QuickChecking Patricia Trees

Jan Midtgaard =1

The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark
mail@janmidtgaard.dk

Abstract. Patricia trees are a space-efficient, purely functional data
structure, useful for efficiently implementing both integer sets and dic-
tionaries with integer keys. In this paper we illustrate how to build a
QuickCheck model of the data structure for the purpose of testing a ma-
ture OCaml library implementing it. In doing so, we encounter a subtle
bug, initially inherited from a paper by Okasaki and Gill, and since then
flying under the radar for almost two decades.

1 Introduction

Since data structures are at the heart of many applications it is important to
ensure their correctness. This becomes even more important as software modules
are often reused thanks to the growing popularity of open source software and
code-sharing platforms such as GitHub.

In this paper we illustrate how one can build a straightforward QuickCheck
model for testing Patricia trees, a commonly used functional data structure. In
doing so, we encounter a subtle bug in a common Patricia tree library, inher-
ited from a published paper [Okasaki and Gill, 1998]. Our paper thereby serves
multiple purposes:

— as a tutorial example of building a QuickCheck model to unveil the bug,
— to document this error, and
— to illustrate the significance of generators for QuickChecking.

2 Background

We first recall the relevant background material on Patricia trees and QuickCheck.

2.1 Patricia Trees

A Patricia tree is a data structure for representing integer sets (and dictionaries)
compactly and functionally. Historically Patricia trees were introduced 50 years
ago by Morrison [1968]. Thirty years later they were recast as a functional data
structure and popularized by Okasaki and Gill [1998]. The data structure works
by inspecting and traversing the underlying representation of a set’s numbers

2 Jan Midtgaard

|Branch(—, 0001)

|Leat 1000| [Branch (101, 1000) |

[Lear 0101] [Leaf 1101

Fig. 1. The Patricia tree corresponding to the set {5,8,13}

bit by bit (alphanumerically). Below we explain the little endian version that
traverses the bits from the least to the most significant bit.

Elements in a Patricia tree are ordered similarly to a standard binary search
tree. Specifically the order of elements is determined by a branching bit in all
internal nodes: elements with a 0 in the branching bit belong in the internal
node’s left sub-tree, whereas elements with a 1 in the branching bit belong in
the internal node’s right sub-tree. For example, the branching bit of the root node
in the Patricia tree in Fig. 1 is the least significant bit (the parity bit, 0001, when
we limit the presentation to only four bits). Therefore the even element 8 with
bit representation (1000) belong to the left sub-tree, whereas the odd elements
5 (0101) and 13 (1101) belong to the right sub-tree. Similarly the branching bit
of the root’s right child is the fourth bit (1000) and lets us distinguish its two
children (0101 and 1101).

To avoid needless branches the internal nodes of a Patricia tree also carry a
shared prefix representing the string of bits that all elements in a given sub-tree
have in common. For example, the elements 5 (0101) and 13 (1101) in Fig. 1
share the common prefix 101 but differ in the fourth bit (1000).

The ptrees library is a mature OCaml implementation of Patricia trees.
For example, the Sawja library [Hubert et al., 2011] internally uses ptrees for
efficient functional data structures, and Sawja is again used as the Java front-end
in Facebook’s static analyzer Infer [Calcagno and Distefano, 2011]. Like other
data structures, such as red-black trees, we can use the Patricia tree structure to
create both integer sets (by storing at each leaf only set-membership information)
and to create dictionaries with integer keys (by storing at each leaf the entry
associated with the given integer key). In ptrees this is realized by two sub-
modules: One sub-module Ptset of ptrees implements integer sets whereas
another sub-module Ptmap of ptrees represents dictionaries with integer keys.!
In the following we will focus on the set implementation ptset.?

! The most recent version has simply split pt rees into separate packages Ptset and
Ptmap, both of which are available through OCaml!’s package manager OPAM.

2 The module Ptset also contains a sub-module implementing a big-endian version
following the description of Okasaki and Gill [1998].

QuickChecking Patricia Trees 3

Following Okasaki and Gill [1998], Ptset represents Patricia trees as an al-
gebraic data type with three constructors:

type t =
| Empty
| Leaf of int
| Branch of int % int * t * t

The first constructor Empty represents the empty set, the second constructor
Leaf represents a singleton set, and the third constructor Branch splices together
two sub-trees based on a shared prefix and a branching bit as explained above.

As an example operation, consider mem : int -> t —-> bool, a member-
ship predicate. The mem predicate can be implemented as a recursive function
that pattern matches on the node type:

let zero_bit k bb = (k land bb) == 0
let rec mem k = function
| Empty -> false
| Leaf j —> k == 3
| Branch (_, bb, 1, r) ->
mem k (if zero_bit k bb then 1 else r)

For empty trees and leaves mem’s code is straightforward: empty sets contain no
members and a singleton set {3} contains only j. For internal nodes we test
whether the branching bit bb is zero (after extracting it by a suitable logical
and’ing), and continue the search recursively in the left (or right) sub-tree.

One interesting fact about Patricia trees is that they have a unique represen-
tation, meaning that identical sets will have identical structure. For now we will
not concern ourselves with how Patricia trees are implemented under the hood
but rather take a black-box view of the Ptset module for testing purposes. To
this end we limit ourselves to the following subset of operations to keep things
manageable:

val empty : Ptset.t

val singleton : int -> Ptset.t

val mem : int -> Ptset.t -> bool

val add : int -> Ptset.t —-> Ptset.t

val remove : int -> Ptset.t —-> Ptset.t

val union : Ptset.t -> Ptset.t -> Ptset.t
val inter : Ptset.t -> Ptset.t -> Ptset.t

All of these should be self-explanatory as operations over integer sets. The add
operation for example expects an integer and a Patricia tree as arguments and
returns a new Patricia tree representing the resulting, bigger set.

