
Chapel Specification 0.4

Cray Inc
411 First Ave S, Suite 600

Seattle, WA 98104

February 4, 2005

1 Overview

This document is a working definition of the Chapel programming language.1

It covers the fundamental elements at an intuitive level rather than formal
one, with some rationale for choices that we have made.

The overriding goal of Chapel is to provide a language that bridges be-
tween algorithm development and production deployment within the domain
of high-performance, parallel computing. This means that while incorporat-
ing many aspects of modern programming practice from the broader market,
some special features are needed and some compromises are made to ensure
high-performance can be achieved without reverting to a low-lever language.

To accomplish the broad goal above, Chapel strives to improve program-
mer productivity with the following techniques:

Locality-aware Multi-threading The target machine for Chapel is a par-
allel system with any number of processors, all of which have the same
functional access to program state. Programmers are responsible for
describing the available concurrency in their program, but the system
will manage the details of implementing that work for specific environ-
ments. This is frequently called a multi-threaded programming model.
This model is then augmented with a notion of locale that supports ex-
pression of the affinity between computations and the data they access.

1 This language is part of the Cascade Project at Cray Inc. funded by DARPA Contract
No. NBCH3039003 as part of their High Productivity Computing Systems initiative.
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The expectation is that there is a performance advantage by exploiting
this affinity. We call this locality-aware multi-threading. This concept
represents the consensus view of high-performance system architecture:
multiple processors with non-uniform access to system memory, and
higher local memory bandwidth than global memory bandwidth.

The locality-aware multi-threaded programming model has significant
advantages over existing programming models by removing from the
programming model the need to manage processors explicitly. In Chapel
the more abstract, problem-oriented concepts of concurrency and affin-
ity are the concerns of the programmer. The assumption of a global
name space for program state frees programmers from explicit manage-
ment of communication in a system with physically distributed memory
while retaining the ability to express the affinity necessary to minimize
such communication. The multi-threaded model further provides a
mechanism to tolerate latency of remote memory accesses via concur-
rency although not all architectures can efficiently exploit this capabil-
ity.

New concepts in Chapel are the domain and its distribution to locales.
These are tools to describe collections of problem data and their de-
composition onto physically distributed memory. These are integrated
into control constructs to allow convenient description of distributed
computation.

Generic Programming High-productivity requires that software compo-
nents be reusable. This is often at odds with the stringent performance
requirements of high-performance computing where data structures are
often intertwined with algorithms in ways that make adapting them to
new contexts difficult. Chapel will mitigate this problem by adding lan-
guage concepts to abstract primary aspects of data structures to allow
algorithms to be expressed in a generic manner and then automatically
customized to context-specific data structures choices. Chapel specifi-
cally looks at three aspects of data structures and provides abstraction
tools:

Type Variables Many data structures implement generic concepts
parameterized by the type of element they manipulate. Chapel
allows program fragments to be parameterized by variable type.
Rather than relying on dynamic polymorphism to support this,
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Chapel specializes the fragments to specific bindings of type vari-
ables. This way Chapel programs enjoy the traditional benefits of
compile-time type checking, both for error checking and for higher
performance, without sacrificing expressiveness. This mechanism
augments popular object-oriented techniques to allow parameter-
ization of behavior.

The power of type variables is amplified by using a structural no-
tion of type for function parameters. In this model, any data ob-
ject can be used as an actual parameter to a function as long as the
types of its component fields are consistent with the constraints
on type variables specified by the function. This differs from types
systems like Java where subtype relationships are related to the
specification of the object. Chapel provides syntactic tools for
constructing derived types that support this typing model.

Iteration Over Sets A major use of data structures is to describe
ordered sets of values and to control the iteration over these sets.
In Chapel, there is language support for such sequences both as
a derived type constructor and with special control constructs
to allow clean separation of data structure traversal from client
algorithm code that is only interested in the generated sequence
of values. This extends the generic programming by abstracting
from the details of data structures to the concept of iteration.

Mapping Values to State Variables The second major use of data
structures is to implement mappings from sets of values to associ-
ated state variables. This concept encompasses both Fortran-style
multi-dimensional arrays as well as more explicitly programmed
data structures that implement various kinds of dictionaries, some
times called associative arrays. Chapel builds on the array con-
cept and extends it by generalizing the kinds of values that can
be used as “subscripts”.

The sequence and array concepts are integrated with the generic pro-
gramming techniques to allow application-specific specializations for
performance-critical kernels.

This specification is separated into the following major chapters which
describe orthogonal features and gradually introduce new concepts not com-
monly found in standard languages.

3



Base Language Features We first describe a number of standard pro-
gramming concepts common to most imperative languages. This in-
cludes primitive types, expression syntax, statement syntax, function
definition, function invocation and function closures. Our goal is to
build on existing concepts when appropriate, so many aspects, such as
the detailed behavior of floating point arithmetic, are discussed only
briefly. This does not reflect indifference but merely our focus on prob-
lems more in need of attention and new language support. Where we
omit details now, the reader should assume that they will be filled in
later based on existing practice.

Structured Types We expand on the primitive types by adding rules for
construction of structured types. This supports both the structural
typing discussed above but also the object-oriented paradigms.

Sequences and Iterators Chapel’s sequence data type is an ordered se-
quence of values of some base type. A special function form called
an iterator provides a convenient bridge between simple sequences and
more complex data structures.

Type Unions Type unions are a derived type that permits variables to hold
a more heterogeneous collection of values. Chapel provides type-safe
unions by permitting access to values only after the specific component
types have been resolved.

Type Parameters and Determination We introduce the notion of type
variables and the rules for determining the types of data variables from
usage. The rules for function invocation and the resolution of over-
loaded functions are defined. While type variables provide a form of
polymorphic program specification, we expect programs to be com-
pletely type checked at compile-time. As with C++ templates, we will
instantiate specialized function and type definitions as needed to resolve
types so that the only “method dispatch” from the object-oriented sub-
language and explicit type tests remain as runtime costs.

Domains and Arrays The Chapel domain describes a collection of names
to which data can be associated. An array is a mapping from a domain
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to a collection of variables2. These concepts generalize Fortran-style
multi-dimensional arrays as well as various kinds of dictionaries.

Parallelism and Synchronization Chapel is an explicitly parallel language
with additional control constructs to identify concurrent sub-computations
and features to coordinate those computations. Chapel also defines a
simple mechanism to facilitate multi-word updates against shared data
structures.

Locales and Distribution The Chapel memory model incorporates a no-
tion of locale that reflects the distributed nature of large scale com-
puters. Both data and computation can be associated with locales.
Chapel provides a mechanism to allow domains, and thereby the ar-
rays defined over them, to be decomposed across locales. The Chapel
programming model presumes a performance advantage to co-locating
data and computation in the same locale but does not require this in
the definition of the behavior of primitive operations.

Aggregate Expressions Chapel extends the base expression interpretation
to allow element-wise operation on data aggregates in the form of arrays
and sequences. The element-wise operator set is extended with special
operators on aggregates that effect ordering and perform reductions and
recurrences. All of these operations are implicitly parallel and interact
with the locality and distribution aspects of the language.
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2 Base Language Concepts

This section describes concepts common to most imperative languages. These
include literal constants, expressions, primitive types, variable declarations,
statements, function definitions, function invocation, function closures and
modules. Later sections will describe derived types such as records, classes,
sequences, and unions. We provide an incomplete description with the un-
derstanding that definitions will evolve as the language matures.

2.1 Requirements

The base language must allow the basic data types and operators standard
in programming languages in familiar ways. We choose to use an imperative
language as a base rather than a functional or declarative language because
it is more straightforward to make performance guarantees.

Beyond this basic framework we have some additional requirements:

1. Allow type information to be omitted to allow generic interpretation.
This means we need to be able to specify scoping for variables without
specifying type. This include function arguments, results, and fields in
derived types. However, it should be possible to specify explicit types
to facilitate clarity of interfaces.

To further the goal of productivity, we have additional targets:

1. Support strings as a primitive data types, and provide built-in mecha-
nisms to convert between other types.

2. Support automatic storage management, and provide options for man-
ual storage management.

3. Support name-space management, appropriate for large programs.

2.2 Reading Chapel

Some broad guidelines to reading Chapel are:

1. Curly braces (“{}”) delimit structure for both complex type definitions
and compound statements. Each such occurrence usually defines a
lexical scope.
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2. The scope of a symbol is typically the entirety of an enclosing scope.
In particular, a function name can be used before it is defined and
function definitions can have free variables, which are defined later in
an enclosing scope.

3. The colon operator, “:”, introduces type designators. Where a type is
easily determined from context, the designator is optional.

4. The operator “=>” indicates that the right operand is not fully eval-
uated. This can be used to generate an alias for a variable or for a
subset of an array’s range. It can also be used to curry a function.

5. The token “_” serves as a wild card in contexts where a symbol, type,
or expression is omitted but must be accounted for positionally.

6. Classes and method invocation are largely similar to C++ using oper-
ator “.” with an object instance as its left operand and a field name
as its right operand.

7. The keyword “do” is optional in many contexts where visual separation
between an expression and a following statement improves readability.

8. The keyword “nil” defines an undefined value or an empty object.

The table in Figure 1 on page 17 lists the operators used in expressions
and Figure 3 on page 39 summarizes the statement syntax.

Notation In the following text, examples will use a fixed width font

for literal tokens, operators, and keywords. Italics inside angle brackets,
e.g., “〈term〉”, denote a lexical token like a symbol or a non-terminal that
can be replaced with some multi-token expansions. Square brackets, e.g.,
“[〈term〉]”, denote optional terms. A list of one or more terms is indicated
by following the term with an ellipsis inside brackets (“[...]”). If the list has
a separator such as a comma, that is added inside the brackets and before
the ellipsis, as in “[, ...]”.

2.3 Program Structure

A Chapel program is organized as a collection of named modules. Each mod-
ule associates symbols with types, variables, and functions. The syntactic
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entities that specify these associations are called declarations. The bodies
of functions can have additional declarations but also include sequences of
statements that define the behavior of that function. We say declarations
that are not inside a function are “at module scope”. Statements that are
not declarations generally appear only inside of function bodies are referred
to as executable statements.

Executable statements specify changes in program state by altering values
stored in variables, and they control the sequencing of these state changes.
The description of new values is through the use of standard infix notation to
build expressions from literal constants, variables, and function invocations.
This base is augmented in later sections with extensions for dealing with
sequences.

2.4 Lexical Elements

The lexical structure of Chapel is similar to most conventional languages
with operators modeled after C and Fortran.

White Space White-space characters are spaces, tabs and newlines. Aside
from delimiting other lexical elements, they are largely ignored.

Symbols Symbol characters include upper and lower case letters, digits,
and the characters $, ? and _. The character ? is also an operand and
so cannot begin a symbol. By convention, we use ? at the end of a
symbol to indicate a side-effect free function that returns a boolean
value. 〈symbol〉 denotes a string of symbol characters.

Operators and Grouping Remaining characters form one and two-character
operators:

+ - * / ** arithmetic
== != < <= > >= comparison
^ ~ & | bitwise
# .. sequence
= => : ; , _ other

and grouping tokens:
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{ } structures and statements
( ) tuples, argument lists
[ ] iteration specification
(/ /) sequence constructor

Comments Non-semantic comments begin with either “--” or “//” when
they are not inside a string literal and continue to the next newline
character. The token “/*” begins a comment that ends at a matching
“*/” which may not be inside a nested comment or a string literal.
Aside from separating other tokens, comments are ignored.

Reserved Words The following symbols are reserved as keywords and op-
erators3.

and array atomic break call

class cobegin config const constructor

continue distribute do domain enum

except expect for forall function

goto if implements in inout

invariant iterator let like local

module nil not or otherwise

out parameter private private public

release repeat return select subtype

to type typeselect union until

unordered var view when where

while with yield

Reserved words that begin with an underscore (“_”) are for optimiza-
tion and can be removed from the program without affecting the in-
tended interpretation of a program.

2.5 Primitive Types and Literal Constants

Arithmetic Types Chapel supports a number of bounded range integer
types with the standard two’s complement representation. They are charac-

3This list is rather long. How hard would it be to make some of the words reserved
only in context?
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terized by a byte-width k and can represent integers in the range of −28k−1

to 28k−1 − 1 inclusive. The default width is 8 bytes.4

Integer constants are represented by strings of decimal digits, a string of
hexadecimal digits prefixed with 0x, or a string of binary digits prefixed with
0b. The strings are interpreted in the usual positional manner for bases 10,
16 and 2 respectively. Alternate literals for integer value 12 are this: 12, 0xc
or 0b1100.

There is no unsigned integer type and no shift operators. Instead, pre-
defined shift functions (page 153) implement left shift as well as signed and
unsigned variants of right shift.

Chapel’s floating point arithmetic follows the IEEE 754 standard. Again
there are various sizes of representation characterized by a byte-width. The
default width is 8 bytes.

Floating point constants must include a single decimal point at any place
and/or be followed by a suffix beginning with e, an optional + or -, and then
a required integer constant. The suffix indicates scaling by 10 raised to the
power of the signed integer value. For example, 6.673e-11 represents the
value 6.673 multiplied by 10−11.

Chapel also supports complex data types following the usual Cartesian
representation consisting of two floating point numbers. The representation
width of each of those floating point numbers is half of the representation
width of the complex type. An imaginary complex literal is represented by
adding a “i” as a suffix with no intervening white space. Examples are: 12i,
45.2i, 0.45e12i. A real complex literal can be formed by converting a real
literal to a complex (14.0:complex) or implicitly by adding an imaginary 0
(14.0+0i).

These arithmetic types are designated by the predefined symbols integer,
float, and complex. Each of these can be modified with an explicit size
value, for example integer(4) or float(size=4) that specifies the repre-
sentation width.

Representation width of arithmetic literals is the larger of the default
width or the smallest width that can represent the value. This may be
adjusted by following the literal with : and a type designator that identifies
a primitive arithmetic type. For example, a 4-byte floating point constant

4The choice of 8 here assumes that by 2010 64-bit processors will be the norm. However,
it is still not clear that 4-byte integers are not the right default. The usual motivation is
to index large tables but we could have a different default width for integer domain indices
than for vanilla integers.
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could be specified as 1.5:float(4).

Boolean Type Chapel defines a boolean data type designated by the sym-
bol boole with two predefined values, true, and false. Comparison opera-
tors return boolean results, logical operators have boolean values for operands
and results, and some statement contexts require boolean values.

String Type Chapel supports strings of unbounded extent as a primitive
type designated by the predefined symbol string. Chapel has no separate
character type for the special case of strings of length 1. String literals are
represented as in C using " as a delimiter and using \ as an escape charac-
ter. Single quotes, ’, may be used as an alternative to " where convenient.
Standard C conventions apply for representing non-printing characters such
as \n for ASCII newline.

Strings are defined over one of a number of system defined alphabets.
The symbol ASCII is associated with the ASCII standard encodings to 7-
bit values stored in bytes. In the initial implementations strings default to
string(alphabet=ASCII). The construction

10:ASCII

will convert an integer to a one-character string according to the encoding
rules of the associated alphabet. A predefined function is used to map a one-
character string back to the integer value based on the underlying alphabet.

Enumerated Types As in C, an enumerated collection of symbols defines
a type. The syntax is the same as in C. Each symbol has an associated
integer value and may be used anywhere an integer can. For example:

enum ExprTypes { ADD, MUL, DIV, NEG=-1 }

Here ExprTypes is the designator for the type and the other symbols, like
ADD, can be used as literal values of this type.

