Science of Computer Programming 14 (1990) 25-42 25
North-Holland

A FUNCTIONAL THEORY OF EXCEPTIONS

Mike SPIVEY

Programming Research Group, Oxford University Computing Laboratory, 11 Keble Road,
Oxford OX13QD, UK

Communicated by C.B. Jones
Received August 1988
Revised June 1989

Abstract. Exceptions are a feature often provided by programming languages to deal with compu-
tations which may fail. This paper argues that lazy functional programming not only makes a
built-in exception mechanism unnecessary, but provides a powerful tool for developing and
transforming programs that use exceptions. The basic idea is the simple one of augmenting each
type with a distinguished error value; this idea is made practical for writing programs and reasoning
about them through the use of higher-order functions. An advantage is that simple equational
arguments can be used to reason about the programs.

Throughout the paper, the problem of simplifying algebraic expressions using rewriting rules
is used as a source of motivation and examples.

1. Introduction

Exceptions are a programming language feature often advocated as a way of
dealing with computations which may fail, such as in implementing backtracking
search. For example, the LCF system [4, 7] for machine-assisted reasoning is based
on the functional programming language ML, and uses the exception mechanism of
ML as part of the implementation of proof tactics. Paulson [6] describes the
implementation of rewriting in the Cambridge version of LCF, and the examples
in this paper are inspired by his account.

Although they allow tactics to be written concisely, exceptions have the disadvan-
tage that simple equational reasoning can no longer be used to derive programs, to
prove their properties, or to improve them by transformation. Many programming
languages, including mr, do not make it explicit in the type of a function whether
the function can raise an exception, so making it difficult to determine where
equational reasoning is applicable and where it is not.

The goal of this paper is to show how a functional programming language with
lazy evaluation makes a built-in exception mechanism unnecessary. Under lazy
evaluation, exceptions can be implemented as an abstract data type, rather than as
a feature of the programming language. A small collection of higher-order combining
forms allows the propagation of failure and the selection of alternatives to be

0167-6423/90/303.50 © 1990—Elsevier Science Publishers B.V. (North-Holland)

26 M. Spivey

expressed. These functions obey algebraic laws which allow programs using them
to be derived and transformed.

A standard technique in giving a denotational semantics to programming
languages with exceptions is to adjoin a distinguishable error element to each
semantic domain. The same technique is exploited in this paper, but the construction
is used not outside the programming language—in building semantic domains—but
inside it, in defining the result type of functions which may fail. This way of
implementing exceptions preserves the simple semantics of a purely functional
programming language, allowing programs to be derived by simple equational
reasoning without explicit appeal to semantics. Lazy evaluation makes the
implementation efficient by ensuring, for example, that a second alternative will not
be evaluated before the first one has failed.

Wadler [10] has also argued that exceptions are rendered unnecessary by lazy
evaluation; he replaces each function which may raise an exception with a function
which returns a list of results, with the possibility that this “list of successes’ may
be empty in the case of failure. The model of exceptions used here is simpler, but
many of the transformation laws continue to hold in Wadler’s more elaborate model.

In the first part of this paper, a small collection of higher-order exception-handling
functions is defined, and they are applied to the problem of simplifying algebraic
expressions using rewriting rules. The process of rewriting is split into three parts,
represented by three higher-order functions. These functions can be combined in
various ways to give different rewriting strategies.

The second part of the paper develops a set of algebraic laws obeyed by the
exception-handling functions. As an illustration of the power of these laws, one of
the three rewriting functions defined earlier is transformed to a more efficient but
less compact form. The style of derivation owes much to the work of Bird [1, 2],
in which laws about data types are expressed as equations between functions.

The third part of the paper explores the algebra of partial functions implemented
using the exception mechanism. Higher-level operations such as composition of
partial functions can be implemented using the lower-level primitives introduced
earlier and standard constructions from category theory.

2. Programming notation

The programs developed in this paper are written in a simple functional program-
ming language with lazy evaluation and polymorphic typing, a variant of the notation
used in the book [3]. A similar language has been implemented by Turner [9] under
the name MIRANDA, a trademark of Research Software Limited. A program in this
language is a collection of function definitions, each consisting of a declaration of
the type of the function and a number of equations giving its values for various
arguments. Unusual features of the notation used here and significant differences
from the notation of [3] and [9] are noted below.