2.2 QuickCheck

QuickCheck [Claessen and Hughes, 2000] is also known as (randomized) property-
based testing. As such, it builds on the idea of expressing a family of tests by
a property (quantified over some input) and a generator of input. For the rest

4 Jan Midtgaard

of this paper we will use OCaml’s QCheck library.> As an example, consider
McCarthy’s 91 function:

let rec mc x =
if x > 100 then x - 10 else mc (mc (x + 11)

This function is renown for being observably equivalent to the following simpler
specification:

me(n) =

91 n <101
n—10 n > 101

(if we allow ourselves to ignore stack overflows due to the heavy use of recursion).

To test this property, we supply Test.make with the equivalence property
and an input generator small_signed_int (a builtin generator of small signed
integers from the QCheck library) to form a QuickCheck test:

let mc91_spec =
Test.make ~name:"McCarthy, 91 corr._spec" ~count:1000
small_signed_int
(fun n —> if n <= 101
then mc n = 91
else mc n = n - 10)

where we additionally specify the name of the tested property and the number
of desired test runs (1000) as optional parameters ~name and ~count. We can
subsequently run this QuickCheck test:

QCheck_runner.run_tests ~verbose:true [mc9l_spec]

and confirm the specification over the generated, small integer inputs:

law McCarthy 91 corr. spec: 1000 relevant cases (1000 total)
success (ran 1 tests)

Suppose we instead phrase a test of the incorrect property that McCarthy’s
91 function is equivalent to the constant function always returning 91:
let mc91_const =

Test.make ~name:"McCarthy, 91 constant" ~count:1000
small_signed_int (fun n -> mc n = 91)

and run it, QCheck will immediately inform us of this failed property and print
a minimal (shrunk) input for which it fails:
law McCarthy 91 constant: 3 relevant cases (3 total)
test ‘McCarthy 91 constant®

failed on > 1 cases:
102 (after 30 shrink steps)

In this case it took the QCheck library 30 simplification steps to cut a failing
input down to this minimal one, 102. Such shrinking is important in trying
to understand the (often large) machine generated counterexamples on which
a property fails. For example, if we disable the default, builtin shrinking over
integers we may get a larger counterexample:

3 available at https://github.com/c-cube/qcheck/

QuickChecking Patricia Trees 5

law McCarthy 91 constant: 8 relevant cases (8 total)
test ‘McCarthy 91 constant' failed on > 1 cases: 4921

From the input 4921 it may be less clear what the underlying problem is.

In the Erlang community it is common to combine the randomized property-
based testing approach with that of model-based testing [Hughes, 2010, Arts
and Castro, 2011]. Concretely, this involves expressing an abstract model of the
system (or module) under test and to test each of the available operations ‘op’
for the property

the model and the implementation of ‘op’ agree

akin to how we have tested agreement between McCarthy’s 91 function and its
specification. For this reason the commercial QuickCheck implementation offered
by Quviq comes with a domain-specific language (DSL) for compactly expressing

— models,
— generators of arbitrary sequences of operations, and
— the above agreement property.

However we do not need such a DSL to express a model [Claessen and Hughes,
2002, Arts et al., 2008]. In the next section we will build an example model.

3 Building a Model

Following practice within the QuickCheck community [Claessen and Hughes,
2002, Hughes, 2010], we build a model of Patricia trees that distills their func-
tionality to its core. Unlike the established Erlang tradition [Hughes, 2010, Arts
and Castro, 2011] we will explicitly express a model, a symbolic representation
of operation sequences, a generator of arbitrary sequences of operations, and the
agreement property. The following subsections are concerned with each of these.

3.1 A Model

A model serves as an executable specification of the intended meaning of a piece
of software, similarly to how a definitional interpreter [Reynolds, 1972] specifies
the intended meaning (the semantics) of a programming language. When Patricia
trees are used to implement integer sets, we can easily model them using a list.
For example, an empty set can be modeled with an empty list, a singleton set can
be modeled with a singleton list, and the membership predicate can be delegated
to List.mem from the standard library (assuming it has been thoroughly tested):
let empty_m = []

let singleton_m i = [i]
let mem_m i s = List.mem i s

where we suffix the operations with _m to underline that these operations belong
to our model.

6 Jan Midtgaard

The distinguishing feature of sets, namely uniqueness of elements, surfaces
when building a model for the remaining operations. For these we choose to
maintain a sorted list representation. Based on this choice we can now implement
a model straightforwardly. For example:

let add_m i1 s =
if List.mem i s then s else List.sort compare (i::s)

where werelyon List.sort : (‘a -> ‘a -> int) -> ’a list -> ’a list
which expects a comparison function as its first argument.

The model for set union structurally recurses over its two argument lists,
always puts the least element first, and thereby maintains the sorted invariant:

let rec union_m s s’ = match s,s’ with
[01, - —> s’
I —, [1 —> s
| i::is,j::js -> if i<j then i:: (union_m is s’) else
if i>j then j:: (union_m s js) else
i::(union_m is Js)

The remaining models for remove and inter are straightforward and therefore
omitted here.

In our situation of testing a functional data structure, the model may simply
be regarded as an obviously correct but inefficient implementation of the abstract
data type of sets [Arts et al., 2008]. The model-based QuickCheck approach
was initially suggested (among others) for testing monadic code [Claessen and
Hughes, 2002] and has since been used successfully and repeatedly for locating
defects in imperative code such as Google’s LevelDB key-value data storage
library* and the underlying AUTOSAR modules used in Volvo cars [Hughes,
2016].