2.6 Expressions

Chapel expressions consist of a number of primitives plus a number of prefix
and infix operators. This is extended with a general notion of function invo-
cation described later. The precedence of operators is given in the table in
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Operator Purpose Operand Types
:, like conversion
. field selection
** exponentiation arithmetic
~ bitwise complement integer
+,- unary additive arithmetic
*,/ multiplication arithmetic
+,- addition string or arithmetic
& bitwise conjunction integer
^ bitwise exclusive-or integer
| bitwise disjunction integer
<, <=, >, >=, ordered comparison any, result boole
==, != equality comparison any, result boole
not boolean complement boole
and conditional conjunction boole
or conditional disjunction boole
# sequence concatenation sequence types
if, let
[ ] iteration any
, list separator

Figure 1: Operator Precedence. Operators listed earlier have higher prece-
dence than those that are listed later.
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Figure 2: Type Conversions. Solid arrows indicate implicit conversions that
may be performed when operators have different operand types or when
a value is assigned to a variable. Only one implicit conversion is allowed
so boole may not be implicitly converted to float. Dashed arcs indicate
conversions that are legal when a boolean value is required by a statement.

Figure 1. Earlier operators have higher precedence. Except for exponentia-
tion, amongst operators of equal precedence, operations are left-associative
so a+b+c is interpreted as (a+b)+c. Exponentiation is right-associative.

The interpretation of operator symbols is subject to the types of the
operands, except where those operations are values of primitive types de-
scribed above. Then default interpretations are defined by the language.
Chapel adopts normal interpretation following the current C, Fortran and
IEEE floating point standards with clarifications stated here. Chapel defines
that within an expression operand terms are evaluated left to right.

Generally the result type of an expression involving primitive types will
be the same as the operand type. The conversion and comparison operators
are an exception to this. The conversion operator is an infix operator whose
left operand is a value and whose right operand is a type designator. The
type of the expression is the specified type. The result of a comparison of
primitive types is a boole.

Generally, we expect the operands of binary operators to agree in both
kind and representation width. When they disagree, the smaller operand
is first converted to the representation width of the larger. Types are then
implicitly converted according to the solid arrows in Figure 2. Booleans are
converted to integers by mapping true to 1 and false to 0. Booleans are
mapped to strings as "true" and "false" respectively. Enumeration values
can be converted directly to strings in which case they are represented by their
symbolic names. Thus ADD:string is the same as "ADD". For conditional
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boolean operators and other contexts that require a boolean value, integers
are converted to boolean by mapping 0 to false and non-zero values to true.
Strings can also be mapped to boolean where the empty string and the string
"false" map to false and all other strings map to true.

The above conversions are collectively called standard promotions. Con-
versions that do not correspond to a solid arrows in the diagram require an
explicit conversion operator. The dashed arrows represent implicit conversion
to boole when required for statements that require boolean values.

Integer division is defined as returning the floor of the corresponding real
result.

The operator + is used to indicate string concatenation as well as addition
for the arithmetic types.

The boolean operators and and or evaluate the left operand and then
only evaluate the right operands if the left is true or false respectively.

The representation of arithmetic types is not generally visible to the pro-
grammer. There are be predefined functions to support converting between
floating point and integers values of the same representation width without
changing the bit-level representation. These provide access to the low-level
representation of the floating point numbers.

Conditional Expressions The construction

(if 〈expr1 〉 then 〈expr2 〉 else 〈expr3 〉)

is also an expression. The parentheses are required in this expression.5 The
first expression is evaluated as a boolean and selects either the second or
third expression. The unselected expression is not evaluated. The result
types is the type corresponding to applying default promotions to 〈expr2 〉
and 〈expr3 〉.

Let Bindings A let expression associates a symbolic name with an in-
termediate result in an expression. The syntax involves a list of variable
bindings and an expression:

let 〈binding〉 [, . . .] in 〈expr2 〉

where each 〈binding〉 has the form

5There is a syntactic ambiguity when the first token in a statement is an if. Is it an
expression statement or an if-statement?
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〈symbol〉 [:〈type〉] = 〈expr1 〉

where 〈expr1 〉 is evaluated and its value associated with 〈symbol〉 for the
balance of the expression. When 〈type〉 is specified, the standard promotions
are applied to 〈expr1 〉 when the value is not the same as 〈type〉. When a list
of bindings is specified, expressions can refer to earlier symbols, as in:

let x:float = a*b, y = x*x in 1/y

The value determined by a*b is computed and promoted to a default float if
it is not one already. The square of that value is stored in y and the result
of the expression is the reciprocal of that value.

2.7 Statements

The statement sub-language allows for declaration of variables, types and
functions and the sequencing of program execution.

Declarations They keyword var is used to introduce a new variable that
can hold values of some specific type. The basic syntax is:

var 〈symbol〉 :〈type〉 [= 〈expr〉];

where 〈type〉 is a type designator indicating the types of values stored in
the variable. The optional initializer clause specifies the value stored in the
variable when it comes into scope. The term 〈expr〉 is an expression that
evaluates to a value of the designated type or an arithmetic value that can
be converted to that type by default promotion. Scopes and variable lifetimes
are discussed later but the basic rule is that the scope of a variable begins at
the point of declaration and continues to the end of the lexically enclosing
context.

In general, var can be followed by a comma-separated list of declarations.
For example:

var x :integer = 4, y :float = 2*x, z :float;

Initializer terms are evaluated left-to-right so the value of x in the initializer
for y is 4. (See discussion in section 2.15.1).

The keyword const can be used before or instead of the keyword var

Such a declaration requires an initializing expression and is an assertion that
that variable may not be modified.
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const var NUM DIMS :integer = x+y;

The keyword parameter can be used before or instead of the keyword var.
A parameter must be bound to a compile-time known value. If a parameter
has an initializing expression, that expression will be evaluated at compile
time and there will be restrictions on the subset of the language that can be
used in that expression.

parameter PRECISION = 4;

var x :float(size=PRECISION);

The representation width of arithmetic types is an example of a value that
must be specified as a parameter.

The keyword config can be used before or instead of the keyword var

for declarations at module scope. This identifies a set of variables whose
initial value can be specified via implementation dependent means, such as
command line switches or environment variables. Such variables may also
have initializers which are evaluated only if no value is specified from the
environment.

config var logfile :string = "logfile";

The var is optional here and keyword const may also be used. There will
also be facilities to read and write configuration data into and out of files.
A config variable can be also be a parameter indicating that its value is
determined at compile time under the influence of compilation switches or
other aspect of system environment. Examples might be:

config parameter target :string = "Mac OS X";

config parameter debug level :integer = 0;

A symbolic name can be associated with a type with the construct

type 〈symbol〉 :〈type〉 [= 〈expr〉]

and then 〈symbol〉 may be used as synonym for the specified type expression
for the balance of the current scope. Again, a comma-separated list of such
bindings may follow the type keyword. When an 〈expr〉 is present, that
expression is evaluated once and then becomes the default initial value for
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variables of the specified type. When 〈expr〉 is the keyword nil then this
removes the default value from 〈type〉 for declarations that refer to 〈symbol〉,
causing such declarations to remain uninitialized.6

When the 〈type〉 term has parameters such as a representation width,
those will be bound to default values by this declaration unless they are
made explicit parameters. For example:

type int(bitsize:integer) = integer(size=(bitsize+7)/8);

This defines the symbol int as a parameterized type that corresponds to in-
tegers where the representation width is described in bits rather than bytes.7

The above type declarations simply provide a symbolic name for a type
specification. If the subtype keyword is used instead of the type keyword,
then a new type is identified: A value that has subtype 〈symbol〉 can be used
anywhere a value of type 〈type〉 is needed, but to convert a value of 〈type〉
to have type 〈symbol〉 requires an explicit conversion. For example:

subtype Index = integer;

var i :Index = 4:Index;

Here every Index is considered an integer, but to convert integers to Index

values requires explicit conversion. This relationship is called a nominal
subtype.

A type can be also specified by the syntax like <v> where 〈v〉 identifies
a variable. This expression can equivalently be written as : <v>.type where
.type identifies the type of an arbitrary expression which is not actually
evaluated. These constructions can be used in declarations:

var x like y;

and in type conversions: (a+b) like y . The like operator has the same
precedence as “:”.

6Let’s consider alternatives to nil in this context.
7Since the size symbol for integer has parameter attribute, we can infer that bitsize

also has that attribute. We probably do not need to be explicit about this.
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Block In Chapel, a 〈block〉 is a statement or list of statements that forms
a separate scope. Within the block, symbols bound to program entities such
as variables and types are distinct from other such bindings of the symbol
in other parts of the program. Blocks can nest, in which case bindings of
symbols in the inner block have precedence over those of outer blocks for
references inside the inner block. When “〈block〉” appears in the syntax
descriptions below, it indicates a statement that is in a separate scope.

Assignment Statements Assignment statements combine a variable ref-
erence with an expression. The expression is evaluated and the value stored
in the variable. Subsequent references to the variable in expressions return
the new value until it is redefined, as in this example:

〈var〉 = 〈expr〉 ;

Default promotions may be applied if the type of value determined by 〈expr〉
is not the same as that of 〈var〉. The semantics of assignment for more
complex types will be discussed as they are introduced. In general, 〈var〉 can
be a computation, in which case that computation is generally done after
〈expr〉 is evaluated.

Given some type t, we say another type t′ conforms with t if values of
type t′ can be promoted to type t or assigned to a variable of type t without
an explicit conversion operator. A stronger relation is that t′ is a subtype
of t, which means that values of type t′ can be stored in variables of type t
without conversion.

In addition to simple assignment, Chapel supports the compound assign-
ment operators similar to C adjusted for Chapel’s operator set: +=, -=, *=,
/=, **=, &=, |=, ^=, and #=. These operators evaluate the value expression,
the location of a variable, and then read the value from the variable, per-
form the specified operation and store the value back to the variable. Any
computation that can be performed to determine the variable is performed
exactly once. The same type promotion rules apply to the value as in simple
assignment.8

Expression Statements An expression that is evaluated for side-effects
against variables can be a statement. It has the following syntax:

8If the operator is overloaded, then the corresponding instance of the operator as de-
termined by the types of the operands is invoked. The application does not separately
overload += once an overloaded definition of + is defined.
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[〈expr〉] ;

The expression is optional which means a lone semi-column is also considered
a statement.

Compound Statements A compound statement is a sequence of state-
ments. These statements are delimited with braces, { and } and are executed
in order. The following compound statement consists of three component
statements.

{
var x :integer;

x = 4;

y = x;

}

When a compound statement is used as a 〈block〉, then symbols bound
by declarations in the statement list are scoped to just this list. The variable
x above is a variable of default integer type. The scope of this variable is
limited to this compound statement and is distinct from all other variables
in the program. Variable y must be declared in an outer scope.

If-Statements The if statement has a guard expression and one or two
controlled statements, as shown here:

if 〈expr〉 [then] 〈block1 〉
[else 〈block2 〉]

To evaluate this statement, the guard expression is evaluated and converted
to a boolean value if necessary. If the value is true, then 〈block1 〉 is executed,
otherwise 〈block2 〉 is executed, if present. Control then continues with the
statement following the if. As in many languages, there is a syntactic am-
biguity when the 〈block1 〉 is also an if. Chapel follows the common practice
of associating a “dangling” else with the nearest preceding if without an
else.

Label and Goto Any statement can be prefixed by a label definition of
the form:

24



label 〈symbol〉 〈statement〉

This associates 〈symbol〉 with the control point. That symbol may only be
used in a goto, break, or continue statement. Unlike many constructs,
label does not introduce a scope boundary.

The goto statement has this syntax:

goto 〈symbol〉;

This transfers control directly to the statement associated with the symbol.
The scope of this binding is the innermost containing function definition.

There are restrictions on where branching can occur. In the base lan-
guage, branching cannot cross a function definition boundary. Additional
restrictions will be described later.

Loops, Break, and Continue Two serial loop constructs have the form:

while 〈expr〉 [do] 〈block〉

and

repeat 〈block〉 until 〈expr〉;

In both forms, 〈expr〉 evaluates to a boolean value which determines whether
〈block〉 is executed. In the first form when 〈expr〉 evaluates to false, control
continues with the statement that follows the loop. In the second form,
〈block〉 is executed once unconditionally, and then when 〈expr〉 evaluates to
true, control continues with the statement that follows the loop.

Another loop form will be introduced after we have introduced sequences
in Section 5 and its parallel variant in Section 9.

The statement break transfers control immediately to the same point as
when 〈expr〉 evaluates to false of the innermost containing loop. Similarly,
the statement continue transfers control immediately to the point just be-
fore evaluation of 〈expr〉 of the innermost containing loop. Both break and
continue can be followed by a 〈symbol〉 that is a label prefixing and enclos-
ing loop. In this case the interpretation is to exit all intermediate loops and
then exit or continue the identified loop, as in this example:
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label outer

while (〈e0 〉) {
〈statement0 〉
label inner

repeat

〈statement2 〉
if(〈t0 〉) break;

if(〈t1 〉) continue outer;

until (〈e1 〉)
〈statement1 〉

}
〈statement2 〉

If 〈t0 〉 evaluates to true, then control exits the innermost loop and contin-
ues with 〈statement1 〉. The “break;” could be also be written as “break
inner;”. If 〈t1 〉 evaluates to true, then control returns to the next iteration
of the outer loop and evaluates 〈e0 〉 to determine if execution continues with
the loop body or 〈statement2 〉.

Select Statement The select statement provides a multi-way variant of
the if statement. Here is the syntax:

select 〈expr〉 {
〈case〉 [ . . .]

}

where each element 〈case〉 has the form:

when 〈case values〉 [, . . .] [do] 〈statement〉 [ . . .]

or

otherwise 〈statement〉 [ . . .]

Let t denote the type of the expression 〈expr〉. The term 〈case values〉 is
a common separated list of expressions that can be compared to a value of
type t using operator “==”. The first case clause that contains an expression
where that comparison is true will be selected and control transferred to
the associated list of statements. For both when and otherwise clauses, the
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associated list of statements is considered as separate 〈block〉 and hence a
scope. After evaluation of this list of statements is complete, control con-
tinues with the statement following the select statement unless changed
by explicit branch. Each list of statements is a separate scope for variable
declarations.

2.8 Functions

Definitions and Invocation As in most languages, Chapel allows the
action of a sequence of statements to be abstracted into a function. This is
the basic definition:

function 〈symbol〉 [(〈param〉 [, . . .])] [:〈type〉]
〈block〉

The term 〈symbol〉 is the name of the function. The term 〈type〉 describes
the type of values returned by the function. 〈block〉 describes the actions of
the function and is called the body of the function. When the return type is
omitted, the function can be evaluated only for side-effects and not return
any value.

Function definitions may appear at the top level of the program or may
be nested inside any 〈compound statement〉. The association of this function
with 〈symbol〉 follows the same basic scoping rules as variable declarations
accept that the binding holds for the entire enclosing context rather than from
the point of declaration to the end of that scope. Variable references inside
a function definition and not bound to local declarations are free variables
and are resolved against enclosing scopes statically.

The parameter list is an optional, comma-separated list of variable dec-
larations of the form:

[〈intent〉] 〈symbol〉 :〈type〉 [= 〈expr〉]

Each of these symbols is called a formal argument of the function. Here
〈intent〉 is one of in, out, inout, or const and if omitted defaults to const.
The symbols defined on this list are treated as variable declarations in a
〈compound statement〉 and their scope is the entire function definition.

A function invocation is a expression where the name of a function is
mentioned followed by a parenthesized list of actual arguments, as follows:
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〈fun expr〉(〈actual param〉 [, . . .])

Generally, 〈fun expr〉 is an expression that evaluates to a function value. A
function that has no arguments may be invoked simply by using its name or
with a empty list of actual parameters, such as:

function next prime { ... };
p1 = next prime;

p2 = next prime();

Both statements invoke function next_prime and store the result in a vari-
able.

In the common case, each 〈actual param〉 is an expression or a variable.
When the corresponding formal argument does not have intent out, then the
argument is evaluated to a value and arithmetic promotions performed if the
type of the expression differs from the type of the formal. The values are
assigned to new instances of the formal arguments and control is transfered
to the body of the function.

An intent attribute of out and inout indicates the value in the formal
argument variable are copied back to the actual arguments when control
transfers back to the invoking context. This implies the actual arguments
must be variables of suitable type.

The intent value const is similar to in but further prohibits assignments
to the associated variable.

