial graph of G. Place arrows

from any independent source of n′ to n′ and from every independent source of n′′ to

n′′ in the initial graph of G, possibly adding new arrows, and delete node n along

with the edges to its children. This results in a new initial graph graph of size s−1.

Now we can “simulate” G on the smaller initial graph by simply copying the steps

from G do not involve, directly or indirectly, node n and, otherwise, substituting

steps involving some of the added arrows whenever node n is involved.

If we could establish a (recursive) lower bound (as a function of the size of the limit graph and

possibly the size of the initial graph) on the size of the limit graph of some graph development

with an initial graph that has fewer nodes than the initial graph of any given finite graph

development, even in the case where all nodes in maximal equivalence classes are variable labeled

in the initial graph, then we could prove, by induction, an upper bound on the size of any limit

graph as a function of the size of the initial graph. This is so since any graph development

on an initial graph of size 1 has a limit graph of size 1. This would establish decidability of

semi-unification since the existence of an infinite execution of algorithm A induces an infinite

graph development.

We might be tempted to “loosen” the notion of graph development even more by requiring

an constant upper bound on the number of outarrows any node in a graph can have, but

allowing arbitrary insertion of arrows, not only in the case of rule 1. But then it is fairly easy

to construct an infinite graph development as long as at least two outarrows are permissible.

Since a generalization of executions of algorithm A, as the notion of graph developments is, is

only sensible if it admits a proof of termination by showing that only finite developments are

possible this further generalization is useless.
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Chapter 8

Implications for Programming Language Design

In this chapter we attempt to shed some light on a somewhat puzzling observation: that poly-

morphic type inference is theoretically intractable and, as such should be only marginally usable,

yet experience with declaration-free polymorphic languages bears witness to its practical utility.

In section 8.1 we offer some general considerations to suggest that the apparent practicality of

type inference is not just a lucky coincidence, and in section 8.2 we briefly formalize some of

our considerations.

8.1 Theoretical Intractability and Practical Utility of Polymorphic

Type Inference

Some of the results of the previous chapters seem to suggest that polymorphic type inference

(as modeled by the Mycroft Calculus) has no place in programming language design. After all,

the type inference problem is at least PSPACE-hard, which is already beyond the point of what

is conventionally considered tractable, and likely it is much harder than that: At present even

the decidability question is not solved.

On the other hand, some theoretical results and preliminary practical experience suggest

that this evaluation may yet be too pessimistic.

First of all, the principal typing property of the Mycroft Calculus guarantees a well-defined

notion of what the typing of a program should be, and this notion can very intuitively be

interpreted as the “most general” typing possible. Even though, at this time, the decidability

of both the Mycroft Calculus and the (implicit) Second Order λ-calculus is open, the Mycroft

Calculus has the appealing principal typing property, which is in contrast to the Second Order

λ-calculus where no good notion of “principality” for a λ-expression is known.

Secondly, there is a relatively simple algorithm, algorithm A, for computing principal typ-

ings (in the more general sense of computing typing derivations in the “syntax-oriented” version
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of the Mycroft Calculus) that, due to the principal typing property, does not necessitate any

backtracking or other complicated control mechanisms. This can be seen as a sign of “imple-

mentability” and as a preliminary indicator that the type inference problem may prove real-

istically usable since many problem instances will admit rapid computation of their principal

types.

Thirdly, languages such as ML, Miranda, and B have been in use for several years now,

and the type checking phases in these systems have been sufficiently efficient in actual usage to

help promulgate, for about ten years, the myth that ML type checking is theoretically efficient

in the sense that it was believed to have a worst-case polynomial running time of low degree.

The fact that B’s type inference algorithm is actually incomplete (with respect to B’s typing

discipline), but that this apparently hadn’t been noticed, only corroborates our appraisal that

type inference problems encountered in actual programming practice are of the kind that admit

rapid computation of principal types or rapid detection of type errors. Of course, since the

polymorphic languages in question are still used rather infrequently, it is too early to give much

weight to these empirical observations. We shall attempt to argue, though, that the apparent

practicality of polymorphic type inference in the face of theoretical infeasibility results is not a

random phenomenon.

A conventional remedy for eliminating problems with type inference is to mandate explicit,

fully typed declarations of variables, parameters and other basic syntactic units. Observe, for

example, that type checking in the “explicit” Second Order λ-calculus is easy in the sense that

there is a fast polynomial time algorithm for checking the type correctness of a fully typed

λ-expression. Applying this sort of remedy to the Mycroft Calculus highlights, though, why

type checking (with explicit type information embedded in the program) is no more “practical”

than type inference (with no or only optional type information in the program).