A functional theory of exceptions 27

If f is a function of type a - B and a is a list of type list @, then f * a is a list of
type list B, defined by
.f* [x(), Xy ooy Xy ,]] =[.fxlnfx23 LR ’.fxn I]'

In MIRANDA, f * a is written map f a.
If @ is an associative operator, @/ is the reduction operator defined so that

B/ [xp, X1, s X1] = XD XD - - Dx,, .

If @ has an identity element e, it is taken as the definition of ®/[], so that the
following laws hold:

®/[]=e, (1)

@/[x]=x, (2)

®/(atth)=(D/a)D(D/b). (3)
The last of these laws generalizes to many lists as follows:

D/+/s =@/ (D)) * 5. (4)

Strictly speaking, the notation @/ is not allowed in MiRANDA, where it is necessary
to make explicit the result returned for the empty list. In place of @/, the expression
foldr (®) e should appear, where foldr (for “fold from the right”) is a function
defined so that

foldr (®) e [xo, x1,..., %,]=%@(x:®(- - - (x,.,De) - -+)).

This calculation is especially efficient when @ sometimes ignores its right argument,
as the disjunction operator v does, because the rest of the list can then be discarded
immediately: for example, the expression foldr (v) False a is evaluated by scanning
the list a only as far as the first occurrence of True; if one is found, the rest of a
is discarded, and the expression is reduced to True without further calculation.

The notation of sections provides a way of applying a binary operator to only
one of its arguments. If @ is a binary operator, then (x@®) is the function which
maps y to x@®y, and (Dy) is the function which maps x to x@® y. For example, (+1)
is the function which adds one to its argument, and (x:) is the function which
adjoins x to the front of a list. The section notation can be used to state another
law, which relates concatenation ++/ to the mapping operator *:

Jx(t/s)=+/(f*) *s. (5)
Here, (f*) * s is the list of lists which results from applying f to the members of
each member of the list of lists 5. The parentheses around a section (x@®) or (y®)
are often omitted where this does not lead to ambiguity.

3. The data type maybe

Some programs can either terminate successfully and produce an output or
terminate unsuccessfully and produce no output. For example, a program which

28 M. Spivey

tries to simplify an algebraic expression using a rewriting rule may either succeed,
producing a simplified expression as output, or fail because the rewriting rule cannot
be applied to the expression. In mv, such programs are written as functions which
may raise an exception, but in our simple programming language this possibility is
not open to us. Instead, we shall use programs which return an object of the type
maybe «, defined by:

maybe o = Just a | Nothing.

The idea is that the function should return Just x if it succeeds in producing the
result x, and should return Nothing if it fails. This means that the possibility of a
function’s raising an exception is made explicit in its type. Here is a function which
tries to subtract 3 from its argument, but fails if the result would be negative:

less3 :: num - maybe num
less3 x = Just (x —3), ifx=3
= Nothing, otherwise.

Failure may be detected by use of the infix operator ?, defined as follows:

(?) :: maybe a > maybe a - maybe o
Nothing Ty =y
(Justz) 7y = Just z.

If x succeeds, the expression x ? y returns the same result as x; otherwise it returns
the same result as y. If both x and y fail, x ? y fails as well. For example, the
expression less3 x ? Just x always succeeds, returning three less than x if this is
nonnegative, and x itself otherwise.

Under lazy evaluation, an expression of the form x ? y does not call for evaluation
of y unless x fails. It is the need to match x with the patterns Nothing and Just z
which forces it to be evaluated; if it succeeds, it is returned without evaluation of
y. This means we can write the expression Cheap ? Expensive and know that Expen-
sive will not be evaluated unless Cheap fails.

Sometimes it is necessary to select from a list of expressions the first one which
succeeds; this is achieved by the reduction ?/. If the list is empty, or all its elements
come to Nothing, then the result will be Nothing too. Lazy evaluation makes the
definition of ?/ using foldr particularly efficient, because elements of the list need
be evaluated only until one of them succeeds.

It is worth noting that in a language with applicative-order evaluation and true
exceptions, it is not possible to make the same separation between calculating a list
of attempts and selecting the first one which succeeds. For example, it would not
be possible to define a function g by the single equation,

ga="/[fx|x<al,

because the subexpression [fx|x < a] would fail completely if fx failed for any
element x of the list a. In such a language, it would be necessary to make explicit

A functional theory of exceptions 29

the recursion encapsulated in the reduction ?/:

g [1="Tail
g{x:a)=fxorelse g a.