Actual arguments can also be specified using a keyword notation. For
example:

f(x=4, y=10)

where x and y are the names of formal arguments of the function associated
with symbol f. Keyword-style binding allows argument values to be specified
and evaluated in any order. Positional and keyword arguments can be mixed.
The list of formal arguments not bound by keywords and respecting their
original order are bound to the positional arguments.

A function can return a reference to a variable. This is indicated by
using the syntax ref(〈type〉) to indicate a variable of the indicated type is
returned. For example:
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function f(...) :ref(integer) ...

The function f returns a reference to an integer. The value of a function
invocation would normally be the value stored in that variable, thus f(...)+1
would evaluate to one added to the value in the variable returned by the
function. Such a function may also be used as the target of an assignment
or the right operand of a reference assignment, as follows:

– store 4 into the variable returned by f
f(...) = 4;

Default values In addition to intent and type, a formal argument may
specify a default value, as follows:

function f(x :integer = 4, z:integer) ...

Here 4 is an example of a default value. If no value is specified for x when the
function is invoked, then the value 4 is used. When an argument following a
default value does not have a default value, keyword bindings may be needed
to use the default value. Thus f(z=3) is a valid invocation while f(3) is the
same as f(x=3) and has too few arguments.

The default value for an out parameter is always evaluated and becomes
the initial value of the new instance of the formal argument. In general,
the default value can reference symbols from the enclosing scope, literal con-
stants, and previously declared arguments. This expression is evaluated at
the time the function is invoked. When there is no actual argument corre-
sponding to a formal with intent out or inout, we discard the value of the
corresponding formal at the end of execution of the function. For example,
consider a hash function that returns a reference to an integer and also re-
turns an optional out value that indicates if a new entry was added to the
hash table:

function hash(key :float, out new :boole) :ref(integer)...

hash(key,new) = value

if(new) items += 1;

... hash(key)

The first invocation tests the output value to keep a count of new items while
the second call discards this value without naming it.
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Function Values There are situations when a function reference does not
imply an invocation. Special syntax indicates that a function value should
be captured rather than evaluating the function. This is done by using
“=>” instead of “=” in an assignment statement. In these cases, some of the
arguments to the function may be omitted and any of the arguments may
be the special token “_”. This construct builds a new function by capturing
the values and variables in the specified arguments. The new function has a
reduced type signature corresponding to the unspecified values. An example
is:

function f(a :integer, b:integer) { ... }
bar => f(x+y);

... bar(z) ...

Here the reference to f is not evaluated but expression x+y is evaluated and
the resulting value captured. The result is a new unnamed function of one
parameter which we store in variable bar. The subsequent reference to bar

provides the missing second argument at which point we eventually invoke
function f with the two values. This action is frequently called currying. Such
values may be stored in variables and passed to functions as an argument.

To retain an optional argument when a function is curried, the formal
name must be bound to “_” either positionally or by keyword. For example:

function f(x :integer, y :integer =4) { ...}
... => f(y= ,3) ...

Here we curry a function f of two arguments yielding a function with a single
integer argument named y with default value 4. If instead we had simply
written:

... => f(3) ...

then this would bind the value of y to its default value, 4, and yield a function
of zero arguments. The type of the resulting function value is a reduced form
of the original function type where parameters whose values are bound are
omitted.
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Function Types A function prototype is specified by the information in
a function declaration excluding the body. The relevant information is the
number, names, intents, and types of the arguments and any default value
information, and the return type. The reduced information that excludes the
names and default value information is called the type signature. As much
as the full type and as little as the type signature can be specified for a
function type. When only the function signature is specified, the ability to
use keyword arguments and default and optional values is lost.

A function type can be declared by using a function prototype but omit-
ting the function name. For example:

type IntFun :function(:integer, y:boole =true) :integer;

function bar(x:integer, z:boole) :integer {...}
var f :IntFun => bar;

... f(-5)

... f(3, y=false)

The first line defines a function type where: the function has two arguments;
the second argument is named y and has default value true; and the function
returns an integer. The next line defines a function bar and the third line
defines a variable f that has function type that is bound to the function
bar. Variables with function types are references to function values and are
defined by the binding operator “=>”. The fourth line is an invocation of
function f which is equivalent to an invocation bar(-5,true). The last line
illustrates that it is the formal names from the function type that are used
for argument binding rather than the names from the function.

When we bind a function value to a function variable like f, we require
that the type signature of the function value agree with the type signature
of the type of the variable. Argument names and default values are based
on the type of the variable and override those in the value. In the example
above, f has a default value for its second argument which is not the case
for bar.

Return Statement A statement of the form:

return [〈expr〉];

terminates the innermost function body and immediately returns the value
determined by 〈expr〉. Control returns to the calling context where that

31



function was invoked. A function might not return a value. Rather it could
execute for side-effects to other variables. This is indicated by omitting the
return type and then omitting expressions from return statements.

When a function returns a value of reference type, it is permitted but not
required to indicate this by adding operator “=>” after return and before
the 〈expr〉.

Call Statement A statement whose only effect is to invoke a function is
a call statement. This is the syntax:

[call] 〈fun expr〉 ;

In this example 〈fun expr〉 is a function invocation. The keyword call is
optional. Any value returned by this function is discarded.

2.9 Tuple Types

A tuple value is constructed as a comma-separated list of expressions inside
parentheses9 and a tuple type designator is an analogous list of types. For
example

var pair :(integer,float);

pair = (3,4.0);

or

type PairType = (integer,float);

var p :PairType = (5,6);

Assignment between tuples is done positionally. In the first of these examples,
3 is stored to the first field of pair and 4.0 is stored to the second field.
Default promotions may apply for primitive types. In this example, the
integer value 6 will be promoted to a floating point value when assigned to
the second component of p. Functions may have tuple types as arguments
and return values.

The values in a tuple may be accessed by destructuring into a group of
variables. This can be done as an initializer, by assignment, or by argument
passing. For example:

9Parentheses are required to continue to use comma as a list separator in variable
declarations, formal argument lists, and and argument lists.
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var (i,j):PairType = pair;

var (i:integer, j:integer) = pair;

(i,j) = pair;

function f( (i:integer, j:integer)) ...

call f(pair);

call f( (i+1,j) ); – parens to form a tuple and
– to invoke the function

In these situations, the special token “_” can be used to discard some values
that are not needed. For example:

var (i:integer, :integer) = pair;

(i, ) = pair;

function f( ( :integer, j:integer)) ...

call f(pair);

Additional syntax is provide to support tuples whose components are all
the same type. For example:

var index : 〈k〉 * integer;

Here 〈k〉 is an integer parameter expression, so the value is known at program
specification time just like the representation width for arithmetic types.
Variable index has type of a tuple with 〈k〉 components all of which are
integers. The type 2 * integer is identical to (integer,integer).

A variable of tuple type many be used in an expression that looks like
a function invocation. If t has tuple type than t(1) is interpreted as the
first component of that tuple. There is a restriction that if the types of the
components of t are different, then the “argument” to this expression must
be a parameter and hence known before execution of the program. When
t’s components are all the same type, the argument may be any expression
resulting in a value that conforms with integer, and whose value is in the
range of 1 to the number of components in the tuple.

2.10 Modules

Chapel supports a simple module structure to manage the space of names.
Every name is logically part of some module where the default module is
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named main. Module names consists of a sequence of symbol separated
by “.” operators. These are denoted as 〈module name〉 below.

The module statement identifies the name of the current module. It has
the form:

module 〈module name〉 [version=〈string〉] {
module-level definitions

}

where module-level definitions is a sequence of type, variable, and function
definitions whose names are considered part of the module. The same module
name might appear on multiple module statements.

Names in a particular module can be explicitly referenced in other mod-
ules by prefixing them with their module name. For example, if libmsl.blas
is a module name including a function named saxpy, then that function
may be referenced as libmsl.blas.saxpy anywhere in the program. We
will use 〈name〉 to indicate a 〈symbol〉 or, recursively, term of the form
〈name〉.〈symbol〉 where 〈name〉 identifies a module and 〈symbol〉 is defined
in that module.

For Chapel implementations that separate the input program into mul-
tiple files, we expect the name of the file will encode the module and ver-
sion information for the symbol defined if the first statement in the file is
not a module statement. We assume file names are divided into two or
three component names where the last is ignored. The first identifies the
module and the second of three identifies the version. For example, as-
suming that “.” is used as in UNIX as a file name component separator,
the file named string.chp would contain names for module string and
string.dec04.chp would contain names for module string with version

equal to "dec04".
The use statement is used to incorporate names from another module

into the current scope. It has this syntax:

use 〈module name〉[version=〈string〉]
[[only] 〈rename list〉]
[except 〈symbol〉 [, . . .]];

where the version clause optionally selects a particular version. The 〈string〉
term must be a parameter expression. The 〈rename list〉 is a possibly empty,
comma-separated list of pairs of the form:
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[〈symbol1 〉 =>] 〈symbol2 〉

where 〈symbol2 〉 is a name in the specified module and 〈symbol1 〉 is the name
that will be used to refer to that symbol in the local context. If the optional
only keyword is used, then only symbols on the rename list are imported
and in this case items on the rename list may be just symbols rather than
pairs. This list identifies symbols included in the current scope while other
symbols in the module are not so included. For example:

use libmsl; – all of libmsl
use blas only saxpy, inner product => sdot;

Here we add to the current scope all of the symbols defined in module libmsl
which happens to include the module name blas. Note that the module
name blas will shadow any top-level module with the same name. From
that second module we add symbol saxpy to the current scope and symbol
sdot is added under the alias inner product. The except clause specifies
a list of symbols defined in the module that are not added to the current
scope.

It is an error for a symbol to be defined both by a use statement and by
a declaration in the same scope.

A use statement may be used inside of function definitions when that is
convenient, as in this example:

function f ... {
use libmsl.blas;

... sdot ...

}

Here, the symbols from libmsl.blas are added to the scope of the innermost
compound statement.

We say as symbol is exported if it would be included in another scope by
a use statement. By default, all symbols in a module are exported but a
separate statement can be used to identify those symbols that are included
by a use statement. It has syntax:
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public 〈symbol〉 [, . . .];

The public keyword can be used as a modifier on any top level declaration
for types, variables or functions and has the same effect as adding the defined
symbols to a public list. We say such symbols are exported from the scope.
When any symbol is explicitly exported, other symbols are by default not
exported.

A public modifier may precede a use statement as well. In this case, a
symbols introduced by the use statement are included as exported symbols
of the current module. For example, if module libmsl included:

public use blas;

where blas is a module then all symbols exported by blas would be included
by any use libmsl; statement.

Symbols not exported can still be referenced via an explicit module name
prefix.10

When a module statement is nested inside another module, public sym-
bols from the inner modules are implicitly exported to the outer module. A
public keyword on the inner module statement indicates symbols exported
from the inner module are also exported by the outer module. For example:

module libmsl {
public module blas {

public function sdot ...

Symbol sdot can be used inside of libmsl as if it were defined in that context
because of the public keyword on its declaration. Further, the that symbol is
exported from libmsl as well because of the public keyword on the module

blas statement.

2.11 The with Statement

The with statement is syntactically similar to the use statement. Where the
use statement simply changes the scoping of symbols, the with statement

10There is no strongly enforced notion of “private” in Chapel because of the interest in
exploratory programming. Under suitable compilation switches we might disallow refer-
ences to non-exported symbols.
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indicates that the contents of the source module are logically copied into the
current scope. Symbols that are defined in the module but also defined in
the current scope are replaced with those of the current scope. This allows
a variant of one module to be constructed where substitutions are made to
either implementation or interface. Definitions of symbols not imported into
the current scope are still copied but those symbols must be referred to with
fully qualified names. An example:

module MyLib version="debug" {
var debug level :integer = 2;

public with MyLib;

}

This builds a variant of MyLib where the symbol debug_level is redefined
from its definition in MyLib which might be:

parameter debug level:integer = 0;

There are no restrictions on how symbols may change when they are shad-
owed. Variables could change to 0-argument functions that return a refer-
ence, types could change, and attributes of variables could change.

2.12 Conditional Declarations

When an if statement appears at module scope, then its boolean guard must
be an expression constructed from parameter’s. This expression is evaluated
once and determines whether declarations from the then clause or, if present,
the else clause are included. For example:

config parameter target :string = "";

use libmsl(version=target);

if target == "Cray X1" then {
parameter cray fft :boole = true;

use cray fftlib;

}
else {

parameter cray fft :boole = false;

use fftlib;

}
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Setting the target variable to the string "Cray X1" affects the version of
libmsl that is used as well as selecting a different variant of an FFT package
and the binding of the cray_fft flag. Note that the “compound statements”
used at the module level do not introduce a new scope. They are simply used
to group declarations under the control of a compile-time decision.a

2.13 Program Execution

Program execution begins by processing the module scope declarations in
the main module. We say we “execute a declaration” to mean that we eval-
uate any initializer for a variable or default values for types and functions.11

Initializers for configuration variables are only evaluated if values for those
variables are not set by some other implementation dependent means.

When a use statement is “executed”, we execute the declarations for
the identified module unless they have already been executed. Note that all
declarations in the module are executed regardless of the scoping clauses on
the use statement. After all the declarations in a module have been executed,
if that module defines a function initialize that has no arguments, then
that function is invoked.

After execution of the declarations for module main, if that module de-
fines a function without arguments called main, that function is invoked.
Upon return of that function, the program terminates. As part of the termi-
nation process, for each module whose declarations were evaluated, if that
module defines a function finalize without arguments, than that function
is invoked. These functions are executed in the reverse order in which the
module declarations where executed.

A predefined variable is used to capture additional arguments to the ex-
ecution of a program. It has this declaration:

const config var argv : seq of string = nil;

2.14 Summary

Figure 3 summarizes all of the statements in Chapel including some not yet
introduced.

11More actions are taken for arrays and domains introduced in Section 8.
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enum 〈symbol〉 { 〈symbol〉 [, . . .] }
record 〈symbol〉 { 〈definition〉 [, . . .] }
class 〈symbol〉 { 〈definition〉 [, . . .] }
union 〈symbol〉 { 〈definition〉 [, . . .] }
type 〈symbol〉 = 〈type〉;
subtype 〈symbol〉 = 〈type〉;
var 〈symbol〉 [:〈type〉] [= 〈expr〉];
〈variable〉 = 〈expr〉;
[call] 〈expr〉;
if 〈expr〉 [then] 〈block1 〉 [else 〈block2 〉];
while 〈expr〉 〈block〉
repeat 〈block〉 until〈expr〉;
for 〈variable〉 in 〈expr〉 〈block〉
forall 〈variable〉 in 〈expr〉 〈block〉
cobegin { 〈stmt〉 [ . . .] }
begin 〈block〉
serial 〈expr〉 〈block〉
atomic 〈block〉
〈symbol〉: 〈stmt〉
goto 〈symbol〉;
break [〈symbol〉];
continue [〈symbol〉];
return [〈expr〉];
yield [〈expr〉];
select(〈expr〉) { 〈when clause〉 [ . . .] }
typeselect(〈expr〉) { 〈when clause〉 [ . . .] }
module 〈name〉 [version 〈string〉];
{ 〈stmt〉 [ . . .] }
function 〈name〉 [(〈parameters〉)] [:〈type〉] 〈block〉;
iterator 〈name〉 [(〈parameters〉)] [:〈type〉] 〈block〉;
constructor 〈name〉 [(〈parameters〉)] [:〈type〉] 〈block〉;
module 〈name〉 [version=〈string〉] { ... }
use 〈name〉 [[only] 〈rename list〉] [except 〈symbol〉 [, . . .]];
with 〈name〉 [[only] 〈rename list〉] [except 〈symbol〉 [, . . .]];

Figure 3: Statement Summary
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2.15 Base Language Notes

This section has discussion about open issues from above.

2.15.1 Factoring Type Specifications

The inability to factor complex types across a collection of variables is a
concern. Later when types are expected to element types and some kind of
additional type constructor, a separated type designator for a collection of
variables may become onerous.

