il
EVIER

ELS

Journal of Clinical Epidemiology 56 (2003) 1129-1135

Journal of
Clinical
Epidemiology

The diagnostic odds ratio: a single
indicator of test performance

Afina S. Glas**, Jeroen G. Lijmerb, Martin H. Prins®,
Gouke J. Bonsel!, Patrick M.M. Bossuyt?

“Department of Clinical Epidemiology & Biostatistics, University of Amsterdam, Academic Medical Center, Post Office Box 22700,
100 DE Amsterdam, The Netherlands
®Department of Psychiatry, University Medical Center, Post Office Box 85500, 3508 GA, Utrecht, The Netherlands
“Department of Epidemiology, University of Maastricht, Post Office Box 6166200 MD, Maastricht, The Netherlands
4Department of Public Health, Academic Medical Center, Post Office Box 22700, 1100 DE, Amsterdam, The Netherlands

Accepted 17 April 2003

Abstract

Diagnostic testing can be used to discriminate subjects with a target disorder from subjects without it. Several indicators of diagnostic
performance have been proposed, such as sensitivity and specificity. Using paired indicators can be a disadvantage in comparing
the performance of competing tests, especially if one test does not outperform the other on both indicators. Here we propose the use of the
odds ratio as a single indicator of diagnostic performance. The diagnostic odds ratio is closely linked to existing indicators, it facilitates
formal meta-analysis of studies on diagnostic test performance, and it is derived from logistic models, which allow for the inclusion of
additional variables to correct for heterogeneity. A disadvantage is the impossibility of weighing the true positive and false positive rate
separately. In this article the application of the diagnostic odds ratio in test evaluation is illustrated. ~© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In an era of evidence-based medicine, decision makers
need high-quality data to support decisions about whether
or not to use a diagnostic test in a specific clinical situation
and, if so, which test. Many quantitative indicators of test
performance have been introduced, comprising sensitivity
and specificity, predictive values, chance-corrected measures
of agreement, likelihood ratios, area under the receiver op-
erating characteristic curve, and many more. All are quantita-
tive indicators of the test’s ability to discriminate patients
with the target condition (usually the disease of interest)
from those without it, resulting from a comparison of the
test’s results with those from the reference standard in a
series of representative patients. In most applications, the
reference standard is the best available method to decide on
the presence or absence of the target condition. Less well
known is the odds ratio as a single indicator of test perfor-
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mance. The odds ratio is a familiar statistic in epidemiology,
expressing the strength of association between exposure and
disease. As such it also can be applied to express the strength
of the association between test result and disease.

This article offers an introduction to the understanding
and use of the odds ratio in diagnostic applications. In brief,
we will refer to it as the diagnostic odds ratio (DOR).
First, we will point out the usefulness of the odds ratio in
dichotomous and polychotomous tests. We will then discuss
the use of the DOR in meta-analysis and the application of
conditional logistic regression techniques to enhance the
information resulting from such analysis.

2. Dichotomous test outcomes

Although most diagnostic tests have multiple or continu-
ous outcomes, either grouping of categories or application of
a cutoff value is frequently applied to classify results into
positive or negative. Such a dichotomization enables one
to represent the comparison between a diagnostic test and
its reference standard in one 2 X 2 contingency table, as
depicted in Table 1. Common indicators of test performance
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Table 1
2 x 2 contingency table

Reference test

Target disorder No target disorder

Test positive TP FP
negative FN TN

The abbreviations TP, FP, FN, and TN denote the number of respec-
tively, true positives, false positives, false negatives, and true negatives.
The same definitions are used throughout the text and Table 2.

derived from such a 2 X 2 table are the sensitivity of the test,
its specificity, the positive and negative predictive values,
and the positive and negative likelihood ratios [1]. (See
Table 2 for a definition of these indicators.)