Here, fail is an expression which raises an exception when it is evaluated, and the
expression E orelse E' is evaluated by evaluating E, and if it fails, evaluating E’
instead.

An ordinary total function may be applied to an argument which may have failed
using the operator », which simply passes on the failure:

(*) :: (o> B)-> maybe a > maybe B
f ® Nothing = Nothing
fe(Justz)=Just (fz)

An example of the use of ® is the function sql3, defined by

sql3 :: num - maybe num
5ql3 x = sqrt » (less3 x).

In effect, the expression sql3 x calculates vx —3, provided this does not involve
taking the square root of a negative number; otherwise, it returns Nothing.

The model for exceptions presented here is a simple one which allows an
expression to succeed in only one way. Another model for exceptions makes the
results of functions into lists of successes [10]: for example, a function which solves
a puzzle might return a list containing all the solutions instead of just one solution.
If there are no solutions, such a function would just return the empty list. Many of
the functions which act on simple exceptions can be translated into this richer
model: for example, the operator ? becomes the concatenation operator ++ and
becomes the mapping operator *. Many of the laws about exceptions correspond
to familiar laws about lists under this translation.

4. Terms and substitutions

An application of these ideas is in simplifying algebraic expressions by rewriting.
For present purposes, an expression or term is either a simple variable, which might
be written x, y, z, etc., or it is a compound term f(a,, ..., a,), obtained by applying
a function symbol f to zero or more arguments a,, ..., a, which are themselves
terms. If the number of arguments n is zero, the term is simply a constant. Terms
can be represented by members of the type term, defined by:

term = Var var| Func func (list term).

The types var and func represent variables and function symbols respectively; for
simplicity, we may take them both to be the type char of characters.

30 M. Spivey

An element of rerm is either of the form Varuv, where v is of type var, or of
the form Func fa, where [is of the type func, and a is a list of immediate subterms.
For example, the term f(f(x, ¥), h(a)) is represented by the following element of

the type term:
Func *f* [Func‘f" [Var ‘x*, Var*y’}, Func'h’ [Func ‘a’ [1})-

Note that the constant a has been represented by a function symbol with an empty

list of arguments.

The function subterms returns a list of the subterms of a term 1, paired with the
paths by which they can be reached from the root of & Paths are represented by
list of numbers: the empty list means the root of ¢ itself, whilst i:k means “take
the ith immediate subterm {(counting from zero), then follow the path k™"

path == list num.

The list compiled by subterms is in lexicographic order of path, and omits the trivial
subterms consisting of a single variable.

subterms 1 term = list (path x term)
subterms (Varv) =[] |
subterms (Func fa)=[(1] Funcfa)}+t list_subs a !

list_subs :: list term = list (path x term)
list_subsa =[(i:k, u)|i<f0.#a— 11,

(k, u) < subterms (a'li)]

The expression list_subs a returns the list of all the subterms of elements of the list
of terms a, labelling each with the element of a it came from.

As an example, here is a list of paths in the term f(f(x,y), h(a)) together with
the subterms at their ends:

(1 (G p), h(a))

(01 f(xy)
(11 h(a)
[1,0] a

If t is a term and k is a path inside it, replace t k u is the result of replacing the
subterm of f at the end of path k with the term u;

replace .. term = path -> term - term
replacet [Yu=u
replace (Func fa) (i:k)u
= Func f (update a'i (replace (a ! i) ku)).

A functional theory of exceptions 31

The function update is defined so that updateaiy is a copy of the list a with the
i'th element replaced by y:

update :: list @ > num - o - list «

update (x:a)Oy=y:a

update (x:a) (i+1) y=x:(updateaiy).
The definitions of both these functions can be cast in terms of composition rather

than application: these alternative definitions are stated here as laws, because they
will be useful in reasoning about programs later:

replacet []=id (6)
replace (Func fa) (i: k)

= Func f- update ai- replace (a !i) k (7)
update (x:a)0=(:a) (8)
update (x:a) (i+1)=(x:)- update ai. (9)

Here, (x:) is the function which maps a list a to x: a, and (:a) is the function which
maps an element x to x:a.

We shall not need to know much about substitutions, except that one term can
be matched against another to give a matching substitution or failure, and a
substitution can be applied to a term to give an instantiated term:

match :: term - term - maybe sub
subst :: term - sub - term.