The culprit for the theoretical intractability of the Mycroft Calculus (and the Milner Cal-

culus) is the fact that the type information of a program can be extra-ordinarily bigger than

the untyped program; in particular, it is at least exponentially bigger [53]. Now, writing a

200-line (untyped) program whose principal type is bigger (measured, for example, in terms of

the “tree” size of the final arrow graph of the corresponding semi-unification problem1) than

1Measuring the size of type information in this way can be justified as follows. When admitting — or requiring
— explicit type information in programs, this type information is presented by type expressions of the kind we
have used, and by no other mechanism that might conceivably encode type information in some other, possibly
more compact way. Since the “size of the input” is usually counted as the number of symbols in the input
(with or without taking bit-complexity into account), this amounts to determining the size of all explicit typing
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the number of atoms in the universe is no more impractical than writing the program with this

typing information in the first place. Even though both these cases seem to have the same “in-

tuitive” complexity they are treated very differently in conventional complexity analysis since

the two input sizes are dramatically different.

This may be seen as a plea to measure complexity in terms of the sizes of the input program

and its computed principal type. This would permit comparison of the efficiency of different

(sound and complete) type inference algorithms by comparing their performance on typable

inputs, even in the case where they don’t terminate for some untypable inputs. Yet this is not

quite satisfactory in explaining the apparent practicality of type inference. In particular it does

not question the “legitimacy” of a short program that has a typing of inconceivable size.

We feel that the formalization of type inference in logical calculi has failed to take the inten-

sional character of types and typings into account. Types and typings are generally viewed as

abstractions of the behavior of programs and their parts, and, by analogy to types and program

behaviors, type descriptions are meant to be abstractions of the programs themselves. If the

complete inferred type information of a program is exponentially bigger than the (untyped)

program itself, we think it unreasonable to say the type information is an abstract description

of the program. Either the type description mechanism is inadequate for capturing the intended

abstraction of behavior or the program at hand does not have a suitable abstract description of

its behavior. The first explanation points toward a problem with the whole language, an issue

that will have to be addressed by language designers. Given a fixed static typing discipline,

however, and its implicit insistence that only behavior that is expressible in it should be con-

sidered desirable, the second explanation should be interpreted as saying that the program at

hand has no “reasonable” abstract description of its behavior and thus should be considered

unacceptable — type-incorrect.

Theoretical type inference calculi are motivated by extensional considerations: two descrip-

tions are considered completely interchangeable if they denote the same semantic objects, re-

gardless of any “syntactic” properties of the descriptions (such as the size). Consequently, the

information in a program as the sum of the string sizes of the type expressions occurring in it. Since every part
of a final arrow graph corresponding to (Mycroft Calculus) type inference for program e is represented in a type
expression occurring in the full typing for e, this full typing information is at least as big as the tree size of the
final arrow graph; i.e., the number of nodes of the final arrow graph once it is “blown up” into a tree (or forest).
If the fully typed program can be written with type abbreviations of the sort lettypet = int → int → int in . . .,
then the type information can be represented in, asymptotically, the same space as the size of the final arrow
graph. But this has the disadvantage that principal types are not necessarily the “smallest types”, and then
determining resource-bounded typability becomes difficult again.
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motivation of type descriptions as syntactic abstractions of programs (and not only program

behavior) is lost in the formalization of “practical” type inference by typed λ-calculi. If we

try to recapture some of this connection by requiring that a λ-expression e only be considered

“effectively well-typed” whenever it is typable in the sense of the Mycroft Calculus and its

principal type is at most polynomially bigger than e itself, then it is easy to see that effective

well-typing is (theoretically) feasible. This is made precise in section 8.2.

Unfortunately, this does not explain the significance, if any, of the extended occurs check in

algorithm A that we conjecture makes A a uniformly terminating algorithm for semi-unification.

If resource bounds on the sizes of typings are given we could run A — or Meertens’ algorithm

AA or Mycroft’s algorithm — either until a principal type is found or the resource bounds

are exceeded. It appears that, in practice, this check will catch many typing errors early on

without exhausting the possibly big resource bounds. As a matter of principle, it seems that

the requirement of resource bounds in type systems is a bad idea2, whereas they appear to be a

good property of a type system. In other words, it is preferable to devise a syntax-directed type

system whose axioms and rules guarantee resource-boundedness instead of explicitly imposing a

global restriction that mandates explicit resource bounds. We think this is a problem worthy of

attention in the type system design arena, but not so much in the area of programming language

semantics. After all, static typing disciplines are semantically incomplete anyway (that is, there

are programs that are considered statically type-incorrect even though they would never run

into a type-incompatibility at run-time), and resource-bounded static typing systems are just

“a tad more” incomplete.