3.2 Symbolic Operations

We first formulate a data type for symbolically representing calls to the Ptset
API:

type instr_tree =
| Empty
| Singleton of int
| Add of int x instr_tree
| Remove of int * instr_tree
| Union of instr_tree * instr_tree
| Inter of instr_tree x instr_tree

Each of these constructors correspond to one of the operations listed earlier. The
Add constructor for example represents the add : int -> Ptset.t -> Ptset.t
operation from the API. It expects an integer (the element to be added) and a
sub-tree representing the set the element is to be added to.

The alert reader may have noticed that we did not include a symbolic Mem
constructor. The reason for this omission is simple: since a Patricia tree is a

Y nttp://www.quviqg.com/google-leveldb/

QuickChecking Patricia Trees

functional data structure, a query cannot affect it. For the purposes of repre-
senting and generating arbitrary Patricia trees a mem-query therefore has no
effect. We will of course include a test for agreement between mem and mem_m in
our forthcoming test suite to exercise the operation.

We can now write an interpreter for such instruction trees. Following the
inductive definition the interpreter becomes a recursive function that interprets
each symbolic operation as the corresponding Patricia tree operation:

(* 1interpret instr_tree —-> Ptset.t *)
let rec interpret t = match t with
| Empty —-> Ptset.empty
| Singleton n -> Ptset.singleton n
| Add (n,t) -> Ptset.add n (interpret t)
| Remove (n,t) —-> Ptset.remove n (interpret t)
| Union (t,t’) ->
let s = interpret t in
let s’ = interpret t’ in
Ptset.union s s’
| Inter (t,t’) ->
let s = interpret t in
let s’ = interpret t’ in

Ptset.inter s s’

For example, we interpret a Singleton i node as a call to Ptset.singleton i
and we interpret a Union node by two recursive interpretations of the sub-trees
and a Ptset.union of their results.

3.3 A Generator

In order to QuickCheck the above properties we need the ability to generate
arbitrary trees of operations. Starting from the inside, the below expresses a
recursive generator expressed using QCheck’s Gen.fix combinator:

(* *)
let tree_gen int_gen
Gen.sized (Gen.fix

| 0 —> Gen.oneof

tree_gen int Gen.t -> instr_tree Gen.t

(fun rgen n —-> match n with
[Gen.return Empty;

Gen.map (fun i -> Singleton i) int_gen]
| =

Gen.frequency

[(1,Gen.return Empty);

(1,Gen.map (fun i -> Singleton i) int_gen);

(2,Gen.map2 (fun 1 t -> Add (i,t)) int_gen (rgen (n-1)));
(2,Gen.map2 (fun 1 t -> Remove (i,t)) int_gen (rgen (n-1)));
(2,Gen.map2 (fun 1 r -> Union (l,r)) (rgen (n/2)) (rgen (n/2)));
(2,Gen.map2 (fun 1 r -> Inter (l,r)) (rgen (n/2)) (rgen (n/2)))

1))

Each invocation accepts a fuel parameter n to delimit the number of recursive
generator calls. When we run out of fuel (n = 0), we hit the first branch of
the pattern match and generate either a symbolic empty set or a singleton set.
If there is still fuel left we choose between generating a list of things: empty

8 Jan Midtgaard

sets, singletons, adds, removes, unions, or intersections. Since the latter four in-
volves generating sub-trees we invoke the generator recursively, this time with
a decreased amount of fuel. By the design of QCheck’s fixed-point generator
Gen.fix the recursive generator is passed as a parameter (above named rgen).
For flexibility we have parameterized the tree generator over the integer gener-
ator int_gen used in the singleton, add, and remove cases. We thereby avoid
having to rewrite the tree generator to experiment with integer generation.

To increase the chance of generating adds, removes, unions, or intersections
we assign them a higher weight (2), meaning that each of them will be chosen
with probability m
generated with probability only 1—10. Finally we wrap the size-bounded, recursive
generator in a call to QCheck’s Gen.sized combinator, which first generates an
arbitrary (small) integer and subsequently passes it as the fuel parameter to the
size-bounded generator.

With the tree generator in place we can generate arbitrary trees from the
top level. For example:

= % whereas an empty set or a singleton is only

Gen.generatel (tree_gen Gen.int);;
— : Qctest.instr_tree =
Union
(Union
(Union (Add (1247377935267464492, Singleton (-344203684848058197)),
Remove (788172988455234350, Empty)),
Add (3495994339175018836, Singleton (-3950939914241702626))),
Add (1460909625285095467,
Inter (Singleton 3576840527525220675,
Union (Empty, Singleton (-534074627919219807)))))

where we pass Gen.int as integer generator (a uniform generator of int).

Since OCaml does not supply a generic printer for use outside the top level,
QCheck cannot print our trees in case it should find a counterexample. It is
however straightforward to write (yet another) structural, recursive function
to_string that serializes a symbolic instruction tree into a string. We can now
express our generator with printing capability as follows:

(+ arb_tree : instr_tree arbitrary x)
let arb_tree = make ~print:to_string (tree_gen Gen.int)

where we make use of QCheck’s make operation for combining the pure generator
resulting from tree_gen with our pretty-printer to_string into a full generator
(these are denoted by the parameterized type ’a arbitrary in QCheck).