The ability to simply reuse a type specification can be accommodated
either by creating a type name or by handling a typeof operator or possibly
a like attribute.

var a : 〈some long messy type〉;
var b like a;

var c : a.type;

David: the current choice reflects the belief that many types can be in-
ferred and that we expect many variable declarations to have initializers,
which either requires one type per declaration or multiple declarations.

2.15.2 Parameter Intents and Type Inference

We have outstanding questions about the interactions of parameter intents
with both reference variables and arrays. There are also some issues regarding
the interpretation of const in those two cases.

Brad asks the question, given this function declaration:

function f(x) { ... x = 3; ... }

where we have a formal parameter x with no specified intent but to which
we assign. If the rule is that parameters are by default const, then is this
program illegal or should we assume it is only legal when x is an array passed
by reference or when x has reference type?

David’s position begins with these broad ideas:

1. The purpose of type variables is to allow program fragments to be
reused in many contexts by reinterpreting operations in the context of
specific type instantiations.
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2. The purpose of intent attributes are to allow the writer of a function
to define how values are communicated to the caller.

3. The purpose of const is to aide the reader in understanding intended
usage as well as assist the client of a function who may only see the
function prototype in documentation.

4. The purpose of default const intent is to make sure the function writer
declares his intent when a parameter is modified in some way. This is
not something that should depend on context or type instantiation.

5. The purpose of reference variables is to allow the choice of variable
to define to be computed. In particular it allows functions to return
lvalue’s but also allows interacts with having “views” into an array.

From these I would suggest:

1. We never infer parameter intents and further a const parameter re-
gardless of type may not be the subject of assignment, either value or
reference.

2. We only infer a reference type if we see an explicit “=>” operator. I
think will help users better understand what’s going on.

2.15.3 Evaluation of default values

The text above states that expressions that define default values for function
arguments are evaluated at the point of function invocation. This implies
that we must build little function closures that get invoked at that point.
Is this overkill? Should we say instead expressions for default values are
evaluated when the function definition is processed? The difference is that
that the definition as written allows default values for some arguments to
depend on the actual values of other arguments.

A different approach is to not allow default values but rather use over-
loaded function to simulate them. Yet another approach might be to require
that parameters with default values be bound by keyword and then apply
overloading to only the positional parameters.

Another restriction might be to require that functions with the same name
must be distinguishable based on arguments without default values.
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2.15.4 Marking output parameters
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3 Structured Types

Chapel supports two different kinds of structured type, records and classes.
These two types are very similar in their specification and the various tools
available to derive new types. However, they differ in their semantics with
respect to assignment and argument passing.

Record types are used to create groups of variables where values can be
read and written to them as a group rather than as individuals. Class types
are used to represent program objects that have some notion of identity.
These objects are manipulated by reference where records are manipulated
by copying the values.

3.1 Requirements

Derived types are important both to simply aggregate related sets of values,
associate operators and functions with such as set to build abstract data
types, and to provide the basis of the object-oriented features. Chapel has
additional goals to facilitate code reuse both by the common method of
specialization of behavior and by structured substitution of definitions of
variables and methods. This second technique is motivated by the desire to
support structural typing of function argument which means that any binding
of those variables is valid as long as all fields, methods, and invoked functions
are type correct.

We therefore have the following requirements:

1. Support for describing groups of variables with value semantics where
the group also has value semantics.

2. Support for describing groups of variables where the group has reference
semantics (objects).

3. Support for construction of new descriptions by structured extension
and redefinition of existing elements.

4. Support for associating a function with such a description.

5. Support for associating a function with the type of an object to support
dynamic polymorphism.

6. Support for structural typing of function arguments and return values.
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Here a “description of a group of variables” is also called a derived type.
Of course, we desire as much syntactic similarity between the value and

object types as possible.

3.2 Record Types

A record type is declared using the syntax:

record 〈symbol〉 {
[〈base records〉]
[〈definitions〉 [...]]

}

The definitions in the body of the record are types, variables and functions
using the same syntax as already presented, although the interpretation of
initial expressions and function definitions are different. These are referred
to as fields of the record. The term 〈symbol〉 is the name of the record and it
becomes a type designator following the same scoping rules as for functions.
The term 〈base records〉 will be describe later. Here is a simple example:

record ClientData {
var name :string;

var id :integer;

}

A record is fundamentally just a collection of variables that can be ma-
nipulated as a group. Individual elements within a record are accessed by
using the “.” operator that combines a reference to a record variable and a
name of a variable defined within that record. For example:

var c :ClientData; – declare a client variable
c.name = "Fred"; – define the name field
... c.id ... – reference the value in the id field

Assignment of record values to variables of record type is done by name. For
example:

var c2 :OtherClientData;

c = c2

is equivalent to to

44



c.name = c2.name;

c.id = c2.id;

If type OtherClientData does not have one of these fields then this is an
error. Any fields in the target with the const attribute are not effected by
this assignment and need not be in the source value.

This interpretation applies to argument passing when a record variable is
used as an actual argument. If the intent of the argument is inout, then any
fields not present in the type of the formal argument are simply not modified
by the function call. Otherwise, the behavior is just like simple assignment.
Values of record type may be returned from functions.

3.3 Bound Functions

A bound function is a function definition that is associated with some more
record type. This is the syntax:

function 〈symbol1 〉.〈symbol2 〉
(〈argument list〉) [:〈type〉]
{ ... }

〈symbol1 〉 identifies a record type while 〈symbol2 〉 is the name of the function.
The balance of the function definition is like other functions. Free variables
from default argument value expressions or the body of the function are
resolved against field names of the record type. For example:

function ClientData.set id(newid :integer) {
id = newid;

}

Since id is a field of type ClientData, the reference to id inside the body
of the function is bound to that field name

A bound function is invoked by providing both the actual arguments and
an instance of the record type. The latter is specified as the left operand of
a “.” operator where the right operand is the function name. For example:
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var c :ClientData;

c.set id(4);

The instance of the record is passed by reference so inside the invocation of
set_id, the symbol id refers to the actual variable within c rather than a
copy.

A bound function may be invoked with a different record type but only
after that type is appropriately converted. For example:

var c2 :OtherClientData;

c2:ClientData.set id(5);

This is a valid expression as long as every field of ClientData appears as a
field in OtherClientData and all of the operations applied to fields inside
the function are valid for types of those fields. For example, the id field
could have different representation widths in the two classes.

A function definition that is syntactically placed inside a record is bound
to that record. For example:

record ClientData {
var name :string;

var id :integer;

function set id(newid :integer) {
id = newid;

}
}

Here set_id is bound to record type ClientData just as in the previous
example. Functions defined inside of records are called primary methods
while those outside are called secondary methods. This distinction only effects
subtyping issues described below.

Within a bound function, the reserved word this can be used to reference
the instance of the record type used to invoke the function.

Functions can be bound to other types besides record types. For example,
they could be bound to primitive types or enumerated types. In this case
this is a reference to a variable holding the value with which the function is
invoked. When applied to an expression, a temporary variable is created to
hold the transient value.
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3.4 Constructors

A constructor is a special kind of function that is used to initialize a new
instance of a record. The syntax is similar to a bound function but uses the
keyword constructor rather than function and has no return value. For
example:

constructor ClientData.create(s :string, i :integer) {
name = s;

id = i;

}

Since the purpose of a constructor is to create a new instance of the type,
it is invoked using the type name rather an instance variable. The new
record instance can still be referenced as this and is the return value of the
constructor. For example:

var cr :ClientData = ClientData.create(cname, cid);

A constructor may be specified inside a record declaration for convenience.
Thus the above definition of ClientData.create is exactly the same as this
definition:

record ClientData {
var name :string;

var id :integer;

constructor create(s :string, i :integer) {
name = s;

id = i;

}
}

When initializers are specified for fields in a record, those are evaluated
in a default constructor. The name of the type can be used to explicitly
invoke the default constructor. All of the field names become arguments to
the default constructor and initializer terms are simply default values for the
corresponding arguments. Thus the default constructor for the above class
has this signature:
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constructor ClientData(name:strings, id:integer);

and might be used

var c :ClientData = ClientData(name="fred", id=4);

or

var c :ClientData = ClientData(id=4,name="fred");

There is no predefined order for default constructor arguments so they must
be specified by name. A bound function with the name initialize will
be invoked instead of the default constructor if it is defined. When such a
function is defined, arguments may be specified by position as well as by
name. For example:

constructor ClientData.initialize(n:string, i:id) {
name=n;

id=i;

}
... ClientData("sally", 21) ...

The last line invokes the initialize constructor and with its specified ar-
gument order.

Constructors are special kinds of functions but may be curried like normal
function so the expression ClientData("fred") creates a new function value
that takes a single integer argument and returns value of type ClientData.

3.5 Anonymous Records

A modified form of the tuple syntax is used to create values of anonymous
records. The syntax has the form:

(〈symbol〉 = 〈expr〉 [, . . .])

This creates an anonymous record value with field names specified by the
symbols whose types and values are derived from the corresponding 〈expr〉.
For example:

48



var c :ClientData;

c = (id = 4, name = "fred");

Note that assignment is by name so the order of the elements in such a list
is immaterial.

For type contexts, the name of a record may be omitted when defining
anonymous record types. For example:

var c :ClientData;

var c2 :record {
var name :string;

var id :integer; };
c2 = (name = "fred", id = 4);

c = c2;

var c3 :record {
var id :integer = 5;

var name :string = ’sally’; };

The types of c2 and c3 are anonymous records that are structurally the
same as ClientData. Initial values are permitted for anonymous records as
illustrated in declaration of c3 above.

The operator “+” is overloaded for record types and is used to combine
two records. For example:

record Name{
var name :string;

var age :integer;

}
function get name(x :T) :Name {...}
c2 = get name(t) + (id = 4);

Here the record determined by the right hand side consists of three fields,
name, age, and id. Two of these, name and id are stored into the left hand
side, c2. For operator “+” we have the requirement that no symbol be defined
by both operands.

3.6 Derived Record Types

The term 〈base records〉 has the form analogous to that used for copying
modules:
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with 〈name〉 [[only] [〈rename list〉]]
[except 〈symbol〉 [, . . .]]

where each 〈name〉 identifies another record type. This type is referred to
as a base type where the type in which this is used is called the derived type.
The interpretation of this clause is that all of the fields including primary
methods of the base types are also fields of the derived type as if they had
been textually included in the derived type. Secondary methods defined
outside of the base record are not included. For example:

record OtherClientData {
with ClientData ;

var address :Address;

}

which is semantically equivalent to:

record OtherClientData {
var name :string;

var id :integer;

var address :Address;

}

where we have simply included the fields from the (first) definition of ClientData
above.

It is possible for a field defined in a base class to be replaced by subsequent
definition. For example:

record DifferentClientData {
with ClientData ;

var id :(integer, integer);

var address :Address;

}

The id field from ClientData is replaced by a new definition and effectively
omitted from the derived type definition. This is therefore equivalent to:
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record DifferentClientData {
var name :string;

var id :(integer, integer);

var address :Address;

}

In the presence of multiple base types, later types in the specification gener-
ally override earlier definitions. For example:

record C { with A; with B; ...}

For any fields defined in both A and B the ones in A are shadowed and the
ones from B survive into the final definitions.

When a different behavior is desired, a rename clause can be used which
has the syntax:

[[only] [〈rename list〉]] [except 〈symbol〉 [, . . .]]

where 〈symbol2 〉 is a field in the base class and 〈symbol1 〉 becomes an alias for
it in the derived scope. The optional except clause can also be used exclude
some symbols from the identified record.

When a base record includes a function definition, that definition can
have free variables. Those free variables are resolved against the fields of the
derived class and so are subject to the affects of renaming and shadowing.
This is the same thing that happens to bound functions declared outside
of the class when they are invoked with an instance of the derived class.
Examples of this will be provided later after we introduce support for generic
programming in Section 7.

This behavior is modified by the presence of a private attribute on a field
or type name. Symbols with this attribute are not directly added as symbols
in the derived type. They can be referenced by explicitly prefixing the name
with its containing type. For example, if x is a private field within base type
A, it can be referenced as A.x in the derived class unless explicitly renamed.
All references to private symbols in initializers and function definitions in
the base class are implicitly rewritten to use the A.x form unless explicitly
renamed or excluded.

3.7 Class Types

A class type is syntactically similar to a record type but have different as-
signment semantics. This is the syntax for a class definition:
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class 〈symbol〉 {
〈base classes〉
[〈definitions〉 [...]]

}

Again, 〈symbol〉 becomes the name of the type. The term 〈base classes〉
differs from the previous 〈base records〉 only in that it permits names of class
types as well as record types.

The fundamental difference between classes and all previously described
types is that assignment, including argument passing, is by reference rather
than by value. A variable of class type stores a reference to an instance of
the class and it is that reference which is copied rather than the object itself.
This allows sharing of groups of variables, which now has an object identify
rather than just value.

class Client {
with ClientData ;

var backup :Client;

}
var c :Client = ...,

b :Client = c;

This type includes the same fields as the record ClientData but the initial-
ization of b creates an alias so that b.backup and c.backup are aliases for
the same variable.

Constructors for classes create new instances of the class and return a
reference to that instance rather than a copy of the values.

Variables of class type may not be configuration variables.

If there is an assignment between a class and record types then that
assignment is implemented by name as in the case of records.

3.8 Derived Classes

For class declarations, the with statement may be used to construct derived
classes as for derived record types. For classes, the keyword implements can
be used instead of the keyword with to specify a derived class type as well.
For example:
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class A { with ClientData; ... }
class B {

implements A;

...

}

Here B has all of the fields of A just as in the case of a with clause. The same
rules and options apply for name management as for the with statement.
The difference between these two clauses is that when implements is used
the derived type is a nominal subtype of the base type. This is similar to
the distinction made for the subtype declaration (page 22). The importance
of this distinction is discussed in Section 6 where function overloading is
described.

A variable that is declared to hold a reference to a class may in fact hold
a reference to any nominal subtype of that class. Thus we may have:

class MyClient {
implements Client;

var index :integer

}
var c:Client = MyClient(...);

Class MyClient is a subtype of Client so it is legal to assign a reference
to an instance of MyClient to a variable whose declared type is a nominal
supertype of MyClient

3.9 The use Statement

The use statement is used to give access to the fields in a record or class in
an executable context. This is the syntax:

use 〈expr〉 [[only 〈rename list〉]]
[except 〈symbol〉 [, . . .]]

where 〈expr〉 evaluates to an instance of a class or record type. In this case
the symbols of the record are incorporated into the enclosing scope. For
example:
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var c :ClientData;

use c;

id = 4;

name = "fred";

Here, the symbol id refers to c.id for the balance of the scope.

It is an error for a symbol to be defined both by a use statement and by
a declaration in the same scope.

3.10 Nested Type Definitions

Chapel permits classes to be defined within other classes. For example, an
abstraction that holds a list of integers might look like the code in Figure 4.
The definition of remove is bound to an instance of List.Elt and free vari-
ables in the function body are first resolved against the fields in Elt and
against the fields in List.

Outer class instances can be used by combining the type name with the
reserved word this. In this example, the reference to head in remove could
be more explicitly accessed as this.List.head.12

3.11 Variable Sharing

When an class instance is constructed, there is an additional by-name mech-
anism available that permits variable fields inside the class to be aliases to
variables external to the class. This uses the “=>” operator instead of the
“=”. For example:

var myname :string = "harry";

var c :Client = Client(name=>myname);

myname = "foo";

12Implementation note: by default I’m assuming that an instance of an inner class will
probably have an explicit reference to the associated outer class instance. While we might
optimize this away, I think in general it is syntactically awkward and error prone to try
and let the user manage this relationship. If they are bothered by the memory cost, then
they can move the inner class outside and make the outer reference explicit and use the
with statement to convenient access outer class fields.
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class List {
var head :Elt = nil;

class Elt {
var value :integer;

var next :Elt;

}
function prepend(v :integer) :Elt {

head = Elt(value=v, next=head)

return head;

}
}
function List.Elt.remove() {

if(head == this) {
head = next;

return;

}
var link :Elt = head;

while(link != nil) {
if(link.next == this) {

link.next = next;

break;

}
link = link.next;

}
}

Figure 4: Example of nested classes
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Here the variables myname and c.name are the same variable, so assignments
to one are reflected in the other.13

3.12 Interface Classes

A function definition whose body is omitted and is terminated with a semi-
colon is called a function prototype. Class declarations may contain function
prototypes as a convenience for documentation where the function is declared
elsewhere. Alternately, the function may have no definition in which case we
say the class is an interface class.