If we consider, in general, (derivable) typings as “witnesses” to the fact that a program is

well-typed, then typing problems whose witnesses are required to be polynomial-sized fall into

two main complexity classes: P and NP .3 This is so since we assume that any reasonable

typing discipline has a polynomial time type checking problem for programs that are com-

pletely decorated with typing information. If we consider the “typing” problem4 of determining

whether there is an assignment of (polynomial-sized) type expressions to function definitions

in a language with Ada-style overloading, but without explicit type declarations (Ada requires

such explicit declarations), it can be shown that this problem is NP -complete [1, exercise

2Imagine error messages of the sort “Well, so far everything was okay, but this type expression here is a little
bit too big.”

3We make the standard assumption that P 6= NP .

4Some people would not consider this overload resolution problem an example of a typing problem.
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Let A range over type environments; x over variables; e, e′ over λ-expressions; α over type
variables; τ, τ ′ over monotypes; σ, σ′ over polytypes. The following are type inference axiom
and rule schemes.

Name Axiom/rule
(TAUT) A{x : σ} ⊃ x : σ

(GEN) A ⊃ e : σ
(α not free in A)

A ⊃ e : ∀α.σ

(INST) A ⊃ e : ∀α.σ
A ⊃ e : σ[τ/α]

(ABS) A{x : τ ′} ⊃ e : τ
A ⊃ λx : τ ′.e : τ ′ → τ

(APPL) A ⊃ e : τ ′ → τ
A ⊃ e′ : τ ′

A ⊃ (ee′) : τ

(LET-P) A ⊃ e : σ
A{x : σ} ⊃ e′ : σ′

A ⊃ let x : σ = ein e′ : σ′

(FIX-P) A{x : σ} ⊃ e : σ
A ⊃ fix x : σ.e : σ

Table 8.1: Type inference axioms and rules for explicit Mycroft Calculus

6.25], whereas the resource-bounded polymorphic type inference problem is in P . This lends

some technical expression to the intuition that “overload resolution” as above is much harder

than polymorphic type inference; also, in practical terms, since overload resolution requires a

backtracking algorithm, polymorphic type inference should be expected to fare much better in

practice than this liberal sort of overload resolution. Note also that overload resolution has no

principal typing property.

8.2 Resource-Bounded Polymorphic Type Inference

Consider the type inference system in Table 8.1, which we shall call the explicit Mycroft Calculus.

We can define notions of typability and type inference as usual. Typed λ-expressions are

defined by the grammar

e ::= x | λx : τ.e | (ee′) |
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let x : σ = e′ in e |

fix x : σ.e

where τ ranges over monotypes, and σ over polytypes, as usual. For every typed λ-expression

e there is a unique underlying untyped λ-expression, ē, derived by erasing all mention of types

in the typed λ-expression (and all colons); e is called a typed version of ē. Clearly, every typed

λ-expression has a principal type in the explicit Mycroft Calculus with respect to a given type

assignment. The following proposition should not come as a surprise.

Proposition 50 There is a polynomial time algorithm for computing the principal type of a

typed λ-expression or indicating untypability.

We can now formally define a resource-bounded restriction of the Mycroft Calculus. Let

p be a fixed polynomial of one variable, and let |e| be the number of symbols in a typed or

untyped λ-expression e, and let eMM stand for the explicit Mycroft Calculus. Define

MMp = {ē : ∃A, σ | eMM ⊢ A ⊃ e : σ and |e| ≤ p(|ē|)}

A simple way to think about this set is to recognize that, if A ⊃ e : σ is derivable in eMM ,

then A ⊃ ē : σ is derivable in MM . The second requirement encodes the fact that MMp

considers only those untyped λ-expressions type-correct that have a typed equivalent whose

type information is at most polynomially bigger than the untyped λ-expression itself.

Theorem 24 MMp is polynomial-time decidable.

Proof:

Execution of rule 4 in algorithm A only makes the tree size of the initial arrow graph

properly bigger. Since the other rules cannot reduce the tree size of the arrow graph

(note though, that they can reduce the number of equivalence classes in the arrow

graph) and they can be executed at most polynomially many times with respect

to the “current” arrow graph without forcing application of rule 4, and since the

tree size of the arrow graph can be computed in time polynomial in the number of

nodes in the arrow graph, it follows that rule 4 can be applied at most polynomially

many times without exceeding the bound given by p. Consequently, computing the

“principal” typed version of a λ-expression e can be done in polynomial time, and

since every other typed version of e that satisfies the typing rules is at least as big

as the principal one, this proves the theorem.
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It would be interesting to see whether this theorem also holds true if (monomorphic) type

abbreviations of the form let type s = τ in . . . are allowed.
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