Unfortunately, none of these indicators in itself validly
represent the test’s discriminatory performance. Sensitivity is
only part of the discriminatory evidence, as high sensitivity
may be accompanied by low specificity. Additionally, no
simple aggregation rule exists to combine sensitivity and
specificity into one measure of performance.

Table 3 shows the performance of three different radio-
logic diagnostic tests to stage ovarian cancer as an illustration
of the need for combined judgment. All three tests were
performed in a group of 280 patients suspected of ovarian
cancer [2]. Surgical and histopathologic findings were used as
the reference standard. The sensitivity of the ultrasound
was worse than that of the computer tomography (CT) scan
in detecting peritoneal metastases, but for the specificity, the
reverse held. Likelihood ratios and the predictive values
are also not decisive. Also, the combined evidence of the
pairs of indicators cannot simply be ranked.

For this, a single indicator of test performance like the
test’s accuracy is required. In addition to its global meaning
of agreement between test and reference standard, accuracy
in its specific sense refers to the percentage of patients cor-
rectly classified by the test under evaluation. This percentage
depends on the prevalence of the target disorder in the study
group whenever sensitivity and specificity are not equal, and
it weights false positive and false negative findings equally.
Another single indicator is Youden’s index [3,4]. It can be
derived from sensitivity and specificity, and as such, it is

Table 2
Commonly used test indicators in diagnostic research

independent of prevalence, but because it is a linear transfor-
mation of the mean sensitivity and specificity, its values are
difficult to interpret [5].

The odds ratio used as single indicator of test performance
is a third option. It is not prevalence dependent, and may
be easier to understand, as it is a familiar epidemiologic
measure.

The diagnostic odds ratio of a test is the ratio of the odds
of positivity in disease relative to the odds of positivity in
the nondiseased [6,7]. This means that the following rela-
tions hold:

DOR:E FP _  sens (1—spec) 1)

FN/ TN (1—sens) spec
Alternatively, the DOR can be read as the ratio of the odds
of disease in test positives relative to the odds of disease in
test negatives.

2

TP /FN_ PPV /(1—NPV)

DOR=— /- =
FP/ TN (1-PPV)/ NPV

There also is a close relation between the DOR and likeli-
hood ratios:

por = T2 /N _ LR()
FP/ TN LR(-)

3)

The value of a DOR ranges from O to infinity, with higher
values indicating better discriminatory test performance.
A value of 1 means that a test does not discriminate between
patients with the disorder and those without it. Values lower
than 1 point to improper test interpretation (more negative
tests among the diseased). The inverse of the DOR can
be interpreted as the ratio of negativity odds within the
diseased relative to the odds of negativity within the nondis-
eased. The DOR rises steeply when sensitivity or specificity
becomes near perfect, as is illustrated in Fig. 1 [6].

As can be concluded from above formulas, the DOR does
not depend on the prevalence of the disease that the test
is used for. Nevertheless, across clinical applications it is
likely to depend on the spectrum of disease severity, as is the
case for all other indicators of test performance [8,9]. An-
other point to consider is that, the DOR, as a global measure,

Test indicator Formula

Definition

TP/(TP + FN)

TN/(TN + FP)

TP/(TP + FP)

TN/(TN + FN)
sensitivity/(1—specificity)

Sensitivity (true positive rate, TPR)
Specificity (true negative rate, TNR)
Positive predictive value (PPV)
Negative predictive value (NPV)
Likelihood ratio of a positive

test result (LR+)
Likelihood ratio of a negative

test result (LR—)
Accuracy
Youden’s index

(1—sensitivity)/specificity

sensitivity + specificity—1

(TP + TN)/TP + TN + FP + FN)

Proportion positive test results among diseased

Proportion negative test results among the “healthy”

Proportion diseased among subjects with a positive test result

Proportion nondiseased among subjects with a negative test result

Ratio of a positive test result among diseased to the same result
in the “healthy”

Ratio of a negative test result among diseased to the same result
in the “healthy”