For example, if 1 is the term f{ f(x, y), z) and u is the term f(f(a, w), f(w, b)), then
match t u succeeds with the substitution

s ={x—a, y—>w, z—f(w, b)}.

This substitution shows what to substitute for the variables of ¢ to get a copy of u,
and in fact substts=u. If v is the term f(x, f(y, z)), then substvs is the term
fla, f(w, f(w, b))): it is the result of rewriting u with the equation

S), 2) =A%, £y, 2)).

Substitutions might be represented by association lists of variables and terms, or
even by functions from variables to terms (see [3]), but the details are unimportant
here.

5. Rewriting

An equation like f(f(x, y), z) = f(x, f(y, z)) can be regarded as just a pair of terms:

equation == term X term.

32 M. Spivey

An equation asserts that its two sides are equal whatever the values of the variables.
This justifies the basic step of rewriting: using an equation as a rewriting rule from
left to right. We can express this idea as a strategy, or function from term to term
which may fail:

strategy == term — maybe term.

If ¢ is an instance of I, the expression rewrite (I, r) t returns the corresponding
instance of r; otherwise it fails. Here is the definition of rewrite:

rewrite .. equation - strategy
rewrite (I r) t = substr » matchlt.

The operator * has been used in this definition to avoid substituting into r if the
match of I with f fails. To continue the example, if e is the equation f(f(x, y), z) =
f(x, f(»,z)) and u is the term f(f(a, w), f(w, b)), then rewrite eu would succeed
with the result f(a, f(w, f(w, b))).

Two rewriting strategies can be combined so that the second one is tried if the
first one fails. This is achieved with the operator ?? on strategies:

(77) :: strategy — strategy - strategy
(rwl1 2?2 m2) t=rwlt?7rw2t.

An identity element for ?? is the strategy fail, which always fails:

fail :: strategy
fail t = Nothing.

A list of strategies can be combined by using the first one which succeeds. This is
the purpose of the function many_rules, defined by reducing the list of strategies
with 7%

many_rules :: list strategy - strategy
many_rules = ?/.

Of course, many_rules []= fail.

So far, we can rewrite a whole term with an equation, and we can try a list of
rewriting strategies until one succeeds. A third element of rewriting is the idea of
rewriting not just a term in its entirety, but also its subterms. If a subterm u of a
term t can be rewritten, then we can rewrite t by replacing the subterm u by its
rewritten form. This idea is expressed by the function inside, which takes a rewriting
strategy and applies it to subterms of a term 1, returning the result of replacing in
t the first one that can be rewritten:

inside :: strategy - strategy
inside rwt = ?/[replace t k ® rw u|(k, u) « subterms t].

As an example of the use of inside, suppose e is the equation a = b, where a and
b are constants: this equation would be represented by the pair

A functional theory of exceptions 33

(Func‘a’[], Func ‘b’ []). Let ¢ be the term f(x, g(f(a, y))). The expression
inside (rewrite e) t

calls for the equation e to be tried on each subterm of ¢ in depth-first order. In fact,
there is exactly one subterm where the left-hand side of e matches, the subterm a
at the end of the path [1, 0, 0]. The expression succeeds with the term f(x, g(f(b, y)))
obtained by replacing the subterm of ¢ at [1, 0, 0] with b.

The three parts rewrite, many_rules and inside can be put together in various ways
to make different rewriting strategtes. For example, here is a strategy which applies
a list of equations to a term, first trying each rule at the root, then trying each one
at the subterms:

reduce :: list equation - strategy
reduce = inside - many_rules - (rewrite *).

The function (rewrite *#) makes the list of equations into a list of strategies; these
are combined with many_rules to give a single strategy which tries the equations in
term. Finally, inside takes this strategy and applies it at each subterm.

6. Laws of list comprehension

In this section and the next are collected a number of laws expressed as equations;
this section contains general laws about list comprehension, and the next contains
more specialized laws about the exception-handling operators defined in Section 3.
The use of these laws in program transformation is illustrated in Section 8.

Most of the laws of list comprehension given here are simple translations of laws
from Bird’s theory of lists [1]. The advantage of stating the laws in terms of
comprehensions rather than in terms of mappings and reductions is that there is
less need to invent names for auxiliary functions introduced during derivations. The
first of law relates comprehension to the mapping operator *:

fra=[fx|x<al. (10)

This law can be used as the definition of comprehensions with a single generator:
[E|x < a] is defined to mean f * a, where f is defined by fx=E.