3.4 Expressing agreement

To express agreement between the implementation and our abstract model we
need a final piece of the puzzle: the ability to relate one to the other. Follow-
ing Claessen and Hughes [2002], we can do so with an abstraction function
abstract : Ptset.t —-> int list. We can simply implement abstract as
an alias for the elements operation from the earlier versions of ptrees’s set

QuickChecking Patricia Trees 9

API. In the recent API versions however, elements has been removed. In this
case we can easily implement it as a fold, followed by a subsequent sorting:

let abstract s =
List.sort compare (Ptset.fold (fun i a -> i::a) s [])

At last we are in position to test! For example we can write a test that
expresses agreement between the singleton operation over both Patricia trees
and our model:

let singleton_test =

Test.make ~name:"singleton_test" ~count:10000
arb_int (fun n -> abstract (Ptset.singleton n) = singleton_m n)

This expresses that creating a singleton set as a Patricia tree and abstracting the
result as an ordered list should agree with our model interpretation over lists.
Similarly we can express agreement for the union operation:

let union_test =

Test.make ~name:"union test" ~count:10000
(pair arb_tree arb_tree)
(fun (t,t’) ->
let s = interpret t in
let s’ = interpret t’ in
abstract (Ptset.union s s’) = union_m (abstract s) (abstract s’))

This expresses that the elements of two joined Patricia trees should give the
same as taking the union of the elements for each tree.

3.5 Shrinking Trees

A sometimes neglected advantage of QuickCheck is shrinking: the ability to
systematically cut down large machine-generated counterexamples to small ones
that are easier for humans to understand. This mirrors the working routine of
a software engineer: first recreate a run with an input exhibiting a bug, then
systematically cut down the input (if possible) to a minimum in order to get to
the heart of the error.

In QCheck shrinkers are implemented as iterators: a lazy stream of values.
For example, Iter.empty creates the empty stream, Iter.return v creates the
singleton stream containing only v, Tter.of_list vs creates a stream from a
list vs, and Iter.append sequences two iterator streams (it is also available
under the infix alias <+>).

We can now express our shrinker as follows:

(x tshrink : instr_tree -> instr_tree Iter.t)

let rec tshrink t = match t with
| Empty -> Iter.empty
| Singleton i ->
(Iter.return Empty)
<+> (Iter.map (fun i’ -> Singleton i’) (Shrink.int 1)
| Add (i,t) ->
(Iter.of_list [Empty; t; Singleton i])
<+> (Iter.map (fun t’ -> Add (i,t’)) (tshrink t))
<+> (Iter.map (fun i’ -> Add (i’,t)) (Shrink.int 1))

10 Jan Midtgaard

| Remove (i,t) -—>

(Iter.of_list [Empty; t])

<+> (Iter.map (fun t’ -> Remove (i,t’)) (tshrink t))

<+> (Iter.map (fun i’ -> Remove (i’,t)) (Shrink.int 1i))
| Union (tO,tl) -—>

(Iter.of_list [Empty;tO0;tl])

<+> (Iter.map (fun t0’ -> Union (t0’,tl)) (tshrink t0))

<+> (Iter.map (fun tl1’ -> Union (tO,tl’)) (tshrink t1))
| Inter (tO,tl) -—>

(Iter.of_list [Empty;tO0;tl])

<+> (Iter.map (fun t0’ -> Inter (t0’,tl)) (tshrink t0))

<+> (Iter.map (fun tl1’ -> Inter (tO0,tl’)) (tshrink t1l))

This shrinker codifies a systematic reduction: (a) We cannot reduce empty trees
further. (b) We attempt to first replace a singleton with an empty tree, and
otherwise shrink the singleton element itself. (c) We attempt to first replace
addition and removal nodes with an empty tree, by dropping the node and
keeping only the sub-tree, by replacing an addition node with a singleton node, by
shrinking the sub-tree recursively, or by reducing the added or removed element.
(d) In both the remove, union, and intersection cases, we first attempt to replace
them with an empty tree, we then attempt to keep only a sub-tree, and finally
we attempt to reduce sub-trees recursively.

With tshrink for shrinking trees, we enhance our generator with this ability:

(+ arb_tree : instr_tree arbitrary x)
let arb_tree =
make ~print:to_string ~shrink:tshrink (tree_gen arb_int.gen)

where arb_int is some integer generator.

3.6 Refining The Integer Generator

We have expressed all tests in terms of arb_int, an (unspecified) integer gen-
erator. If we run our tests with arb_int implemented as a uniform generator
Gen.int everything appears to work as intended:

random seed: 33309109

law empty: 1 relevant cases (1 total)

law singleton test: 10000 relevant cases (10000 total)
law mem test: 10000 relevant cases (10000 total)

law add test: 10000 relevant cases (10000 total)

law remove test: 10000 relevant cases (10000 total)
law union test: 10000 relevant cases (10000 total)

law inter test: 10000 relevant cases (10000 total)
success (ran 7 tests)

Here we have tested the agreement property between the model and Pt set across
the 7 operations, each on 10.000 arbitrary inputs, with the exception of empty
which we only need to test once. Repeating this run (with different seeds for each
run) does not change our perception. For example, if we repeat these 60.001 tests
10 times, totaling 600.010 tests the Patricia tree implementation still appears to
function correctly.

QuickChecking Patricia Trees 11

The strategy of generating integers uniformly for our test cases may however
be questioned. First, the chance of generating duplicate integer elements, e.g.,
for testing the remove or mem operations on a present element is diminishing
over OCaml’s 63-bit integers (on a 64-bit machine). By replacing the integer
generator with small_signed_int we have a much bigger chance of generating
duplicate elements as illustrated by the following two generator samples:

Gen.generate ~n:10 int.gen;;

- : int list =

[-1639748044049575280; -759399516701955582; -3888521258132306650;
2042601493422231077; 1455013020240427543; -2271053503848477623;
-4460690534604894851; 3544156611970260363; 3465820468547989432;

-2702741295924950030]
Gen.generate ~n:10 small_signed_int.gen;;
- : int 1list = [-75; 65; 2390; 76; -1; 6; —-9; 6; -546; -787]

Notice how the integer 6 occurs twice in the last sample. Repeating the above
test run with small_signed_int as the integer generator however does not
reveal anything new: the Patricia tree implementation passes another 600.010
generated tests.