Proportion correctly identified subjects
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Table 3
Comparison of three imaging tests in the diagnosis of peritoneal metastasis, of advanced ovarian cancer
Sensitivity Specificity PPV NPV LR+ LR— DOR
Imaging test %  (95% CI) % (95% CI) % (95% CI) % (95% CI) (95% CI) (95% CI) (95% CI)
Ultrasound 69  (58-80) 93 (90-97) 78  (68-89) 90  (85-94) 10 (6.0-18) 03  (23-5.1) 31 (15-67)
3
CT scan 92 (84-100) 81 (75-87) 61 (50-72) 97  94-100 5.1 (3.6-6.9) 0.1 (0.038-3.2) 51 (17-151)
0
MRI 95  (89-100) 80  (73-87) 59  (47-71) 98  96-100 48  (34-67) 00 (0.016-3.7) 77  (18-340)
6
Reference standard: surgical and histopathologic findings [2]. Not all patients underwent all three imaging tests.
Prevalence of metastasis for ultrasound, CT scan, and MRI: respectively, 68/262, 50/212, and 41/175.
cannot be used to judge a test’s error rates, at particular log DOR *+ 1.96SE(log DOR) (5)

prevalences. Two tests with an identical DOR can have
very different sensitivity and specificity, with distinct clinical
consequences. If a 2 x 2 table contains zeroes, the DOR
will be undefined. Adding 0.5 to all counts in the table is a
commonly used method to calculate an approximation of
the DOR [10,11]. Confidence intervals for range estimates
and significance testing can be conventionally calculated
with the following formula [12,13].

T 1 1 1
SE(log DOR) = \/— + — + — + —
TP TN FP FN

“4)

A 95% confidence interval of the log DOR can then be
obtained by:
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Fig. 1. Behavior of the odds ratio with changing sensitivity and specificity.
Specificity: — - — = 0.99, ¢ = 0.95, — = 0.80,- - - - = 0.50.

Calculating the antilog of this expression (back-transforma-
tion) provides the confidence interval of the DOR.

In the example of the radiologic tests comparison, repre-
sented in Table 3, the estimated DOR for the ultrasound
in detecting peritoneal metastases is 31 (0.69/(1 — 0.69))/
((1 —0.93)/0.93). This means that for the ultrasound the
odds for positivity among subjects with peritoneal metasta-
ses is 31 times higher than the odds for positivity among
subjects without peritoneal metastases. In the same way the
DORs for the CT scan and magnetic resonance imaging
(MRI) can be calculated (Table 3). MRI has the highest
DOR in detecting peritoneal metastases compared to the
ultrasound and CT scan (77 vs. 31 and 51, respectively). In
contrast, ultrasound has the highest DOR in detecting liver
metastases and lymph nodes: 54 vs. 17 for CT and 15 for MRI
(Table 4).

If DORs had been presented in the original article, a
quick comparison would have led to the conclusion that MR
imaging performs best in diagnosing peritoneal metastases,
whereas ultrasound does better in diagnosing lymph node
and liver metastases in this population.

3. Polychotomous and continuous test outcomes

The performance of a test for which several cutoffs are
available can be expressed by means of ROC analysis
[14,15]. A receiver operating characteristic (ROC) curve
plots the true positive rate on the Y-axis as a function
of the false positive rate on the X-axis for all possible cutoff
values of the test under evaluation. The area under the curve
obtained (AUC) can subsequently be calculated as an alterna-
tive single indicator of test performance [16].