The following laws can be proved by translating them into laws about * using
(10). In these laws, the notation E1%5” means a copy of the expression E1 in which
the variable x has been replaced by the expression E2, provided there is no capture
of variables. If f is defined by fx=E1, then E1-7 is equal to fE2.

[E[x<[11=(] (11)
[E|x<[y]l=[E] (12)
[E|x<a+b]=[E|x<al+[E|x<b] (13)

[gE|x<a]=g*[E|x<a] (14)

34 M. Spivey

[E|x<f*al=[E|y<al] (15)
[El|x<[E2|y«a]]l=[E1."

yeual. (16)

Law (15) can be used to justify “changing the variable’ in a list comprehension.
Since [1..n]=(+1) % [0..n —1], it follows that

[E|lie[l.n]]=[E/"]j<[0.n—1]] (17)

(Here, (+1) is the function which adds one to its argument.)

If a is a list of pairs, [E|(x, y) « a] is often written for the list of values take by
E as x and y take as value the first and second components of successive elements
of a. This notation is made precise by the following definition:

[El(x,y)«a]l=[ELF" |z < al.

By use of this definition, all the laws of list comprehension can be extended to
include this notation.

As law (10) defines comprehensions with one generator, so the following law
defines those with two generators in terms of concatenation ++/:

[Elx<a;y<b]=+/[[E|y<b]l|x<al (18)

The nesting of the scope of y within that of x on the right-hand side of this law
reflects the fact that the second generator “varies faster” than the first.
Law (4) gives a result about reducing over a comprehension with two generators:

®/[E|x<a;y<b]=@/[®/[E|y<b]|x~al. (19)
Here is the proof:

®/[E[x<a;y<b]

= {(8)}
®/+/[[E|y < bl|x<a]
= {4}

®/(®/) *[[E|y <« bl|x<a]
= {(14)}
®/[®/[E|y<bl[x>al.

Also, law (5) allows law (16) to be generalized to the case where the inner compre-
hension has two generators:

[El\x(—[E2|y<—a;z<—b]]:[E152|y<—a;z<—b]. (20)

7. Laws of exceptions

In this section are collected some laws obeyed by the exception-handling operators
such as ? and e. The first two laws state that the operator ? is associative, and

A functional theory of exceptions 35

Nothing is a left and right identity element. Implicit appeal has already been made
to these laws in the use of the reduction ?/.

(x?2p)?2z=x72(y?2) (21)
Nothing ?x = x = x ? Nothing. (22)

Three important laws link the operator ® with ?, functional composition (-), and
the identity function:

fex2y)=(fex)?2(fey) (23)
(g-flex=ge(f*x) (24)
idex=x (25)

All three of these laws can be proved by a simple case analysis on x. As is common
when one operator distributes over another one, we adopt the convention that
binds tighter than ?, so that the right-hand side of law (23) could be written without
brackets. We also make e associate to the right, so that the right-hand side of law
(24) could be written without brackets also.

By abstraction, law (24) can be expressed as an equation between functions:

(g-flo=ge-fo. (26)
Law (23) generalizes to a list of arguments using the reduction ?/ and the mapping
operator *:

fe(a)y=1(fe)*a (27)

This law may be combined with law (14) about list comprehensions to give the
following result:

?LfeE|x<al=fe(?e|x<al). (28)

8. Improving the inside function

The function inside has a pleasingly direct definition, but it is rather inefficient,
because the process of searching for a subterm which can be rewritten is separated
from the replacement of that subterm by its rewritten form. A more efficient version
of inside would combine these two processes into a single traversal of the term. We
might regard the version above as a clear but inefficient specification, from which
a more efficient but more complicated implementation could be derived by transfor-
mation. The laws of list comprehension and exceptions make such a transformation
possible, as this section shows.