A second concern about both the int generator and the small_signed_int
generator is the small chance of generating a corner case such as min_int or
max_int: Each of these is only emitted by the uniform int generator with a prob-
ability of one out of 263 with OCaml’s 63-bit integers and the small_signed_int
generator will never emit them. Yet the past decades of software engineering tells
us precisely to remember to test such corner cases! How can we do so?

One way to adjust the integer generator to include such corner cases is to
compose multiple different generators. For example, we can choose to either
generate a small_signed_int (which includes the corner case 0), generate an
integer uniformly (as above), or generate one of the two extremal corner cases:

let arb_int = frequency [(5,small_signed_int);
(3,1int) ;
(1, oneofl [min_int;max_int])]

Here we have weighted each of these choices, by generating a small_signed_int

with chance g, by generating an integer uniformly with chance g = %, and by
generating min_int or max_int with chance é. Overall with this alternative

integer generator we still have some chance of generating all integers, but the
resulting distribution is skewed towards smaller numbers and corner cases both
with a reasonable chance of occurring repeatedly.

3.7 The Bug and Some Potential Fixes

If we try to run the test suite with the refined integer generator arb_int the
framework quickly locates a problem:

random seed: 448813938

law empty: 1 relevant cases (1 total)

law singleton test: 10000 relevant cases (10000 total)
law mem test: 10000 relevant cases (10000 total)

12 Jan Midtgaard

|Branch(OOO...OOO,lOO...OOO)| |Branch(—,ooo...001)|

[Leat 000...000] [Lear 100...000] [reaf 100...000| [reat 000...001]

Fig.2. The tree shapes resulting from add min_int (singleton 0) and
add min_int (singleton 1)

law add test: 10000 relevant cases (10000 total)
law remove test: 10000 relevant cases (10000 total)
law union test: 3363 relevant cases (3363 total)
test ‘union test®
failed on > 1 cases:
(Add (-4611686018427387904, Singleton 0),
Add (-4611686018427387904, Singleton 1)) (after 9 shrink steps)

law inter test: 10000 relevant cases (10000 total)
failure (1 tests failed, ran 7 tests)

We identify the number -4611686018427387904 as min_int, the least repre-
sentable integer in 64-bit OCaml. With this in mind, the counterexample illus-
trates that a set union of the sets {min_int, 0} and {min_int, 1} does not yield
{min_int, 0, 1}! What does it yield then? If one calls abstract on the resulting
data structure it actually yields

[-4611686018427387904; —-4611686018427387904; 0; 1]
with a duplicate min_int entry!

To understand the problem we must reopen the black box of Ptset’s imple-
mentation. First, since min_int is represented in 2-complement representation
as a string of 0’s with only a 1 in the sign bit, the left sub-tree resulting from
add min_int (singleton 0) has the shape displayed on the left in Fig. 2.
Similarly the right sub-tree resulting from add min_int (singleton 1) has
the shape displayed on the right in Fig. 2. Now, the union operator simply per-
forms a call to the internal merge operation, which is a recursive procedure for
merging two Patricia trees:

0~ O UL Wi

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

QuickChecking Patricia Trees 13

let rec merge = function
| t1,t2 when tl==t2 -> tl
| Empty, t ->t
| £, Empty -> t
| Leaf k, t -> add k t
| t, Leaf k -> add k t
| (Branch (p,m,s0,sl) as s), (Branch (g,n,t0,tl) as t) ->
if m == n && match_prefix g p m then
(* The trees have the same prefix. Merge the subtrees. x)
Branch (p, m, merge (s0,t0), merge (sl,tl))
else if m < n && match_prefix g p m then
(» [g] contains [p]. Merge [t] with a subtree of [s]. x)
if zero_bit g m then
Branch (p, m, merge (sO,t), sl)
else
Branch (p, m, sO0, merge (sl,t))
else if m > n && match_prefix p g n then
(x» [p] contains [g]. Merge [s] with a subtree of [t]. *)
if zero_bit p n then
Branch (g, n, merge (s,t0), tl)
else
Branch (g, n, tO0, merge (s,tl))
else
(* The prefixes disagree. x)
join (p, s, 9, t)

The gist of the code is that it handles merging with empty sub-trees and leafs as
separate cases (lines 3-6). In our situation above we hit the case of merging two
branching nodes (line 7). This proceeds by a case analysis of the least significant
branching bit: are the branching bits identical (and do the prefixes agree) (line
8-10), is one branching bit less than the other (and do the prefixes agree) (line
11-16 and 17-22), or is there some disagreement (line 23-25)7 In our case the
branching bits are min_int and 1 and comparing them with a signed comparison
(line 11) yields true contrasting the intention of taking the least significant bit.
From here on it is downhill. The empty prefix (q, represented as all 0’s) of the
right tree also has a zero sign bit (line 13), thereby causing Leaf 000...000 to
be merged recursively with the right tree (line 14). This boils down to invoking
add (line 5) and results in a structure of the form:

| Branch (-, 000...001) |

| Branch (000...000,100...000) | [Leaf 000...001

[Leat 000...000| [Lear 100...000]

14 Jan Midtgaard

which is in turn placed as the left sub-tree in the overall result by line 14:

[Branch (000...000,100...000) |

| Branch(-,000...001) | |Leaf 100...000]
|Branch(OOO...OOO,lOO...OOO)| [Leas 000...001]
[Leat 000...000] [Leat 100...000]

and thereby explains the duplicate entry of min_int in the result and the dis-
agreement between the implementation and our model.

In retrospect, we now realize that our shrinker constructed a minimal coun-
terexample: we need at least two branching nodes to hit line 7 and recreate the
bug. In the current setting the error is also limited to a case with min_int occur-
ring twice in order to be erroneously duplicated in the resulting list of elements.
Subsequent runs with different seeds may of course produce different symbolic
counterexamples all illustrating the same underlying issue.