3.13 Notes

Custom Sequence Implementations The reserved word seq may be
listed as the super-type for a class. Thus

class MySeq { implements seq; ... }

This requires that function MySeq satisfy at least a subset of the sequence
interface. This interface will be defined later but at a minimum defines
construction, concatenation and iteration.

Other special things We could use an iterator named _iterator to be
the iterator used when an class object appears in an aggregate context. Thus
for object reference p in one of these contexts:

for i in p 〈stmt〉
... [i in p] 〈expr〉
〈seq expr〉 〈op〉 p

In these case where p should be considered a sequence, we invoke the _iterator
method.

A similar technique could be used with _function when it is used in
a function context with explicit arguments: p(...). This is interpreted as
p._function(...).

An array is very close to something that has the form:

13The purpose of variable sharing is to make it easy to build ad hoc wrappers around
existing state to facilitate invoking functions with particular interface requirements.
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class F {
type e;

iterator iterator :e ...;

function function(:e) :ref(...) ... ;

}

This gives us a domain and a function defined over that domain. Some of
the other attributes may need to be provided as well.

Storage Reclamation Would it be valuable to be able to bind a function
to type where the function will be invoked when the storage for the type
is reclaimed? Imagine that we have two kinds of references. One kind of
reference is counted and the other is not. Then, when the reference count
goes to zero, we invoke this function which might cleanup the other references.
This way we could for example have lists and hash tables that hold references
that “don’t count” but can be cleaned up.

Another application might be that we have the an object that holds a
sync variable bound to some computation. If the object goes dead, then
we could try to garbage collect the associated computation even though it
technically has a reference to the object as well.

The fact that we ignore some references for garbage collection could be a
property of either the type or the references.

Using use for arguments Perhaps we should allow use to prefix a formal
argument declaration as in

function f(use c:ClientData) { ... }

where now the fields of c are available inside the body of the function.
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4 Union Types

Chapel is a completely type safe language. No variable can be accessed
in a manner inconsistent with the type of the value stored in that variable.
However, a type can be formed as a union of distinct types. A variable of such
a type will hold a value of one of the component types and the typeselect

statement described below can be used to access that value.

4.1 Requirements

The basic requirements:

1. Support for defining a variables that may hold values that are one of a
finite number of distinct types.

2. Support for accessing those values in a type safe manner.

We want to implement these requirements exploiting the mechanisms already
in place for structured types with similar syntax.

4.2 Declarations

The syntax for a union type is modeled after a record. Rather than defining
a collection of variables, this is interpreted as defining a set of possible types.
Here is an example of a union type:

union arithmetic {
type i :integer;

type f :float;

}

The type denoted arithmetic can hold either an integer or a floating point
value. Values of any of the component types can be assigned to variables of
the union type, but we must also identify which component type is intended.
For example:
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var x :arithmetic;

x.i = 1; – integer
x = 1.0:arithmetic.f; – floating point

The last line illustrates conversion of a component type into an element of
the union type. It is illegal to assign a value of a component type into a
union type without specifying the component. We cannot say:

x = 1; – illegal when x has union type

since we do not know which component type is intended. The component
types such as arithmetic.f are treated as nominal subtypes of the associated
types as if they had been declared with a subtype declaration (page 22).

A union type may have a component type that has no specified type
information. For example:

union Tree {
type Leaf;

type Node :record { var left :Tree, right :Tree };
}

An instance of Tree might have component type Leaf, in which case it has
no additional values, or it might have component type Node, in which case
it is a record with fields left and right. For union type fields with no
values, we use the type name as a literal value. In this example, we would
use Tree.Leaf as a literal value of this union type:

var u :Tree = Tree.Leaf;

The general syntax for union types is:

union 〈symbol〉 { 〈declaration〉 [ . . .] }

where each 〈declaration〉 has the form:

60



type 〈symbol〉 [:〈type〉];

where omitting the 〈type〉 indicates that there is no value associated with
this field. The symbols used as names for components are local to the type
and can only be used with the type name as a prefix as in Tree.Node or to
access a component value as described below.

The with declaration may be used with unions but the referenced types
must also be unions. The result is a new union type that shares some or all
components with the base type. For example, we may have:

union data {
with arithmetic;

type s :string;

}

Here, the two fields of arithmetic are also part of this union exactly as if the
definitions had been copied here. Values of type arithmetic may be assigned
to variables of type data but not vice-versa since arithmetic does not have
an s component. Assignment between union types should be thought of as
a switch over the components of the right hand value which assign by name
into components of the left-hand value, with suitable promotions as needed.
Function definitions inside a union are similar to those of records: they are
simply bound functions associated with the type.

The structural subtype relation for union types is different than for record
types in the sense that a type u is a subtype of v when v the components
of u are a subset of the components of v. In this example arithmetic is a
structural subtype of data despite it being a “base” type.

4.3 typeselect Statement

A typeselect statement is used to access the value in a type-safe manner.
For example:

function incr(a :arithmetic) :arithmetic {
typeselect(a) {

when x:arithmetic.i do return (x+1):arithmetic.i;

when y:arithmetic.f do return (y+1.0):arithmetic.f;

}
}
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In this function, the argument to the typeselect is a expression that eval-
uates to a value whose type is a union. The when clauses select one or more
of the component names. Each such clause guards a list of statements that
form a 〈block〉 as in the select statement. The variables introduced in the
when clause have scope limited to the list of statements with the specified
type. Thus x is an integer and y is a floating point value but they retain
the fact that they are components of the type union. goto statements may
not branch into one of the blocks of a typeselect statement from outside of
that block.

A when clause can identify a structural subtype of the union type. For
example, where data, arithmetic, and incr are defined as above:

var x :data;

typeselect(x) {
when a:arithmetic do a = incr(a);

when b:data.s do a = incr(b:arithmetic.i);

}

The first when clause selects the type components corresponding to the
arithmetic type, so a may be passed as an argument to incr. In the
second clause, b is a string which is explicitly converted to an integer value
by converting it to a component of union arithmetic. When a particular
component appears in multiple when clauses, then the first applicable clause
is selected.

More features of the typeselect statement are described in section 6.7
after we have discussed mechanisms to resolve overloaded functions.

4.4 Accessing Union Components

If U is a union type that includes a component type f, then we may form an
expression of the form 〈u〉.f where 〈u〉 is either a variable of declared union
type or an expression converted to union type as in: 〈u1 〉:U. In this case, f
is treated as a bound function that returns the value of the corresponding
type when 〈u〉 holds a value of that component type. This expression may
generate an error if the value determined by 〈u〉 does not correspond to
component type f.
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5 Sequences and Iterators

Chapel supports a derived type called sequence. A sequence is an ordered
collection of values of some homogeneous type. Such a sequence is denoted
as either:

seq of 〈type〉

or as:

seq (〈type〉)

where 〈type〉 is some type designator which is called the element type of the
sequence.

5.1 Requirements

One of the key roles of data structures that Chapel expects to provide in-
creased abstraction support for is iteration over sets. Another goal is to
exploit the conciseness of aggregate expressions. These generate the require-
ments:

1. Support for sequences as a primitive type that is fully generic with
respect to the type of elements in the sequence.

2. Support for element-wise application of primitive operations and user-
level functions to sequences arguments and eventually inter-operation
with arrays.

3. Language support for construction and iteration over sequences that
can be implemented using user-defined objects and methods with only
changes in variable type specifications.

This list will be defined in Section 11.

5.2 Sequence Operations

The fundamental operations on sequences is to construct them, copy them
via assignment, and to iterate over their elements.

The reserved word nil is used to represent an empty sequence of any
element type. The other mechanism to construct a sequence is to use the
form:
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(/ 〈expr1 〉, ..., 〈exprk〉 /)

where all instances of 〈expri〉 evaluate to values of the same type after default
promotions. The length of the sequence is the number of expressions, and
their order is the left to right order of their specification.14

The binary operator # can be used to concatenate two sequences or to
add a new element to either end of a sequence. One operand of the operator
must be of sequence type. If t denotes the element type of that sequence,
then the other operand must conform with type t, be a sequence of t, or be
nil. If s is a sequence of type t and y is a value conforming with t, then:

y # s

yields a sequence whose first element is y and whose remaining elements are
the elements of s in the same order as in s. Similarly:

s # y

yields a sequence whose last element is y and whose initial elements are the
elements of s in their original order. Finally if s′ is also a sequence of type t,
then:

s # s’

is the sequence whose initial values are the same as those of s in the same
order as s, and whose remaining values are the same as the the values of s′

in the same order as in s′.
When 〈t0 〉 and 〈t1 〉 are expressions of conforming non-sequence types,

then we define:

〈t0 〉 # 〈t1 〉

to be a sequence of two elements, the same as:

(/ 〈t0 〉 , 〈t1 〉 /)

When these terms are sequence types, it is necessary to use the second form
if a sequence of sequences is the desired result.

The construction:
14I choose to use this Fortran 90 style rather than #(...) because I think the latter is

visually ambiguous if we are building a sequence of tuples.
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s(e)

where s evaluates to a sequence and e to an integer is used to select a partic-
ular value in the sequence. The result is undefined if e = 0, or if the absolute
value of e is greater than the length of the sequence s. Let x1, . . . , xk denote
the elements of the sequence s. If e is positive, then s(e) is the value xe. If
e is negative, then it is the value xk−e+1.

When e is a tuple, then we require s to be a sequence of sequences.
The first component of the tuple selects an element of s and the remaining
components then recursively select an element of that sequence.

The length of a sequence can be determined using the predefined function
length. The length of nil is 0. A predefined function, reverse, takes a
sequence and returns a new sequence containing the same values in reverse
order.

Arithmetic Sequences Chapel provides a special operator to create an
arithmetic sequence:

〈expr1 〉 .. 〈expr2 〉

which defines a sequence of integer values. Let n be the value of the first
expression, and m be the value of the second expression. If n > m, then
the sequence is empty. Otherwise, the sequences consists of all integer values
from n to m inclusive.

Another operator, by, can be used to produce a subsequence. The ex-
pression:

〈s〉 by 〈expr〉

where 〈s〉 is a sequence and 〈expr〉 evaluates to an integer we will denote
by e. Let n denote the length of s, x1, . . . , xn denote the values of s, and
s′ denote the resulting sequence. If e = 0, the operation is an error. If
e is positive, then the length of the resulting sequence will be p = dn/ee
and s′ consists of the values: x1, xn+e, . . . , x(p−1)∗e+1. If n is negative, then
p = dn/(−e)e and the sequence is reversed starting at the final value of s:
xn, xn+e, . . . , xn+(p−1)∗e.

In this context, if 〈s〉 is an arithmetic sequence than so is the result. Such
sequences can be efficiently represented by initial value, length, and stride.
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The expression a .. b where a and b are strings of length 1 over the
same alphabet generates a sequence of strings of length 1. Each element in
this sequence corresponds to a character in the underlying alphabet between
the first characters of a and b. For example, ’A’..’Z’’ is the sequence of
strings corresponding to capital letters in the default alphabet.

5.3 Sequence Assignment

Sequence assignment is defined to be by value, so if s and s′ are variables of
type sequence-of-t, then the assignment:

s = s’

logically constructs a new sequence which is a copy of the values in s′. We
say “logically” because in most cases sequence values cannot be modified
in-place, so we can copy a pointer to the sequence rather than performing a
deep copy on the values.

5.4 For Loops

A new loop construct is implemented in Chapel that has the form:

for 〈variable〉 in 〈expr〉
〈statement〉

Here 〈expr〉 has type sequence of t for some element type t. 〈variable〉 be-
comes a new const variable of type t whose scope is limited to this construct.
The 〈statement〉 is called the body of the loop and is executed once for each
value in the sequence, with the variable 〈symbol〉 initialized to that value
prior to execution. For example, the loop:

for i in 1..n

f(i);

iterates over the integer values from 1 to n, with i bound to each value in
turn when the invocation of f is evaluated.

This loop is generalized to allow multiple sequences to be listed. These are
enclosed in either round parentheses or square brackets. The construction:
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for (i,j) in (s1,s2)

...

evaluates for all (i, j) pairs in the zipper product of s1 and s2. This means
that the sequences must have the same length and corresponding elements
are selected to form the pairs. If k is the length of the sequences, then the
above is equivalent to:

for p in 1..k {
const var i = s1(p);

const var j = s2(p);

...

}

Alternately:

for (i,j) in [s1,s2]

...

evaluates for all (i, j) pairs in the cross product and is equivalent to a nested
loop:

for i in s1

for j in s2

...

assuming there are no side-effects to evaluation of s2.
An additional restriction on the goto statement is that the target may not

be associated with a statement inside a for loop that does not also contain
the goto.

5.5 Expression Iterator

Chapel provides a mechanism to allow naming elements of a sequence inside
an expression. The construct is

[i in S] f(i)

where S is a sequence. This expression yields a sequence corresponding to
the values of evaluating f for each value of S denoted by i. For example to
form a sequence of squares of a sequence we could use:
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[y in X] y*y

The precedence of this expression form is lower than any other operator
and they are right-associative so:

[i in S1] [j in S2] f(x,i,j)

has the same iteration order as:

for (i,j) in [S1,S2]

In this example, if t the type of f(x,i,j) then the type of the above expres-
sion is seq(seq(t)).

An expression iterator may also be used to control an assignment state-
ment:

[i in S] f(i) = x(i)

Here f is, for example, a sequence of references to which values are assigned
element-wise. This construct differs from:

([i in S] f(i)) = [i in S] x(i)

where the second fragment will evaluate all of the right hand side before
assigning into the references on the left hand side.

5.6 Sequence Promotion of Scalar Functions

We define the rank of a type t to be 0 of t is non-sequence type. The rank of
the type seq(t) is one more than the rank of t.

For a sequence of rank 1, the leaf elements are simply the elements of the
sequence. For a sequence s of rank greater than 1, the leaf elements of s are
the sequences formed by concatenating the leaf elements of the elements of
s. We will denote this as leaves(s). This order of elements in leaves(s) is
called the normal order for the sequence.

We say two sequences are conforming if they are both rank 0 or they are
both sequences of equal length where corresponding elements are conforming.
Necessarily, conforming sequences have the same rank and the same number
of leaf elements. The shape of a rank-1 sequence is its length. The shape of
a rank-k sequence is the rank-(k − 1) sequence formed by replacing all the
rank-1 sequences with their lengths. The shapes of conforming sequences will
be the same.

Consider now a function application of the form:
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f(〈e1 〉, ..., 〈ek〉)

where one or more of the actual arguments have sequence type where the
corresponding formal parameter has the same leaf element type but lower
rank than the argument. We require that all of these differences either be zero
or the same value r. The interpretation of such a function application will
be to build a rank-r sequence whose elements are the results of applications
of f.