The AUC takes values between 0 and 1, with higher
values indicating better test performance. These can be in-
terpreted as an estimate of the probability that the test cor-
rectly ranks two individuals, of which one has the disease
and one does not have the disease [16]. It can alternatively
be interpreted as the average sensitivity across all possible
specificities.
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Table 4

Comparison of three imaging tests in the staging of ovarian cancer; lymph node, and hepatic metastases
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Lymph node metastases

Hepatic parenchymal metastase

Sensitivity Specificity DOR Sensitivity Specificity DOR
Imaging test % (95% Cl) % (95% Cl) (95% Cl) % (95% Cl) % (95% Cl) (95% Cl)
Ultrasound 32 (11-52) 93 (89-96) 6.0 (2-18) 57 (20-94) 98 (96-99) 54 (9.9-299)
CT scan 43 (17-69) 89 (85-93) 6.1 (1.9-19) 40 (0-83) 96 (94-99) 17 (2.4-114)
MRI 38 (12-65) 84 (78-89) 32 (96-10) 40 (0-83) 96 (92-99) 15 (2.1-102)

Reference standard: surgical and histopathologic findings [2]. Lymph node metastasis: prevalence for ultrasound, CT scan, and MRI is, respectively,

19/255, 14/205, and 13/171. For hepatic parenchymal metastasis, 7/258, 5/212, and 5/165.

AUC = —1 dx (6)
I+ —
°  DOR- (L)
1—x
If the DOR is constant for all possible cutoff values, the
ROC curve will be symmetric (in relation to the diagonal
y = —x + 1) and concave. In that case, a mathematical rela-
tion exists between the AUC and the DOR of a test (see

formula 6). The higher the value of the DOR, the higher
the AUC. AUCs of 0.85 and 0.90, for example, correspond to
DORs of 13 and 24, respectively. An increase in AUC of 5%
will almost double the DOR, which is a direct consequence of
scale differences: the DOR has an upper limit of infinity,
whereas the AUC takes values in the O to 1 range. For
nonsymmetrical ROC curves the DOR is not constant over all
cutoff points. In these cases the AUC cannot be calculated
from the DOR associated with a single (or a few) cutoff
values.

A) Normal, symmetrical B) Skewed
0.06+ r10° 0.10- -10°
104 106
8 10 o
0.03- 2 0.05- 3
102 1102
0.00- -10° 0.00- 10°
I 1 f —1
X X
C) Logistic, assymetrical 0.064 D) Logistic, symmetrical 9
0.10+ 102 i
8 0.03
0.05+ 10 100 2 ’
0.00-J ~10° 0.00-
T T f 1
X X
Fig. 2. Value of the DOR for all thresholds and distributions of test results in nondiseased and diseased. — — — : DOR: -+ : nondiseased population,

diseased population.
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The shape of the ROC curve and the cutoff independence
of the DOR depend on the underlying distribution of test
results in patients with and without the target condition.
Figure 2 shows several probability densities distributions of
test results in diseased and nondiseased populations. It can
be observed that the DOR is reasonably constant for a large
range off cutoff points on the ROC curve, but for the extremes
of sensitivity and specificity the DOR rises steeply. If the
original or transformed results in both diseased and nondis-
eased follow a logistic distribution with equal SD, the DOR
is constant for all possible cutoff values (Fig. 2D) [17].