One potential fix is to change the representation of the branching bit. After all
we need only represent 63 different branching bit values on a 64-bit architecture
which can be done with only 6 bits.> This fix is however a more invasive change
throughout the module.

An elegant and less invasive patch was suggested by Jean-Christophe Fil-
liatre. The essence of the fix is to compare the two OCaml ints (a signed inte-
ger data type) albeit using an unsigned comparison. Since the only members we
compare are branching bits on the binary form 0001, 0010, 0100, ..., we can
do so as follows:

let unsigned_lt nm =n >= 0 && (m < 0 || n < m)

which boils down to n < m for all non-sign-bit cases, yields false when n is a
sign-bit (as desired), and yields true when m is a sign-bit (as desired). All sign
bit comparisons in the code (incl. line 11 and 17) should thus be patched to call
unsigned_1lt instead. This fix furthermore has the advantage of costing only a
few more comparisons in the common cases (assuming the call is inlined by the
OCaml compiler).

The sub-module implementing the big endian version of sets and the ptmap
module implementing dictionaries contain the same problematic comparisons.
They have all been fixed subsequently.

5 OCaml’s garbage collector reserves 1 tag bit in integers to distinguish them from
heap-allocated data.

0~ O UL W=

©

10

12
13
14
15
16
17
18
19
20

QuickChecking Patricia Trees 15

3.8 The bug and the research paper

The identified bug is not only relevant to users of ptrees, but to the functional
programming community at large. Compare the listed OCaml merge function
to the following SML merge function from Okasaki and Gill [1998, Fig.5]:

fun merge c (s,t) =

let fun mrg (Empty, t) =t
| mrg (t, Empty) =t
| mrg (Lf (k,x), t) = insert c (k,x,t)
| mrg (t, Lf (k,x)) = (c o swap) (k,x,t)
|

mrg (s as Br (p,m,s0,sl), t as Br (g,n,t0,tl)) =
if m=n andalso p=g then
(# The trees have the same prefix. Merge the subtrees. x)
Br (p,m,mrg (s0,t0),mrg (sl,tl))
else if m<n andalso matchPrefix (g,p,m) then
(# g contains p. Merge t with a subtree of s. x*)
if zeroBit (g,m) then Br (p,m,mrg (sO,t),sl)
else Br (p,m,s0,mrg (sl,t))
else if m>n andalso matchPrefix (p,q,n) then
(# p contains g. Merge s with a subtree of t. x)
if zeroBit (p,n) then Br (g,n,mrg (s,t0),sl)
else Br (g,n,t0,mrg (s,tl))
else (*x The prefixes disagree. x)
join (p,s,q,t)
in mrg (s,t) end

where the parameter ¢ : "a * "a -> ’"ais a combining function for resolving
key collisions (useful when Patricia trees are used to represent dictionaries in
general).

The comments and the structure of this code are the same as in the OCaml
version: lines 2—-3 handle merging with empty trees, lines 4-5 handle merging
with singletons, and lines 6-19 handle the merging of two internal nodes with a
4-branch case analysis like the OCaml version: are the branching bits identical
(and do the prefixes agree) (line 7-9), is one branching bit less than the other
(and do the prefixes agree) (line 10-13 and 14-17), or is there some disagreement
(line 18-19)?

The branching bit in the data type underlying the above operation is declared
as SML’s int type (also a signed integer data type):

datatype ’'a Dict =
Empty
| Lf of int % ’a
| Br of int * int % ’"a Dict * ’'a Dict

As Okasaki and Gill’s merge function contains comparisons m<n and m>n writ-
ten using the signed integer comparison of SML it thereby exhibits the same
problematic behavior as the OCaml version.

Since the initial publication of our model, it has been reused by Simon Cru-
anes to QuickCheck the Patricia tree implementation in OCaml Containers, an
extension of the OCaml standard library.® This merely required retargeting the

S https://github.com/c-cube/ocaml-containers

16 Jan Midtgaard

interpretation of the symbolic operations. This alternative implementation had
been developed independently and did not exhibit the bug.

4 Related Work

Over the past 17 years QuickCheck has evolved from a Haskell library [Claessen
and Hughes, 2000] to the present situation where ports have been made to many
of the most popular programming languages.” In the process the approach has
been extended to test imperative code [Claessen and Hughes, 2002] and a com-
mercial port for Erlang has been developed by the company Quviq. Quviq’s
commercial port includes a compact state-machine DSL for easily specifying and
testing such code with abstract models [Hughes, 2010] akin to the current paper.
One notable difference between Quviq’s state-machine DSL and the model in
this paper is that

— the state-machine approach is sequence-centric: it can be used to gener-
ate API call sequences (at its core describing a regular language) and test
agreement between a model and an implementation’s output and behaviour,
whereas

— the example model we have presented is tree-centric (describing a context-
free language).

The API of Quviq’s state-machine DSL has subsequently been mimicked in
Erlang’s open source QuickCheck libraries PropEr® and Triq®. Early on Gast for
Clean [Koopman et al., 2003, Koopman and Plasmeijer, 2005] supported compact
and powerful state-based models, but for a number of years the situation for other
languages was less promising. Only more recently has state-machine frameworks
for other languages surfaced, such as ScalaCheck [Nilsson, 2014] for Scala and
Hedgehog!'® for Scala, F#, and Haskell.