As a first step, let us examine the function list_rw, which searches a list of terms
for one which can be rewritten, and replaces it by its rewritten form. Here is a
specification in the style of the previous section:

list_rw :: strategy - list term > maybe (list term)
list_rwrwa="?/[updateaierw (ai)]i<[0.#a—~1]]

36 M. Spivey

If the list is empty, we may calculate as follows:

list_rwrw[]
= {definition of list_rw}
Y [update [1i®rw ([11i)|i<[]]
= {empty generator (11)}
/]
{(1),(22)}
Nothing.

il

So we derive
list_rw rw [] = Nothing.
If the list is non-empty, we calculate:

list_rwrw (x:a)
= {definition of list_rw}

?/[update (x:a)i®rw((x:a)!i)|i<[0.#a]]
= {splitoff i=0:(13), (12),(3), (2)}

update (x:a) 0o rw ((x:a)'0)

2(?/[update (x:a)ierw ((x:a)!i)|i-[1.#a]])
= {(8), definition of !, (17)}

(ta)erwx

2(2/[update (x:a) (j+1) e rw ((x:a) ! (j+1)]j<[0..#a—1]])
= {(9),(24), definition of !}

(ca)erwx

2(2/[(x:) » updateaj* rw (a!j)|j<[0.#a—1]])
= {(28)}

(ta)erwx

?(x:) * (?/[updateaj e rw (a!j)|j<[0.#a—1]])
= {definition of listz_rw}

(ca)erwx ?7(x:) e list_rwrwa.

We have derived another clause in a recursive definition of list_rw:
list_rwrw (x:a)=(Ca)erwx ?7(x:) e list_rwrwa.

Together, the two clauses we have derived are a recursive definition of list_rw.
Turning to inside itself, we consider first the case where the term being rewritten
is a variable:

inside rw (Var v)
= {definition of inside}

?/[replace (Varv) k » rw u|(k, u) < subterms (Var v)]
= {definition of subterms, (11)}

L)

A functional theory of exceptions

= {(1),(22)}
Nothing.

We derive
inside rw (Var v) = Nothing.
If the term is an application of a function symbol, we reason as follows:

inside rw (Funcfa)
= {definition of inside}

?/[replace (Func fa) k » rwu|(k, u) < subterms (Func fa)]
= {definition of subterms, (13), (12), (3), (2)}

replace (Funcfa)[] = rw(Funcfa)

?(?/[replace (Funcfa) k ® rwu|(k, u) < list_subs a])

We simplify the two parts of this expression separately. For the first part:

replace (Funcfa)[]® rw (Funcfa)
{(6)}

id ® rw (Func fa)
{(25)}

rw (Func fa).

Il

For the second part:

?/[replace (Funcfa) k » rwu|(k, u) < list_subs a]
= {definition of list_subs}

/[replace (Funcfa) k e rwu|(k, u) < [(i:j, u)|i<[0.#a—1];

(j, u) < subterms (a ! i)]]

= {(20)}

/[replace (Funcfa) (i:j)® rwu|i<[0.#a—1]; (j, u) < subterms (a ! i)]
= {7}

Y [(Funcf- updateai- replace (a !i)j)® rwu

li < [0..#a—11; (j, u) < subterms (a ! i)]
= {(24) twice, (28)}

Funcf e (?/[updateai s (replace (a 'i)j® rwu)

|u<[0..#a—1]; (j, u) < subterms (a !i)])

= {(19)}

Funcf e (?/[?/[updateaie replace (a 1i)j* rwu)

|(j, u) < subterms (a 'i)]|i < [0.#a—1]])

= {(28)}

38 M. Spivey

Funcf e (?/[updateai e (?/[replace (a i) j® rwu
|(j, u) < subterms (a ! i)])
li<[0.#a-1]])

= {definition of inside}

Funcf e (?/[updateai e insiderw (a !i)|i<[0.#a—1]])
= {definition of list_rw}

Funcf e list_rw (inside rw) a.

Putting the two parts together, we have derived:

inside rw (Func fa)
=rw (Funcfa) ? Funcf e list_rw (inside rw) a.

In summary, here is the code for inside which we have derived:

inside :: strategy - strategy

inside rw (Var v) = Nothing

inside rw (Func fa)

=rw (Funcfa) ? Funcf ¢ list_rw (inside rw) a

list_rw :: strategy — list term - maybe (list term)

list_rw rw [1= Nothing

list_rwrw (x :a)=(a)erwx ?(x:) e lisi_rwrwa.
It has been possible to derive this more eflficient version of inside thanks to the
algebraic properties of the exception-handling operators such as * and ?, which can
be expressed only by making the propagation of exceptions explicit. However, the

code can be translated into a language where propagation is implicit. It might be
translated as follows:

inside :: (term —> term) - term - term
inside rw (Var v) = fail
inside rw (Func fa)
=rw (Func f a) orelse Func f (list_rw (inside rw) a)
list_rw :: (term > term) - list term — list term
list_rwrw [] =fail

list_rwrw (x:a)=(rwx):a orelse x: (list_rw rw a).