4. The DOR in meta-analysis

The DOR offers considerable advantages in meta-analysis
of diagnostic studies that combines results from different
studies into summary estimates with increased precision.
Meta-analysis of diagnostic tests offers statistical challenges,
because of the bivariate nature of the conventional ex-
pressions of test performance. Simple pooling of sensitivity
and specificity usually is inappropriate, as this approach
ignores threshold differences [11,18]. In addition, heteroge-
neity may lead to an underestimation of a test’s perfor-
mance. The current strategy for meta-analysis, as endorsed
by the Methods Working Group of the Cochrane Collabora-
tion [19], builds on the methods described by Kardaun and
Kardaun and Littenberg and Moses [11,20,21]. The approach
by Littenberg and Moses relies on the linear regression of
the logarithm of the DOR of a study (dependent variable)
on a expression of the positivity threshold of that study
(independent variable). If the regression line has a zero slope,
the DOR is constant across studies. A summary ROC (SROC)
can be produced after back-transforming the regression line.
The resulting SROC will be symmetric and concave. In other
words, study heterogeneity can be attributed to threshold
differences. In the context of the DOR, the summary DOR
of the study under evaluation can be obtained from the
intercept (¢™*°P) of the regression line [11,17]. Additional
heterogeneity owing to variation in study characteristics
(e.g., cohort vs. case—control) or clinical characteristics (e.g.,
heterogeneous prior therapy) can be evaluated simultane-
ously by adding these variables as covariates to the regres-
sion model, leaving a corrected estimated value for the
pooled DOR. The resulting parameter estimates can be
(back)transformed to relative diagnostic odds ratios (rDOR).
AnrDOR of 1 indicates that the particular covariate does not
affect the overall DOR. A rDOR >1 means that studies, study
centers, or patient subgroups with a particular characteristic
have a higher DOR than studies without this characteris-
tic. For a rDOR <1, the reverse holds [22]. When the DOR
is homogeneous across studies, the DORs of different studies
can also be pooled directly. Homogeneity can be tested by
using the Q-test statistic or the H statistic [23].

We will illustrate the usefulness of the DOR in meta-
analysis by reanalyzing a meta-analysis on the diagnostic

performance of two magnetic resonance angiography tech-
niques [3D gadolinium-enhanced (3D-GD) and 2D time of
flight (2D-TOF)] detecting peripheral arteriosclerotic occlu-
sive disease [24]. The separate meta-regression analysis
yielded an intercept of 4.13 and a slope of 0.41 for 2D-TOF.
For 3D-GD, these values were, respectively, 5.93 and —0.37.
From the intercept the summary DORs can be calculated,
respectively, e*!* = 62 and ¢ = 376. The nonzero slopes,
indicated heterogeneity apart from threshold differences,
which in turn, limits a direct comparison of summary
odds ratios. To explore additional variation all studies of the
two techniques were put together in one regression model.
Then each available covariate was examined for its effect
on the diagnostic performance. Most effect had the covariates
3D-GD vs. 2D-TOF technique, and a covariate dealing with
the postprocessing technique (maximum intensity projec-
tions (MIP) in addition to transverse source images or
multiplanar reformation (MIP+) vs. MIP alone). Subse-
quently, these two covariates were selected for the final
multivariate model. The adjusted rDOR estimated was 7.5
(confidence interval: 2.8-22) for the 3D-GD and 4.5 (confi-
dence interval: 1.5-14) for the use of MIP+. The confidence
intervals did not contain the value 1. As such one can con-
clude that—after correction for heterogeneity—3D-GD and
the use of MIP+ have a better diagnostic performance com-
pared to 2D-TOF and the use of MIPs alone.

The methodology of systematic reviews and meta-analy-
sis of diagnostic tests is still evolving, with new and poten-
tially better methods being developed, better adapted to the
inherently bivariate nature of the problem. Yet the con-
venience of the odds ratio in statistical modeling guarantees
its future role in the meta-analysis of diagnostic tests.

5. Logistic regression

The DOR offers advantages when logistic regression is
used with diagnostic problems. Logistic regression can be
used to construct decision rules, reflecting the combined
diagnostic value of a number of diagnostic variables [25].
Another application is the study of the added value of diag-
nostic tests [26]. With a single dichotomous test the logistic
regression equation reads:

1

where x stands for the test result and the coefficients o and
B have to be estimated. If a positive test result is coded as
x =1 and a negative as x = 0, we have

1

P(Dlpositive) = w ®
and
1
P(Dlnegative) = ——— K
(Dineg ) 1 +exp * v

Next, one derives from expression 1, 8, and 9
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DOR = [P(Dlpositive)/(1 — P(Dlpositive))]/[P(DInegative)/

(1—P(Dlnegative))] = exp(B). (10)