If there is only one argument, say 〈e1 〉, whose rank is r more than the
corresponding formal. Then we reduce r by rewriting the above expression
to:

[x in 〈e1 〉] f(x, ..., 〈ek〉)

When there are two or more such expressions, say 〈e1 〉 and 〈e2 〉, then we
require those expressions to have the same length and and f is applied to the
zipper-product:

[ (x,y) in (〈e1 〉, 〈e2 〉)] f(x, y, ..., 〈ek〉)

This process is applied recursively until all actual arguments to f have
the same rank as the corresponding formals. This is called the zipper in-
terpretation. The zipper interpretation is also used for all binary operators.
Thus the expression:

〈s1 〉+〈s2 〉

yields the sequence of values

[ (x,y) in (〈s1 〉, 〈s2 〉)] x+y

An alternate construction using square brackets:

f[e1, ..., e2]

returns a sequence formed by taking the cross product of the values of the
two sequences. For example, if s1 has length n1 and s2 has length n2, then
the expression:
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f[x,〈s1 〉,〈s2 〉]

yields the sequence of values:

let s1 = 〈s1 〉, s2=〈s2 〉
in [i in s1] [j in s2] f(x,i,j)

In general, the above recursive process is applied using cross-products instead
of zipper-products. The rank of the resulting sequence is the sum of the non-
zero differences between the ranks of actual and formal parameter types.

In the special case where f is a sequence and s is a sequence of integers,
the resulting sequence f(s) is referred to as a subsequence.

5.7 Sequence Equality

The binary operators “==” and “!=” are like any other scalar operator when
applied to sequence operands. Their result will be a sequence of boolean
values based on pairwise comparisons of elements of the zipper product. The
built-in functions any and all reduce a sequence of boolean values to a single
value. Function any returns true if, and only if, the sequence is non-empty
and any element is true. Function all returns true if, and only if, the
sequence is empty or all elements in the sequence are true. These functions
are not required to evaluate any more of their sequence inputs than are
necessary to determine the result.15

The primitives any and all are examples of reductions. They produce
scalar results regardless of the rank of their inputs. For example:

var x : seq(seq(integer)) = ...;

var y : like y = ...;

if(all(x == y)) ...

The type of x==y is seq(seq(boole)). Its result is reduced by all to a
single boolean value used to determine the if.

When a sequence value is used as the test for an if statement or ex-
pression, then that sequence is promoted to boolean values and the boolean
values reduced to a scalar implicitly by the all primitive. Thus we could
write the above simply as:

15There may be faster ways to determine sequence equality depending on the imple-
mentation of the sequence. When we define the structural interface for sequences this is
something we should be sure to expose.
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if(x == y) ...

which would behave the same as above. This is also true for controlling
expressions for while and repeat loops.

The interpretation is different in a select statement (page 26) such as:

select(〈es〉) ...

when 〈ew〉 ...

We permit two additional interpretations. When 〈es〉 is a sequence, then
〈ew〉 must be a sequence of the same rank and the test to determine if this
clause is selected can be expressed as all(〈es〉 == 〈et〉). If 〈es〉 is a scalar
and 〈ew〉 is an sequence, the test becomes: any(〈es〉 == 〈ew〉).

5.8 Filtering Predicates

An if expression inside a sequence expression is not required to have an else-
clause. The resulting sequence consists of the values where the predicate is
true. For example, the following construct selects the odd elements in a
sequence:

[i in 1..n] (if (mod(i,2) == 1) then s(i))

Regardless of the rank of the expression context, the rank of the result of a
filtering predicate is always 1. Thus:

[i in 1..n] [j in 1..m] (if (mod(i+j,2) == 1) then (i,j))

The result of this expression is a rank-1 sequence of integer pairs.

5.9 Indefinite Sequences

An arithmetic sequence using either of the forms:

n..

..n

(with missing upper or lower bounds) is said to be an indefinite arithmetic
sequence. An indefinite arithmetic sequence may appear in expression con-
texts but only when it is “zippered” with a definite sequence. Thus we may
have:
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f(x, 〈s1 〉, m..)

which is interpreted as the expression:

let x1 = 〈s1 〉, k = length(x1)

in [i in 1..k] f(x, x1(i), m+i-1))

The other sequences provide bounding information.
The zipper operation need not occur in the immediate context of an

indefinite sequence but could be higher in the expression. Thus:

f(x, 〈s1 〉, 〈s2 〉(m..))

is a valid expression where the term 〈s2 〉(m..) selects a subsequence of 〈s2 〉
beginning with the mth element and continuing for the length of 〈s1 〉.

An indefinite sequence may also be used as a subscript for another se-
quence, in which case the extent of that sequence provides the necessary
bounding information if there is no other constraint. For example, if s is a
sequence of length n, then s(2..) is equivalent to s(2..n) unless the entire
expression is in a context where other shape information is available, such
as: s(2..) + f(n..m).

The predefined function fill takes two or three parameters. When there
are three parameters, fill(〈s1 〉,〈e〉,〈n〉), the first is a sequence, the second
is a value conforming to the element type of the sequence, and the third is an
integer. The result of this function is a sequence of length at least 〈n〉 where
copies of the value determined by 〈e〉 are appended as necessary. Express
〈e〉 is evaluated once regardless of the length of 〈s1 〉.

When there are only two parameters, they are the sequence and the ele-
ment value. The result is an indefinite sequence whose extent is determined
from context.

5.10 Arithmetic Sequences and Strings

For a variable, s, of string type, the expression s(i) returns a length-1 string
corresponding to the ith character in the string. When i is an arithmetic
sequence, the result is a new string corresponding to the concatenation of
the selected elements. If the arithmetic string is indefinite, then it becomes
limited by 1 as a lower bound and the length of the string as an upper
bound. Strings are not sequences. The expression a+b is interpreted as string
concatenation, not an element-wise operation over the component characters.
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5.11 Iterators

An iterator is a function that returns a sequence of values rather than just
one. An iterator is defined with the syntax:

iterator 〈symbol〉(〈parameter list〉) :〈type〉 {
...

}

The 〈type〉 here is the element type of the sequence of values that will be
returned.

The assignment of values, the syntax for invocation, default and optional
parameters and interpretation of currying are all the same as for functions.

A new statement is permitted inside an iterator with the syntax:

yield 〈expr〉;

where 〈expr〉 evaluates to a value of type 〈type〉 or sequence of 〈type〉. In
the form case, the value of 〈expr〉 becomes the next value in the sequence
returned by the iterator. If 〈expr〉 is a sequence, the the values of that
sequence, in sequence order, are the next values returned by the iterator.
A return statement is similar but the iterator terminates after the return.
The iterator also terminates when the last statement in the body has been
executed.

Any actual parameters to an iterator with out or inout attributes are
not modified until the iterator completes either with a return or by finishing
its body.

An iterator that returns variable references and that appears as the target
of an assignment will update each variable location with the corresponding
elements from the right hand side. For example, assume that dfs is an
iterator that returns variables associated with a tree in depth first traversal
order. We may then assign a depth-first numbering to those variables by:

dfs(tree) = 1..;

or16

16So are we inferring that t has reference type because we assign to it coupled with the
fact that the iterator returns references?
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for (t,i) in (dfs(tree), 1..) do

t = i;

5.12 Arithmetic Index Sets

An arithmetic index set is a representation of a cross-product of a tuple
of arithmetic sequences. This type is denoted by index(k) where k is a
parameter corresponding to number of components. The .. is overloaded to
allow k-tuples of integers to be operands and k-tuples and simple integers
may be mixed. Scalar inputs are promoted into k-tuples by creating k-copies
of the value. The result has type index(k). The by operator is similarly
overloaded. A tuple type of the form:

( :index(〈k1 〉) , ..., :index〈kn〉)

is considered interchangeable with a value of type index<k> where k =∑n
i=1 ki.
The following are examples of such index sets:

var lb : 2*integer = (1,1);

var ub : 2*integer = (n,m);

1 .. ub

lb .. ub

(1..n, 1..m)

All three expressions represent the same value and have the same type.
For a value of type index(k), there are several predefined methods that

are listed in Figure 11 on page 152.

5.13 Sequence Primitives

Order and Shape A number of functions are defined that preserve the
leaf values of a sequence but change their order or shape.

In what follows, assume s is a sequence of rank-k. (i1, . . . , ik) denotes
a k-tuple of integer values. The result of functions will be denoted s′. We
will define the shape and values of s′, defining value-preserving relationships
between selected elements.
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reverse(:seq,dim=1) Function reverse(s) returns the elements of s in
reverse order. An optional second argument is an integer or list of
integers. If the value of this parameter is d, then the rank of the
first parameter must be at least d. When d is one, then the sequence
is reversed. When d is greater than one, the result is equal to this
expression:

[x in s] reverse(x,d-1)

When the second argument is a list, then the reversal process is applied
for each dimension value in turn.

Here are some examples involving rank-2 sequences:

var s : seq(seq(integer,integer))

= [i in 1..n] [j in 1..i] (i,j);

reverse(s) – [i in 1..n by -1] [j in 1..i] (i,j)
reverse(s,dim=2) – [i in 1..n ] [j in 1..i by -1] (i,j)
reverse(s,dim=(/1,2/)) – [i in 1..n by -1] [j in 1..i by -1] (i,j)

The initializer for s builds a rank-2 sequence in integer pairs that has
a triangular structure. The next three lines show the results of various
reverse operations applied to that sequence in terms of the how you
might specified the result directly.

spread(:seq,dim=1,[length]) Function spread takes a sequence of rank k
and returns a new sequence of rank k+1. There are two optional argu-
ments that maybe specified by name. Let s denote the input sequence.
When dim is equal to 1 , the result is a sequence where every element
is equal to s. The length of this sequence is specified by length or is
indefinite. When dim is greater than one, we generate the sequence:

[x in s] spread(x,dim=dim-1,length=length)

transpose(:seq, dims=(2,1)) The transpose function will reorder both
the values and change the shape of the sequence. The dims argument
evaluates to either a tuple or a list of integers that corresponds to a
permutation of the values 1..p where p is less than or equal to the rank
of the input sequence. This list defines a permutation of the subscripts
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such that the following relationship holds between the input and output
sequences:

s′(i′1, . . . , i
′
k) = s(i1, . . . , ik)

where

ij =

{
i′dims(j ) if j ≤ p

i′j otherwise

There is a somewhat complex requirement in the shape of the input
sequence so that this relation is well-defined. In the simple case of a
rank-2 input, we require that all elements of the sequence have the
same length. In the general case we require all sequences selected by
a q-tuple to have the same length whenever an index position q is less
than p.

reshape(:seq, 〈shape〉, [fill=〈e〉]) This returns a sequence whose leaves
are the same as the first parameter, in the same order but whose shape
matches that of 〈shape〉. The 〈shape〉 parameter might be a sequence
or it might be a tuple of integers. When it is a sequence, the output
will conform to that sequence. When the shape is a tuple, then the
shape of the output conforms to the shape of the arithmetic index set
that would be determined by 1..<shape>.

If present, the fill parameter specifies a value to be used to pad the
sequence if the number of leaf values in that sequence is too few to
conform with 〈shape〉. If the input sequence has too many values, it is
truncated.

The operations reverse, transpose and reshape can be used as the targets
of assignment when the leaves of the input sequence are references.

Conversion between lists and tuples A value of tuple-type, k*<t> can
be converted to a value of sequence types, seq(<t>) by using the :seq as a
type conversion. Similarly, the conversion :k where k is an integer parameter
can be used to construct a tuple from the first k elements of the list. It is an
error if the list does not have length at least equal to k.

Reductions The reserved word reduce is used to indicate a reduction,
which is a situation in which a binary operator is used to reduce the values
of a sequence down to a single scalar. If the sequence has element type t, then
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the common case is that the operator is a binary function with signature:
function (:t,:t) :t. A reduce expression looks like this:

[ordered] reduce 〈s〉 by 〈op〉[else 〈expr〉])

The third parameter is the return value when 〈s〉 is empty. If 〈s〉 has length 1,
then the value of its first element is returned. Otherwise 〈op〉 is replied re-
peatedly to combine elements. The order of element combining is not defined
but will be consistent for sequence of a given length in a given execution envi-
ronment as discussed later. If the ordered keyword is present then elements
are reduced by applying 〈op〉 to reduce the first two elements to a single
value, and then using 〈op〉 to accumulate remaining values from the list into
that result.

An ordered scan is just like a reduce except that the result consists of
a sequence of values. The first element is the first element in the original
sequence followed by the result of the accumulations. An unordered scan

assumes that 〈op〉 is associative and allows different algorithms to be used
based on that assumption. The pattern of application is again determined
by the length of the input sequence and the execution environment.

More complex forms of reductions are described in Section 11.1.

5.14 Cursor

A cursor is a reference to a sequence and a position in that sequence. A
cursor technically identifies a point between elements and can be at the tail
or the head of a list. A cursor can be created using one of these methods
defined for sequences:

head A cursor before the first element.

tail A cursor after the last element.

before(index:integer) A cursor before the value at the specified index. It
is an error for the index to be greater than one more than length of the
sequence or less than 0.

after(index:integer) A cursor after the value at the specified index. It is
an error for the index to be greater than the length of the sequence or
less than 1.
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The predefined type cursor identifies a generic cursor type for which we
have the following fields and methods:

prev The value in the sequence before the cursor.

next The value in the sequence after the cursor.

forward(amount=1) A new cursor that is amount positions earlier in the
sequence.

backward(amount=1) A new cursor that is amount positions later in a se-
quence.

sequence The sequence associated with a cursor.

index The integer index corresponding to the position of the prev field.

tail? A predicate that returns true when the cursor is positioned after the
last element in a sequence or the sequence is empty.

head? A predicate that returns true when the cursor is positioned before
the first element in a sequence or the sequence is empty.

The following methods of type cursor all return new cursors that refer
to new sequences constructed from the sequence associated with the base
cursor. They vary in how the new sequence is constructed:

truncate The new sequence consists of all elements before the position of
the cursor.

remainder The new sequence consists of all elements after the position of
the cursor.

insert after(value) The new sequence consists of all elements of the orig-
inal sequence with a new value inserted at the position of the cursor.
The new cursor is positioned before the new element.

insert before(value) The new sequence consists of all elements of the
original sequence with a new value inserted at the position of the cursor.
The new cursor is positioned after the new element.
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remove next The new sequence is formed by removing the next element
from the base sequence. The new cursor is position before the element
that followed next.

remove prev The new sequence is formed by removing the prev element
from the base sequence. The new cursor is position after the element
that preceded prev.

In all of these cases the base sequence and any other cursors are not effected
by these actions.

Iteration can be performed over cursors rather than list value by specify-
ing that the type of the control variable is a cursor. In a for loop this looks
like:

for i:cursor in S ...

and in an expression context:

[i:cursor in S] ...

A cursor may be used in a subscript position for a sequence in which case it
returns the next value.

An iterator may be defined to return a cursor rather than an instance
of the element type of the sequence. Such references are implicitly converted
to their next values if they are not bound to cursor variables.

5.15 Notes

Enumerated sequences Given an integer enumeration. Can the “..”
operator be used to define a sequence of enumerated values? If there are
corresponding integer values, when is the conversion made?

Complex Arithmetic Index Spaces We can generalize the notion of an
arithmetic index set to include more complex structures. Consider a sequence
of the form:
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[i1 in a1] ... [ik in ak] (i1, . . . , ik)

where each term aj is an arithmetic sequence operator: Lj .. Uj by Sj

where each expression that terms this sequence is a linear combination of
enclosing ij plus a constant. Such a sequence can be compactly represented
by retaining the coefficients. The interesting common cases are triangular
spaces such as [i in 1..n][j in 1..i] (i,j).

We might need to also allow min and max operations to allow representa-
tion of banded spaces such as:

[i in 1..n][j in max(1,i-d)..max(i+d,n)] (i,j)

I don’t think special syntax is important but whether such sets are com-
pactly represented and those representations closed under reverse, spread
transpose, slicing and projection.
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6 Function Overloading

Chapel permits multiple functions to be associated with the same symbolic
name. This is frequently called function overloading. When a function is
invoked, the types of the actual arguments are used to determine which of a
set of candidate function definitions is the one that is actually invoked. This
section discusses the rules that govern this process.

6.1 Requirements

The basic purpose of overloading is to support polymorphism so that one
algorithm specification can be specialized to different implementations of
constituent functions.

Requirements:

1. Support for the object-oriented paradigm where functions may be spe-
cialized to object subtypes.

2. Support for specialization of generic behavior for special cases. This
includes parameterization of function by structural types as well as by
nominal types.