9. The algebra of strategies

Rewriting strategies are one example of partial functions. More generally, a partial
function from a type « to a type B is a function in @ - mayvbe 8. Define a—f to

A functional theory of exceptions 39

be this type of partial functions:
a+—fB == w - maybe .

Rewriting strategies are elements of the type term+>term.
Two functions in a+ 3 may be combined with the associative operator 7?7, whose
definition we now generalize as follows:

(??) i (a=B) > (a=B) > (a—p)
(fMg)x=fx?gx

The operator ?? is analogous to the orelse tactical of LCF; as before, it has the
identity element fail, whose definition generalizes as follows:

fail :: a+—p
Jail x = Nothing.

Partial functions may also be composed with the sequencing operator ¢, analogous
to the tactical then in LCF. It is defined as follows:

() (Bey)=>(a=B)~>(ary)
geof=prop-ge- |

where prop is a function which propagates exceptions, merging the two failure
values Nothing and Just Nothing in the type maybe (maybe «). Here is its definition:

prop :: maybe (maybe a) - maybe a
prop Nothing = Nothing
prop (Just x) = Xx.

The following laws about prop can be proved by case analysis. Here is a law which
asserts the equality of two different ways of combining prop with itself to make a
function of type maybe (maybe (maybe a)) - maybe «:

prop - prop* = prop - prop. (29)
On the left-hand side of this equation, both occurrences of prop have type
maybe (maybe o) » maybe «; on the right, the first occurrence has this type, but the

second has type maybe (maybe (maybe «)) »> maybe (maybe «).
A second law shows how the ® operator interacts with prop. If f:a—p, then

prop-(fe)s=fs prop. (30)

These laws can be used to show that o is associative: if f:a+— 8, g:8+ v, and

40) M. Spivey

h:y+—3$, then
(heg)of
= {definition of o}
prop-(heg)e-f
= {definition of o}
prop- (prop-g®-g)* [

= {(26) twice}

prop - prope - (he)e-ge - f
= {(29)}

prop - prop- (he)e - ge - f
= {(30)}

prop- he - prop-ge - f
= {definition of °}
prop-he-(gef)
= {definition of o}
ho(gef).

This argument uses nothing but the definition of ¢ in terms of prop and e, law (26),
and the laws (29) and (30) about prop.

As we saw earlier, there is another model for exceptions in which maybe « is
identified with the type list @ lists of elements of a. In this model, the operator ¢
is the same as the mapping operator #, and prop is the same as ++/. Law (26) is just
the familiar law

(g-fre=gx-fx,
about *, law (29) is the same as law (5), and law (30) becomes
o (Y=]

This asserts the equivalence of two ways of flattening a list of lists into a simple
list. Both ® and prop can be defined in the list-of-successes model of exceptions,
and they satisfy the same laws as in the simpler model. In consequence, we can use
the same definition of the composition operator o, and the proof that it is associative
is precisely the same.

Category theory provides an explanation of why this works, because and prop
are two parts of a monad, a standard categorical concept. The third part of the
monad is the partial function succeed, defined in the simpler model by:

succeed :: a+>a

succeed x = Just x.

In the list-of-successes model, succeed is the function [-] which maps each object
x to the singleton [x].

A construction due to Kleisli [5] shows how to make a new category from a
monad, in which the arrows are analogous to our partial functions. Our definition

A functional theory of exceptions 41

of the composition operator ° is a copy of the definition of composition in the Kleisli
category, and the proof of its associativity is a copy of the proof in category theory.
There are also categorical proofs that succeed is a left and right identity for from
the laws:

prop - succeed ® = id = prop - succeed (31)
succeed - [= fe - succeed, 32)

each of which holds in both models for exceptions.

Many of the laws obeyed by the operators can be seen in categorical terms. Briefly,
the type constructor maybe is the object part of a functor from types to types; its
arrow part is the operator «. If f: a > B then f*: maybe o — maybe B, and laws (25)
and (26) state that » respects identities and composition as a functor should.
Operators such as ?, prop and succeed are natural transformations—see laws (23),
(30) and (32) respectively. The equations needed for (e, succeed, prop) to be a
monad are laws (31) and (29).