In other words, the DOR equals the regression coefficient,
after exponentiation. Logistic regression modeling has been
proposed as the preferred statistical method to obtain a post-
test probability of disease when results from multiple tests
are available. History taking and physical examination can
also be considered as individual diagnostic tests. The posttest
probability after having obtained test results xy, xp, ... X; iS
expressed as

1

P(DIX,X,...Xy) = ~@ B TP B

1 + exp

With multiple dichotomous tests of which the results xj,
X, ... X are coded as present (1) or absent (0), the corres-
ponding coefficients By, By, ... Br equal the conditional
logDOR [7]. These DORs are conditional: they depend on
the other variables that have been used in the model [27].
If more information becomes available, a new regression
equation has to be constructed to obtain the proper condi-
tional DOR. This application is illustrated by a study that
aimed to assess the value of symptoms in diagnosing arrhyth-
mias in general practice [28]. The following equation from
the logistic model was created to estimate the probability
of arrhythmia in a patients with specific signs and symp-
toms: P(arrthythmia)=

1
—(—4.40 + 0.051*age + 0.47*gender + 1.11*palpitations

1 + exp
+ 0.78*dyspnoea + 0.45*use of cardiovasmed.)

Age is a continuous variable expressed in years. The odds
ratio (¢%%! = 1.05), calculated from the respective coeffi-
cient, does not express the diagnostic performance of the
variable age, but the OR for the increase in age per year.
Gender is coded 1 for males and O for females. The use
of cardiovascular medication, palpitations, and dyspnoea as
recorded during consultation are coded as positive (1) or
negative (0). Subsequently, the conditional DOR of each
dichotomous variable, adjusted for the other variables, can
be estimated. For gender, the DOR is ¢**’ = 1.6, meaning
that the odds for having arrhythmias is 1.6 times larger in
males than in females. The adjusted odds ratios for palpita-
tions during consultation, dyspnoea during consultation, and
the use of cardiovascular medication are respectively 3.0,
2.2, and 1.6.

6. Discussion

The diagnostic odds ratio as a measure of test performance
combines the strengths of sensitivity and specificity, as prev-
alence independent indicators, with the advantage of accu-
racy as a single indicator. These characteristics lend the DOR

particularly useful for comparing tests whenever the balance
between false negative and false positive rates is not of
immediate importance. These features are also highly conve-
nient in systematic reviews and meta-analyses.

In decisions on the introduction of a test in clinical prac-
tice, we are aware that the actual balance between the true
positive rate and false positive rate often matters [29]. When-
ever false positives and false negatives are weighted differ-
entially, both the prevalence and the conditional error rates
of the test have to be taken into consideration to make a
balanced decision. In these cases, the DOR is less useful,
as it does not distinguish between the two types of diagnostic
mistake. If ruling-out or ruling-in of the target condition is
the primary intended use of a test, conditional indicators such
as sensitivity and specificity still have to be used.

As all available measures of test performance, the DOR
of a test is unlikely to be a test-specific constant. Its magni-
tude likely depends on the spectrum of disease as well as
on preselection through the use of other tests [6,30]. Despite
this universal caveat for indicators of diagnostic tests, we feel
that a more systematic use of the odds ratio in diagnostic
research can contribute to more consistent applications of
diagnostic knowledge.

Some may object that there are already too many indica-
tors of test performance. With such an abundance of choices,
there is little need for yet another statistic. This may be true,
but it is hard to see how the selection can or should
be produced. Each of the indicators serves a different pur-
pose. Sensitivity and specificity are expressions of the condi-
tional hit rates of the test. Predictive values or posterior
probabilities are the numbers that are most salient for clinical
practice. The so-called likelihood ratios come in handy for
comparing the diagnostic content of multiple possible test
results and for transforming those into posttest probabilities.
Among those helpful indicators, the diagnostic odds ratio
has a place as a single statistic with a long history and useful
statistical properties.
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