We are certainly not the first to test a data structure using QuickCheck. Arts
et al. [2008] present a general methodology to test abstract data types, exempli-
fied by testing a ‘decimal number type’ (up to some rounding) against a model
of floats. Their methodology is: (1) to define a model (and state equivalence),
(2) to write as many equivalence properties as there are data type operations
(and to work with a symbolic representation), (3) to write a generator, and (4)
to define shrinking preferences (if needed). The methodology thereby spells out
the model-based approach initially suggested by Claessen and Hughes [2002] and
which we have also followed here. In a follow-up paper, Arts and Castro [2011]
extend the methodology to test imperative data structures. This involves a com-
bination of the Quviq state machine framework and boilerplate code generation
of a test skeleton to keep the repetitive programming to a minimum.

" The Wikipedia page https://en.wikipedia.org/wiki/QuickCheck lists
ports to 33 languages as of May 2017.
8 http://proper.softlab.ntua.gr/
% http://krestenkrab.github.io/trig/
10 https://github.com/hedgehogqga

QuickChecking Patricia Trees 17

Since its introduction property-based testing has successfully been applied
to test and locate errors in a broad class of software: formal semantics [Felleisen
et al., 2009], election systems [Koopman and Plasmeijer, 2011], optimizing com-
pilers [Paltka et al., 2011, Midtgaard et al., 2017], type environments [St-Amour
and Toronto, 2013, dynamic analyzers [Hritcu et al., 2013], type systems [Fetscher
et al., 2015], static analyzers [Midtgaard and Mgller, 2015], and computational
geometry [Sergey, 2016]. Common to many of these are that they are not model-
based. For each particular domain, the involved operations are instead tested to
satisfy domain-specific properties, e.g., non-interference [Hritcu et al., 2013], lat-
tice axioms [Midtgaard and Mgller, 2015], or geometric properties [Sergey, 2016].
Koopman et al. [2012] compare the bug-finding capabilities of the two forms of
QuickCheck specifications: the traditional logical properties and input/output
conformance in a state-machine framework. They conclude that both are pow-
erful for detecting errors, but that the latter is slightly more effective.

Our refined integer generator arb_int is by no means the final word on inte-
ger generation. For some situations, e.g., our testing of McCarthy’s 91 function,
we would prefer to avoid generating duplicate numbers, as these represent re-
dundant tests. In other situations (as we have argued) we would precisely want
a generator to emit duplicates. An orthogonal aspect is size: the builtin genera-
tors of Quviq’s commercial QuickCheck implementation is based on generations.
The distribution of their integer generator int () thus initially generates smaller
numbers but its output varies towards greater numbers as a property is repeat-
edly tested (generations goes by).!! Testing and potentially catching errors over
small inputs first will again reflect in time saved shrinking a needlessly big coun-
terexample.

Recently there has been a trend towards letting a QuickCheck framework
generalize the found counterexamples. SmartCheck [Pike, 2014] is a QuickCheck
extension that can perform such generalization with the goal of explaining the
general erroneous behaviour to the user. MoreBugs [Hughes et al., 2016] is an-
other QuickCheck extension performing such generalization with the goal of
avoiding repeated rediscovery of the same bugs. In practice this becomes a con-
cern if a tester does not want to pause the testing process until the first round
of errors is fixed or adjust his model specification to reflect the code’s buggy
behaviour [Hughes, 2016].

5 Conclusion and Perspectives

We have demonstrated how QuickCheck can locate a subtle bug in a published
data structure paper after almost two decades — a bug which was also present
in an influential library implementation.

For the purpose of bug-finding, the quality of a QuickCheck library’s built-in
generators is of utmost importance. Simple uniform generators are unlikely to
exercise the corner cases that one would typically test by hand. As a consequence,

1 http://quvig.com/documentation/eqc/eqe_gen.html

18 Jan Midtgaard

a passing QuickCheck test suite based on such generators may give users a false
sense of certainty in an implementation. Furthermore, for a QuickCheck library
to be successful, the ability to efficiently shrink counterexamples is essential.
Otherwise, the machine generated counterexamples simply get too big to be
comprehensible for a human being. For both of these aspects, the commercial
Quviq QuickCheck implementation has a clear advantage, with several years of
effort in refining and engineering its generators and shrinkers.

The full source code of our developed tests is available for download at

https://github.com/jmid/gc-ptrees

Acknowledgments We thank Jesper Louis Andersen for sharing his expertise
with alternative integer generators, Jean-Christophe Fillidtre for his Patricia
tree library implementation and for promptly providing an elegant fix, Simon
Cruanes for suggesting improvements to the code, the TFP’17 participants for
questions and comments, and the anonymous referees for a number of suggestions
that helped improve the presentation of this paper.

Bibliography

Thomas Arts and Laura M. Castro. Model-based testing of data types with
side effects. In Kenji Rikitake and Erik Stenman, editors, Proceedings of the
10th ACM SIGPLAN workshop on Erlang, Tokyo, Japan, September 23, 2011,
pages 30-38, 2011.

Thomas Arts, Laura M. Castro, and John Hughes. Testing Erlang data types
with Quviq QuickCheck. In Soon Tee Teoh and Zoltdn Horvath, editors,
Proceedings of the Tth ACM SIGPLAN workshop on Erlang, Victoria, BC,
Canada, September 27, 2008, pages 1-8, 2008.

Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for
memory safety of C programs. In Mihaela Gheorghiu Bobaru, Klaus Havelund,
Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal Methods -
Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-
20, 2011. Proceedings, volume 6617 of LNCS, pages 459-465. Springer-Verlag,
2011.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In Philip Wadler, editor, Proc. of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP’00),
pages 53-64, Montréal, Canada, September 2000.

Koen Claessen and John Hughes. Testing monadic code with QuickCheck. SIG-
PLAN Notices, 37(12):47-59, 2002.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engi-
neering with PLT Redex. The MIT Press, 2009.