3. Support for modular programming so that implementations of differ-
ent portions of an application may be developed independently once
interfaces are defined.

Features:

1. Treat all arguments to a function equally with respect to determining
which function to call.

6.2 Type Constraints on Function Arguments

When a function is declared, a specified type on a formal argument is inter-
preted as a constraint on the actual arguments. At a function invocation, the
actual arguments must be a subtype of all of the constraints of the formal
arguments of the function that is selected for execution.

Chapel supports two kinds of constraints on function arguments, nominal
and structural. When the type of a formal argument is the name of a class,
or a symbol bound by a subtype declaration, then it is a nominal constraint.
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Otherwise, when the constraint is specified by a primitive type, record type,
union type or sequence type, then it is a structural constraint.

For a nominal constraint, the actual argument must be an instance of
the specified type or a nominal subtype of that type. Nominal subtypes are
created with the subtype declaration (page 22) or the implements clause
(page 52) for derived types. For example:

class A { ... }
class B { implements A; ... }
class C { implements A; ... }
function lookup(b :B,...) ...

function lookup(c :C,...) ...

lookup(x,...);

Here we have three class definitions where both classes B and C are nominal
subtypes of class A. There are also two definitions of function lookup with
different constraints on the first argument. The particular instance of lookup
that will be invoked by the invocation on the last line depends on the dynamic
type of the value in variable x. If x refers to an instance of B, then the first
function is invoked, while if x refers to an instance of C, then the second
instance will be invoked. Should x hold an instance of class A, then the
constraints of neither definition of lookup are satisfied, resulting in an error
(one that may not be detected until runtime).

Structural constraints depend on the structure of the types rather than
their names. When the formal argument identifies a primitive type, then the
corresponding formal must be the same primitive type. Thus we can have
functions:

function abs(x:integer) ...

function abs(x:float) ...

Here the primitive type of the actual argument determines which of these
function will be invoked regardless of the name associated with that type.
This idea is generalized to record types. For example:
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function insert(x :record { var name :string;

var id :integer; }) ...

function insert(x :record { var name :string;

var age :integer;

var id :integer; }) ...

Here we have two functions called insert both of which require the actual
argument to have fields name and id, while the second also requires the
field age. As in record assignment, the order of fields does not matter for
structural constraints, only their names and types. This interpretation is
unchanged if the actual argument is specified with a named record type
instead of an anonymous type. For example:

record ClientData {
var name :string;

var id :integer;

}
function insert(x :ClientData) ...

This declaration of insert is the same as the first one in the previous exam-
ple: the actual argument is structurally constrained to have the two specified
fields. Then name ClientData is irrelevant to determining which version of
insert is invoked.

Union types are handled with similar structural rules:

union arithmetic {
type i :integer;

type f :float;

}
function incr(a:arithmetic) ...

The function incr defined in this example will be invoked for any union type
all of whose components are included within type arithmetic.

For types with structure, such as tuples, records, unions and sequences,
the component types for formal arguments are interpreted similarly as either
structural or nominal types. For example:
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class A {...}
function lookup( x :(integer, A)) ...

This defines a function with a structural constraint that the actual argument
be a tuple whose first component is an integer and whose second component
is constrained to be an instance of class A or a nominal subtype of A. This
applies similarly to records and sequences. For tuples, a component type
may be specified by “_” to indicate that component is unconstrained.

The component types in a union are treated as nominal subtypes of the
types to which they are bound (page 60). They may be used as constraints
on formal arguments. For example:

union Mat {
type full :Matrix;

type lower :Matrix;

}
function transpose(a :Mat.full) ...

function transpose(a :Mat.lower) ...

These define functions that require the actual argument to be a structural
subtype of arithmetic and then use nominal rules to distinguish between
the two variants.

It is possible to describe a structural constraint on an object argument.
This is done by using the keyword like in place of the colon (“:”) when we
specify the constraint on a formal argument. For example we might have:

class A {
var f :integer;

function eval(:integer) :float;

}
function search(x like A) ...

Here we specify a class definition A that consists of an integer variable f and
the prototype for a bound function eval. The function search is declared
to apply to any class that is “like” A in that it has such fields f and eval.
The name A is immaterial to this structural constraint.

6.3 Most Specific Definition

For a particular actual argument, there may be multiple function definitions
whose constraints are satisfied. For example:
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class A { ... }
class B { implements A; ... }
function lookup(a :A,...) ...

function lookup(b :B,...) ...

lookup(x,...);

If the variable x holds a reference to an instance of b, then this satisfies the
constraints for both of the definitions of lookup since the first definition is
valid for any instance of A or nominal subtype of A.

The subtype relation is a partial order on types in that instances of B are
also instances of A but not vice-versa. In this case we say that the second
declaration of lookup is the most specific. Given two constraints x and y, x
is more specific than y if every value instance that satisfies x also satisfies y,
while other values may satisfy y but not satisfy x. The function definition
with the most specific constraints is the one selected at a particular call site
from among candidate function definitions whose constraints are satisfied.

The most specific definition for nominal constraints is determined strictly
from the declared subtype relationship. For structural constraints the rela-
tionship is inferred. For example, for a call site f(r) where r has a record
value, the most specific call site is the one that mentions the most field names
available in r. To continue the example from page 82, a call:

insert( (name="fred", id=4, age=20) )

would invoke the second version of insert because all three components of
the actual argument are required by that version.

Given a call site f(u), where u is a union type, the most specific constraint
will include all the components of u but exclude some component mentioned
in each other acceptable candidate. For example, if we augment the example
on page 83 with:

union data {
with arithmetic;

type s :string;

}
function incr(a:data) ...

The previous definition is more specific for any call incr(u) where the type
of u is a union with only i and f fields.

The most specific rule may be inadequate to uniquely identify which
definition to invoke. For example:
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class A {...} class B {...}
class C { implements A; implements B; }
function search(x :A) ...

function search(x :B) ...

Since class C is a nominal subtype of both A and B, neither definition of search
is more specific than the other when the actual argument is an instance of C.
In such a situation the invocation is said to be ambiguous and is treated as
an error. Such an error may not be diagnosed until program execution, but
the possibility can be diagnosed at compile time.

The default promotion rules defined on page 18 have the effect of induc-
ing a partial order on primitive types that is respected for the purpose of
determining which function is invoked. For example:

function hash(x :integer) ...

function hash(x :float) ...

... hash(6) ...

Even though we can promote an integer value to a floating point value and so
it would be valid to invoke the second definition of hash, we treat integers as
a structural subtype of float for the purpose of determining which function
is called and hence the first definition is the more specific.

For functions with multiple arguments, constraints must be simultane-
ously satisfied for all arguments. This also induces a notion of most specific
constraint on the collection of formal arguments. For example:

subtype B:A; subtype D:C;

function hash(x :A, y :C) ...

function hash(x :B, y :C) ...

function hash(x :A, y :D) ...

Given an invocation hash(p,q) where p is an instance of B and q is an
instance of C, then the constraints of the first two definitions are satisfied and
between them the second is the more specific. However, if p is an instance
of B and q is an instance of D, then the constraints of all three definitions
are satisfied and while both the second and third are more specific than the
first, neither is more specific than the other and the invocation is therefore
ambiguous.
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The rules for promoting scalar functions in sequence contexts (page 68)
can lead to ambiguities. This happens when a function is overloaded where
some argument may be a scalar type or a sequence with that scalar as element
type. For example:

function find(x:integer) ...

function find(x:seq of integer) ...

var s :seq of integer;

... find(s) ...

... [i in s] find(i) ...

Either definition of find could be used to satisfy the first invocation, while
only the first may be used to implement the second. To resolve the ambiguity
for the first call, we treat the sequence definition as more specific than the
scalar definition. Thus, the first invocation of find above will invoke the
second definition which has a sequence formal argument.

The actual arguments at a call site may satisfy the constraints of a func-
tion definition that include default values for optional arguments. In this
case, we require that there be a most specific definition as determined by the
specified actual arguments. For example:

function hash(x :integer, y:integer=2)

function hash(x :integer, z:float=2.0)

... hash(5) ...

Here the invocation of hash is valid for both definition but since neither
definition is more specific than the other with respect to the actual argument,
then the function invocation is ambiguous.

6.4 Function Candidates

The above rules discuss determining which of the candidate definitions is
selected based on the types of actual arguments. Here we discuss the rules
that identify the set of candidates.

Given a call site to a function f, we say a function definition for symbol
f is lexically visible if that definition appears in an enclosing scope either
directly or by effect of a use or with statement.

When all formal arguments to a function definition have structural con-
straints, then we only consider that definition to be a candidate where it is
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lexically visible. For example, consider a function defined over integers in
some module:

module MyLib {
function fib(x:integer) ...

Here fib is a candidate only inside MyLib and in scopes that explicitly use

MyLib.

When a formal argument involves a nominal constraint however, then the
definition is a candidate at a larger set of call sites. We define the program to
be the main module and any module that is mentioned directly or indirectly
via a use statement. Any function in the program with the same name f

and at least one nominal constraint is considered as a candidate for any call
to f. In this case, we rely on the scoping of type names to limit the set of
candidates. For example, when we consider a function call f(x) where x is
bound to an instance of a class C, then the candidate function definitions
are all functions whose first argument is nominally constrained to be C or
a nominal supertype of C. Neither C nor any of its superclasses needs be
lexically visible at the point of invocation of f.

The above rule is modified when not all functions are exported by a
module. A function defined in a module must be exported (page 35) by
the module to be invoked by a call site at which it is not lexically visible.
Similarly, no definition not lexically visible is a candidate at a call site that
names a function which is private to a module. This allows function behavior
to be modified by a module but also allows a module to protect its local name
space to avoid inadvertent overloading with other modules.

6.5 Bound Functions

A bound function is invoked by specifying an instance of the type to which
the function is bound. This instance is passed to the function “by reference”
and that argument is treated as a type constraint following the usual rules
to determine if it is a structural or nominal constraint.

This basic rule is modified for functions bound to record and union types
where we treat the bound argument as a nominal constraint rather than a
structural constraint. For example:
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record A { int a; function lookup ... }
function A.verify ...

record B { with A; }
var x :B;

... x.lookup ...

By the definition of with, we have created two function definitions for lookup.
For the purpose of determining which to call, we use the nominal type of
x, which is B. If the nominal type of a record variable or value does not
adequately determine the function, then it can be converted to a different
nominal type. For example, if we have a record C that is a structural subtype
of A, we can invoke A’s lookup method via:

var c :record { ... };
... c:A.lookup ...

This use of the conversion operator does not construct a new value but rather
changes the interpretation of the value in c to be an instance of record A for
the purpose of determining which instance of lookup to call.

Bound functions are a separate name space from other functions and a
single call site will consider either bound or unbound functions as candidates.
Thus an invocation lookup(x) never considers the definition A.lookup.

6.6 Function Results

The types of function results do not effect the choice of which function is
invoked. This includes not only the return value of the function but also
arguments with intent out. For example:

function search(p :A, out new:boole) :C ...

function search(p :B, out index:integer) :D...

... search(x,y) ... – determined x only

In this example, only the type of the first argument is used to disambiguate
the candidates. The type of y and the return types do not effect the choice
of which function is invoked.

Similarly, an argument with type inout generates a constraint on the type
of the actual argument, but the requirement that an assignment back to the
actual argument be valid is not used to select functions.17 For example,

17I think this is consistent with our previous discussion but I’m not sure I understand
the rationale. An inout intent is not simply sugar if we require a modifiable variable as

89



function lookup(in x :float) ...

function lookup(inout x :float) ...

... lookup(5.0) ... – ambiguous

The call to lookup is ambiguous even though we can not assign to 5.0 and
so a call to the second lookup is not legal.

6.7 typeselect Statements

A typeselect statement may also be used to determine the types of one
or more values using the same mechanisms used to disambiguate function
definitions. For example:

class Rectangle { implements Shape; var height };
var s :Shape;

...

typeselect(s) {
when r:Rectangle do r.height = 10;

otherwise call error("expected Rectangle");

}

Assume here that height is not a field of Shape. The reference to r.height

is valid once we have determined that the object that s refers is in fact a
Rectangle. This example also shows the otherwise clause which guards a
list of statements executed in the event that there is no when clause corre-
sponding to the value stored in the variable.

Syntactically, the primary expression in a typeselect may be a comma-
separated list of expressions, and each when clause has a comma-separated
list of constraints with local names which mimics a formal argument list for
a function without intents.

Thus, we may have:

typeselect(x,y) {
when (a:Square, b:Square) ...

when (a:Rectangle, b: ) ...

...

}

the actual argument.
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Here the values in x and y must both satisfy the constraint of the when clause.
The wild-card “_” is used to indicate the type of the corresponding value is
unconstrained. Like function calls, the most specific set of constraints is
selected based on the types of the values during execution. In the absence
of a most significant choice, the lexically first among equal candidates is the
clause that is selected. The otherwise clause is selected only in the case
that there are no when clauses whose constraints are satisfied.

6.8 Function Values

When an expression forms a function value (page 30) rather than invoking
the function, the set of candidate definitions for this function is also iden-
tified. The set of candidates is determined as if the function were invoked
at the point where the value is formed. The particular choice within this
set is not determined until all actual arguments are specified at the point of
invocation of the function. For example, we might capture a function into a
class variable:

class A ...

function create(x :A, y :integer) ...

c.action => create(y=4);

Here we capture the value of y and the result is a function of one parameter
constrained to be a nominal subtype of A. The set of candidate function
definitions is determined at this point while a subsequent invocation:

call c.action(a);

will provide the actual argument that determines which instance of create
is actually invoked. The point of invocation does not influence the set of
candidates.

6.9 Nested Function Definitions

A function definition may be nested inside of another function definition. By
default such functions are public but they may be explicitly declared to be
private.

91



class A ...

function hash1(a:A)...

function search(x:A) { ... hash(x) ...}
function phase2 {

var x :integer;

class B { implements A; ... };
private function hash2(b:B) ... x ...

... hash(y) ...

... search(y) ...

}

Figure 5: An example of private nested functions. The definition of hash2

shadows the outer scope definitions so they are not candidates at call sites
inside function phase2. In this example, the invocation of hash inside of
function search will see only hash1 as a candidate.

Private Nested Definitions A private function declaration is treated as a
separate name from the ambient scope and that name shadows all definitions
not in the same scope. See the example in Figure 5. The local definition of
function hash excludes any non-local definitions from being candidates to the
call to hash inside of function phase2. Should that function be called with an
instance of class A, then the definition hash1 would not be a candidate. Such
a case might be an error since the constraints for hash2, the only candidate,
are not satisfied. The local definition, denoted hash2, is not a candidate for
any call site outside of phase2.

Private functions in a scope can be captured as a function value. For
example, we might extend the example of Figure 5 by storing a function in
an object:

b.action => hash;

Since function values determine candidate definitions from the point of cap-
ture, the local function hash2 might now be invoked from a call site outside
of the function phase2 by way of the function value b.action.

The bodies of private functions can make references to variables declared
in the containing function scope. This is true even after the containing
function has returned if the function was captured as a function value. This
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class A ...

function hash1(a:A)...

function search(x:A) { ... hash(x) ...}
function phase2() :A {

var x :integer;

class B { implements A; ... };
var y:B = B();

function hash3(b:B) ...

... hash(y) ...

... search(y) ...

return y;

}
function driver {

var z :A = phase2();

... search(z)...

}

Figure 6: An example of a public nested functions. The definition of hash3

is public, hence is a candidate for the call site inside search. In the two
cases illustrated hash3 is also the most specific definition and so will be the
one invoked.

will have the effect of extending the lifetime of variables such as x as long as
the function value is still live.

Public Nested Definitions By default, a function with nominal type con-
straints18 is public and may be invoked from any point in the program where
it is the most specific candidate. Such a function definition is essentially the
same as a function defined at module scope, except that it has access to nom-
inal subtype definitions whose scope is limited to the containing function. An
example is shown in Figure 6. This differs from the previous function in that
hash3 is public and so the function invocation inside of search now has two
candidate definitions and both calls shown will invoke function hash3 as the
one with the most specific constraints.