The composition operator e can be used to define a repetition operator for rewriting
strategies. The function repeat takes a function in a+>« and applies it repeatedly
until it fails. In the simple model of exceptions, the result is the last value obtained
before failure.

repeat :: (a+—a) > (a+a)
repeat f = (repeat f o f) 17 succeed.

A common application is to reduce a term to normal form with respect to a list of
equations. This is achieved by the function normalize, defined by

normalize :: list equation — term — term
normalize eqns t = u where Just u = repeat (reduce eqns) t.

It is quite safe to match the result of repeat with the pattern Justu, because if
evaluation of repeat (reduce eqns) t terminates at all, it must terminate in success.
Of course, reduction of the term ¢ may not terminate, in which case neither does
the evaluation.

In the list-of-successes model, repeat f x returns a list of all possible results from
applying f repeatedly to x. This list is the post-order traversal of a search tree with
x at the root, in which the immediate descendants of each node y are the results
of applying f to y, if any. If the search tree is finite, then it will have a post-order
traversal, and the first member of the traversal will be a leaf of the tree: in the
application to term rewriting, a normal form for the term.

10. Conclusion

Exceptions as a control structure need to be built in to a programming language,
and they prevent simple equational reasoning about programs. I have tried to show

42 M. Spivey

how a lazy evaluation strategy turns exceptions from a control structure into a data
structure, which can be defined within a functional programming language. There
is a small price to pay for this simplification, and that is the need to make explicit
in the type of a function the possibility that it will raise an exception, and to make
explicit in the program the way exceptions are propagated. I have tried to show by
example that the use of suitable higher-order functions on exceptions makes the
price seem tolerable.

The advantage bought for this price is the ease of reasoning about programs with
exceptions. Programs such as inside can be derived by rigorous transformation from
simple but inefficient specifications, and algebraic laws about exception-handling
functions can be established by rigorous mathematical argument.

Many of the operators on exceptions can be described abstractly using terminology
from category theory, and the two models for exceptions share a common categorical
specification. The proof of some of the algebraic properties of exception-handling
functions—for example, the associativity of the rhen tactical—is based on this
categorical specification, and so is independent of the model chosen. More generally,
many of the laws in Bird’s “‘theory of lists” [1,2] can be seen as asserting that
various categorical constructions are functors, natural transformations, adjunctions
and so on. I work out some of the details of this view of lists in the paper [8].

Acknowledgement

I'am grateful to Richard Bird and Phil Wadler for their wise advice and generous
encouragement, and to Oriel College, Oxford, Rank Xerox (UK) Ltd., and the
Science and Engineering Research Council of Great Britain for financial support.

References

[1] R.S. Bird, An introduction to the theory of lists, in: M. Broy, ed., Logics of Programming and Calculi
of Discrete Design (Springer, Berlin, 1987) 3-42.
[2] R.S. Bird, A culculus of functions for program derivation, Tech. Monograph PRG-64, Oxford
University Computing Laboratory, Oxford (1987).
[3] R.S.Bird and P.L. Wadler, An Introduction to Functional Programming (Prentice-Hall International,
Hemel Hempstead, England, 1988).
4} M. Gordon, R. Milner and C. Wadsworth, Fdinburgh LCF, Lecture Notes in Computer Science 78
(Springer, Berlin, 1979).
[5] S. MacLane, Categories for the Working Mathematician (Springer, Berlin, 1971).
[6] L.Paulson, A higher-order implementation of rewriting, Sci. Comput. Programming 3 (1983) 119-149.
[7] L. Paulson, Logic and Computation (Cambridge University Press, Cambridge, 1988).
[8] J. M. Spivey, A categorical approach to the theory of lists, in: Proceedings International Conference
on Mathematics of Program Construction, Enschede, Netherlands (1989).
[9] D. Turner, An vverview of MIRANDA, SIGPLAN Notices (1986).
[10] P. L. Wadler, How to replace failure by a list of success, in: J.-P. Jouannaud, cd., Proceedings
Second International Conference on Functional Programming Languages and Computer Architecture,
Lecture Notes in Computer Science 201 (Springer, Berlin, 1985).