Burke Fetscher, Koen Claessen, Michal H. Patka, John Hughes, and
Robert Bruce Findler. Making random judgments: Automatically generat-
ing well-typed terms from the definition of a type-system. In Jan Vitek,

QuickChecking Patricia Trees 19

editor, Programming Languages and Systems, 24th European Symposium on
Programming, ESOP 2015, volume 9032 of LNCS, pages 383-405. Springer-
Verlag, 2015.

Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dim-
itrios Vytiniotis, Arthur Azevedo de Amorim, and Leonidas Lampropoulos.
Testing noninterference, quickly. In Greg Morrisett and Tarmo Uustalu, ed-
itors, Proc. of the 18th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’13), pages 455-468, Boston, MA, Sep 2013.

Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange, Thomas P.
Jensen, Vincent Monfort, David Pichardie, and Tiphaine Turpin. Sawja: Static
analysis workshop for Java. In Bernhard Beckert and Claude Marché, editors,
Formal Verification of Object-Oriented Software - International Conference,
FoVeOOS 2010, Paris, France, June 28-30, 2010, Revised Selected Papers,
volume 6528 of LNCS, pages 92-106. Springer-Verlag, 2011.

John Hughes. Software testing with QuickCheck. In Zoltan Horvath, Rinus Plas-
meijer, and Viktoria Zsok, editors, Central European Functional Programming
School - Third Summer School, CEFP 2009, Budapest, Hungary, May 21-23,
2009 and Komdrno, Slovakia, May 25-30, 2009, Revised Selected Lectures,
volume 6299 of LNCS, pages 183-223. Springer-Verlag, 2010.

John Hughes. Experiences with QuickCheck: Testing the hard stuff and stay-
ing sane. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600
of LNCS, pages 169-186. Springer-Verlag, 2016.

John Hughes, Ulf Norell, Nicholas Smallbone, and Thomas Arts. Find more
bugs with QuickCheck! In Christof J. Budnik, Gordon Fraser, and Francesca
Lonetti, editors, Proceedings of the 11th International Workshop on Automa-
tion of Software Test, ASTQICSE 2016, Austin, Texas, USA, May 14-15,
2016, pages 71-77. ACM, 2016.

Pieter W. M. Koopman and Rinus Plasmeijer. Testing reactive systems with
GAST. In Stephen Gilmore, editor, Revised Selected Papers from the Fourth
Symposium on Trends in Functional Programming, TFP 2003, Edinburgh,
United Kingdom, 11-12 September 2003., volume 4 of Trends in Functional
Programming, pages 111-129. Intellect, 2005.

Pieter W. M. Koopman and Rinus Plasmeijer. Testing with functional refer-
ence implementations. In Rex L. Page, Zoltan Horvath, and Viktoria Zsok,
editors, Trends in Functional Programming - 11th International Symposium,
TFP 2010, Norman, OK, USA, May 17-19, 2010. Revised Selected Papers,
volume 6546 of LNCS, pages 134-149. Springer, 2011.

Pieter W. M. Koopman, Artem Alimarine, Jan Tretmans, and Marinus J. Plas-
meijer. Gast: Generic automated software testing. In Ricardo Pena and
Thomas Arts, editors, Implementation of Functional Languages, 14th Inter-
national Workshop, IFL 2002, Madrid, Spain, September 16-18, 2002, Revised
Selected Papers, volume 2670 of LNCS, pages 84-100. Springer, 2003.

Pieter W. M. Koopman, Peter Achten, and Rinus Plasmeijer. Model based test-
ing with logical properties versus state machines. In Andy Gill and Jurriaan

20 Jan Midtgaard

Hage, editors, Implementation and Application of Functional Languages - 28rd
International Symposium, IFL 2011, Lawrence, KS, USA, October 3-5, 2011,
Revised Selected Papers, volume 7257 of LNCS, pages 116-133. Springer, 2012.

Jan Midtgaard and Anders Mgller. Quickchecking static analysis properties. In
Gordon Fraser and Darko Marinov, editors, 8th IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST’15, pages 1-10,
Graz, Austria, April 2015. IEEE Computer Society.

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson,
and Hanne Riis Nielson. Effect-driven quickchecking of compilers. PACMPL,
1(ICFP):15:1-15:23, 2017.

Donald R. Morrison. PATRICIA—practical algorithm to retrieve information
coded in alphanumeric. Journal of the ACM, 15(4):514-534, 1968.

Rickard Nilsson. ScalaCheck: The Definitive Guide. Artima, 2014.

Chris Okasaki and Andrew Gill. Fast mergeable integer maps. In Greg Morrisett,
editor, ML’98: Proc. of the 1998 ACM SIGPLAN workshop on ML, pages 77—
86, September 1998.

Michal H. Patka, Koen Claessen, Alejandro Russo, and John Hughes. Testing an
optimising compiler by generating random lambda terms. In Proc. of the 6th
International Workshop on Automation of Software Test, AST 2011, pages
91-97, 2011.

Lee Pike. SmartCheck: automatic and efficient counterexample reduction and
generalization. In Wouter Swierstra, editor, Proc. of the 2014 ACM SIGPLAN
symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014, pages 53—
64, 2014.

John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proc. of 25th ACM National Conference, pages 717-740, Boston,
Massachusetts, 1972. Reprinted in Higher-Order and Symbolic Computation
11(4):363-397, 1998, with a foreword Reynolds [1998].

John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic
Computation, 11(4):355-361, 1998.

Ilya Sergey. Experience report: growing and shrinking polygons for random
testing of computational geometry algorithms. In Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii, editors, Proc. of the 21st ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’16), pages 193-199,
2016.

Vincent St-Amour and Neil Toronto. Experience report: Applying random test-
ing to a base type environment. In Greg Morrisett and Tarmo Uustalu, editors,
Proc. of the 18th ACM SIGPLAN International Conference on Functional
Programming (ICFP’13), pages 351-356, Boston, MA, Sep 2013.