18Functions with only structural type constraints are effectively private since such func-
tions are only candidates at call sites in which they are lexically visible.
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Since public functions can be invoked at any time, they do not have access
to variables in the containing lexical scope and so may not reference them.
They may still reference types and other public functions in that scope.19

6.10 Operator Overloading

Chapel allows most of the prefix and infix operators shown in Figure 1 on
page 17 to be overloaded with application specific function or iterator defini-
tion. The syntax to declare such an “overloaded operators” is just like other
functions or iterators but an operator is used instead of a 〈symbol〉 to name
the function. For example we might have:

record Polar { var r :float=0.0, theta :float=0.0 }
function * (x :Polar, y:Polar) :Polar {

return Polar(r=x.r*y.r, theta=x.theta+y.theta);

}
function * (x :Polar, y:float) :Polar {

return Polar(r=x.r*y, theta=x.theta);

}

Here we have a representation for complex numbers in polar coordinates and
examples of defining overloaded definitions multiplication which are selected
based on structural constraints.

Operators that have unary forms may have definitions with only a single
formal argument while those that have a binary form may have two argu-
ments. The set of unary operators that may be overloaded this way are:

~ + - not

and the binary operators are:

** * / & ^ |

< <= > >= == !=

and or #

19When a “public” function has an invalid up-level reference, we will generate a compile-
time diagnostic either as an error as a warning and the treat the function as implicitly
private.
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6.11 Notes

Conversion Operators The syntax a:B has two usages above as an op-
erator above. The first is where B is a primitive type and a a value of some
other primitive type and we want to force a conversion such as converting a
floating point number to a string. The second usage is to convert a record
or union lvalue to have a specific nominal type for the purpose of bound
function dispatch.

When B is a class, we can define the following semantics. If the value in a

is a nominal subtype of B, then no action is taken. Otherwise, the constructor
B.initialize(a) is invoked to create a new instance of B.

This suggestion is motivated mostly to perform generic initialization such
as 0:T where T might be arithmetic or a user defined class.

The bound function case seems like an exception. May be we should
use the syntax x.(B.lookup) to force invocation of the particular bound
function B.lookup when it is needed.

Additional Constraints for function Values Do we need to be able to
constrain the types of actual arguments when we form a function value:

bar => foo( , :integer)

the idea is to constrain the second argument to foo to be an integer but say
nothing else.

95



96



7 Type Parameterization

Chapel permits functions, variables, and types to be specified with type vari-
ables. Such constructs represent specification of behavior that is parameter-
ized by the specific semantics of data and operations associated with some
type. Program fragments that are parameterized this way are said to be
generic. A program fragment with no type variables is sometimes called
concrete.

7.1 Requirements

Requirements:

1. Allow functions and types to be parameterized by other types to allow
reuse of algorithms specified over value as well as object types.

2. Extend the function overloading mechanism to functions with type vari-
ables. In particular, we allow subtype constraints on type variables to
allow selection of different implementations for a function.

Features:

1. Use constraints on type variables to allow accurate error messages when
a program is not type correct.

7.2 Type Variables

A type variable can be explicitly introduced in any context where a type is
expected. The marker “?” is used as a prefix to indicate a new symbol is
being bound. The scope of this symbol is like a variable: from the point of
introduction to the end of the enclosing scope. Type variables can appear in
many contexts:

Function argument types A common case for using type variables is in
the specification of formal arguments to a function definition. For example:
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function f(x : ?t , y :t) : t { ... }

Here, ?t introduces a type variable named t. Note that this is not a con-
straint on the actual argument that can be used to determine which definition
of f will be used. Rather, it is an assertion that the type of x is the same
as the type of actual argument. The subsequent uses of t indicate that both
arguments to f must have this type. This usage is a constraint on the actual
argument y, and that constraint is either nominal or structural depending
on the actual type. Like C++ templates, we expect the implementation of f
to be specialized to the various specific types for t used when f is invoked.

Variable declarations Type variables can also be used for variable dec-
larations, as in:

var x : ?t = f(a,b);

Where type variables for function parameters are determined by the calling
context, types for variable declarations are inferred from the values assigned
to the variable. Assuming only the above definition of f, we determine that
t is the same as the type of a.

Structured types Inside a class or record, a type variable can also be
specified using an abbreviated type definition:

class F {
type elt type;

...

}

Here we declare a type identifier, elt_type, but provide no binding. This
symbol is a type parameter. It may be used inside the balance of the class
specification and within bound functions. Such a parameter may be bound
by name in a constructor, as in:

var f = F(elt type=integer);

or it may be omitted from the constructor and determined from context.

Element Types Type variables can also appear inside of structural type
constraint. For example, we might have:
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function g(x : seq(?t)) ...

The parameter to function g is a sequence type whose elements have type
t. Type variables can also appear as components in tuples, records, classes,
and unions, as well as sequences. If a type T has a component type variable
t then a type constraint can be specified of the form T(t=?a) where a is
bound to the corresponding type value of the actual argument type.

Parameter Variables The “?” notation can also be used to name integer
parameters in types as well. For example, arithmetic types have size as the
name of compile-time value that determines the representation width. This
value can be given a name as in:

function h(x : integer(size=?k),

y : float(size=k)) { ... }

Anonymous Type Variables A type specification may be omitted for
variables, function parameters, function return types, and fields. This is
equivalent to having an unnamed but unique type variable. The token “_”
may also be used as a type designator, as in seq(_), which is also treated as
an unnamed type variable.

The type specification may be completely omitted in any case where a
type variable can be specified. This is equivalent to having the type specified
by an anonymous type variable.

Formal type parameters We permit a function to have a parameter that
is just a type variable. This is denoted by using type as a prefix. Thus:

function mkStack(type etype) {
return Stack(elt type=etype);

}

Here we have a function that has no data parameters but has a type param-
eter. When a function value is formed, all type parameters must be bound
so that the resulting expression has a concrete type.

7.3 Type Constraints

The legal values for a type variable can be constrained by use of a where

clause. A where adds a constraint just like formal arguments to a function:
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where 〈symbol〉 :〈type〉;

The term 〈symbol〉 is a previously identified type variable associated with
a type definition or a formal argument of a function. Constraints are not
permitted on type variables associated with variable declarations. A where

statement may be placed anywhere in the scope of the type variable it con-
strains.

These constraints might be either nominal or structural. For example,
we might require that it be a union type with particular components or a
sequence type:

where t = (i : integer or

f : float); where t = seq(?s);

The first indicates that t is a type union that includes named fields i and
f that are integers and floats. The second requires that t be some sequence
type whose element type is bound to s. When the where specifies record or
class, additional requirements may be placed on the fields defined by that
type. For example:

where t :class {
var id : integer;

function name() : string ;

}

This statement constrains t to be a class that has a variable id of type integer
and a function name of no parameters that returns a string.

Type constraints are sometimes needed to properly scope certain identi-
fiers, such as enumeration values and type union components. For example,
we might have:

function f(x : ?T) {
where T: record { var name, id };
use x;

...name...;

One effect of the type constraint on T is to identify that symbol name is
associated with x. Therefore, after the use statement, a reference to name

is interpreted as x.name. Only fields that associated with explicit types or
implied by explicit constraints are included by the use statement.
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7.4 Overloading

A function definition involving type variables may be overloaded. In this
case, the constraints on the type variables are used like other argument con-
straints to resolve which function definition is selected. An unconstrained
type variable is always considered less specific than any other constraint.

Once a generic function has been selected, the value of the type variable is
determined based on the actual argument. This differs from the non-generic
case for value types such as records where the type of the formal argument
is independent of the type of the actual argument. For example:

record ClientData { var name :string,

id :integer; }
record ClientData2 { var name :string,

id :(integer,integer); }
function print(x :integer) ...

function print(x :(integer,integer)) ...

function print(x :?client)

where client: record { var name, id; } {
call print(x.id);

Here we have two similar record definitions that have no structural relation-
ship except a common set of names. The two print functions are suitable
for the different id types, and the generic function print has a structural
constraint on a type variable that is satisfied by both record types. For a
particular call, the type variable client might be bound to either of the two
record definitions. The type of x.id determines which version of print to
call.

7.5 Type Constructors

The types of variables in generic types must be bound when an object of that
type is created. The most direct way is to bind the types by name when the
object is constructed. For example:

class Client { type id type; var id :id type }
... Client(id type=integer);

Here we specify the id_type type variable by name in the default constructor.
If there was a non-default constructor it might invoked as:
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... Client(id type=integer).create(...);

... Client.create(id type=integer,...);

These are equivalent when create does not have an explicit id_type formal
argument.

An explicit constructor may also use a class type variable in the argument
list of the constructor. For example

constructor Client.new(x :id type) ...

... Client.new((4,5))

This function definition uses a type variable from the class Client. An invo-
cation of this function then provides a binding for that type variable. The ex-
ample invocation would bind id_type to the tuple type (integer,integer).

7.6 Variables with Variable Types

Chapel permits variables to be declared with type variables including simply
omitting the type. For example:

var id = (4,5);

var x = Client.new(id));

The type id is inferred to be (integer,integer), which is the type of the
initial value assigned to id. Using that value in the constructor for Client

determines the type of that expression, which defines the type of x. Explicitly,
this would look like:

var id :(integer,integer) = (4,5);

var x : Client(id type=(integer,integer)) =

Client(id type=(integer,integer)).new(id);

In the first specification, if we changed the type of id, that change would
propagate through the next statement.

Chapel allows variables without initializers to be declared with type vari-
ables as well. However, if that uninitialized variable is used as an actual
argument to a function call, then the implementation may not be able to
determine which function is called or the result type. This may generate
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an error message at compile time indicating additional type information is
required.

Variables in class declarations must have explicit types, although those
types may be specified with type variables.20

7.7 Example

As an example of the use of type variables, Figure 7 shows a generic descrip-
tion of a stack class and its specialization for integers. The class Stack has a
type variable elt_type indicated by the incomplete type declaration. That
symbol is also used inside the support methods and those references bind to
Stack.elt type, just like other field references in a bound function. The
instantiation of an instance of the class provides an opportunity to bind type
variables to specific type. That binding allows concrete interpretation of the
various object and function definitions.

Another generic function might be:

function total(s : ?List) List.elt_type {
var t = 0:List.elt_type;

for e in s.elements

t += e;

return t;

}

This function is parameterized by a structured type locally referred to
as List which has an field that designates a type, elt_type. It’s further
assumed the List type includes either a sequence or an iterator named
elements. The syntax of the for statement permits either. The Stack

class in Figure 7 satisfies these requirements so this function can be used
with instances of that class when Stack.elt_type is bound to an arithmetic
type. For example:

var t :integer = total(s); – sum all integers on the stack

The bindings of List to Stack(elt_type=integer).
The type of a variable can be accessed by treating type as a field name

for that variable. This permits type variables to remain unnamed and the
above example can be written:

20How are ways we can weaken this if we wanted to?
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class Stack {
type elt type ;

class Elt {
var value :elt type;

var next :Elt;

}
var top :elt type = nil;

}
function Stack.empty :boole { return top == nil; }
function Stack.push(v :elt type) {

top = Elt(value=v, next=top);

}
function Stack.pop :elt type {

var v :elt type = top.value

top = top.next;

return v;

}
iterator Stack.elements :elt type {

var h :Elt = head;

while(h != nil) {
yield(h.value);

h = h.next;

}
}
var s = Stack(elt type=integer);

Figure 7: Generic stack and a specialization
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function total(s) :s.type.elt type {
var t :s.type.elt type = 0:s.type.elt type;

for e in s.elements

t += e;

return t;

}

Here s.type is functionally similar to naming the type variable.

7.8 Element Types

The common idiom of parameterizing a collection-oriented data type by a
single element type has special syntactic support. The construction <type>of

<type> is used as short hand binding the second type expression by name as
the elt_type of the first type expression. For example, we can say:

var s : Stack of integer;

which is equivalent to:

var s : Stack(elt type=integer);

7.9 Notes

Unions We might want to expand the type inference to allow the assign-
ment of component types to union types without explicit component identi-
fication when that assignment is unambiguous. For example, given:

union U type i: integer, f: float;

var x : U;

we might interpret an assignment x = 〈e〉 as this:

typeselect(〈e〉) {
when e:integer do x.i = e;

when e:float do x.f = e;

}

but with a requirement that this choice be unambiguous.

Explicit type bindings We might allow introduction of type variables for
return values but require them to be fully defined. For example:

105



function total(s) : ?rtype {
where rtype :s.type.elt type;

var t :rtype = 0:rtype;for e in s.elements

t += e;

return t;

}

The use of where is simply to allow the variable rtype to be used before it
is defined.
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8 Arrays and Domains

8.1 Requirements

A domain is a description of a collection of names for data. These names are
referred to as the indices of the domain. All indices for a particular domain
are values with some common type. Valid types for indices are primitive
types and class references or unions, tuples or records whose fields are valid
types for indices.21 Like sequences, domains have a rank and a total order on
their elements. An array is generically a function that maps from a domain to
a collection of variables. Chapel supports a variety of kinds of domains and
arrays defined over those domains as well as a mechanism to allow application
specific implementations of arrays.

Arrays and domains are mechanisms to implement two Chapel goals.
Arrays are abstractions of the mapping from sets of values to variables. This
is one of the key uses of data structures and by putting additional emphasis on
this function including generic syntax support, we will increase the reusability
of software. The second issue is the high-level distribution of data collections.
This is a topic that we return to in a later section, but by making domains a
separate and first class entity, we enable distribution at the collection rather
than the object level.

Our requirements are:

1. Support a generic notion of array that encompasses any mapping from
a set to variables and includes Fortran arrays as a specific instance.

2. Unify arrays with sequences for the purpose of aggregate expressions.

3. Extend the argument passing and reference mechanisms to handle ar-
rays.

4. Support domains as a first-class concept with specialized syntax for the
most common cases.

and a productivity goal is:

1. Support general sparse domains that provide both support for sparse
linear algebra but also a limited form of generic set data type.

21This list excludes: references, sequences, functions, domains, and arrays.
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8.2 Arrays

An array is declared as:

var 〈symbol〉 [ 〈domain spec〉 ] [:〈type〉] [= 〈expr〉];

or equivalently:

var 〈symbol〉 array 〈domain spec〉 of 〈type〉 [= 〈expr〉];

In each of these cases, 〈symbol〉 is an array that maps the specified domain
to a set of variables holding values of the specified type. For example,

var x[1..n] :integer;

This defines an array x that maps integers in the range of 1 to n inclusive
to integers variables. Chapel arrays generalize traditional notions of arrays
found in C and Fortran. A declaration such as this also implies the creation
of new variables that initially have no other references.

An individual variable is accessed by treating the array syntactically like
a function and “invoking” it on an element of the domain. This x(i) where
1 ≤ i ≤ n, is the variable corresponding to element i. Following tradition,
the argument is called a subscript. Such an expression may be used anywhere
a variable reference may be used. When used as the argument to a function,
the subscript value is computed once, prior to execution of the function.
This is true even for arguments with intent out where the selected variable
is defined after execution of the function body.22

The usual rules for promoting functions with sequence arguments apply
to subscripts as well. Thus, the expression “x(s)” where s has type seq of

integer will yield a sequence of variable references, one for each index value
in s. Such sequences may be dereferenced to yield a sequence of values or
may be assigned into element-wise. The rank and order of the elements is
the same as for the sequence s.

When an array is used without a subscript, it is implicitly converted to
a sequence of variable references, one per domain element in domain order.
The rank, shape and order is the same as for the domain.

22Evaluating out arguments before the function is invoked is consistent with the general
left-to-right evaluation rule but does leave the possibility that if x is an array and x(i)
is used as an actual argument where intent is out, then if the function changes x in some
way then our reference may be stale. This is a problem that arises with call by reference
argument passing as well.
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8.3 Domains

Chapel provides a rich set of primitive domains and techniques to synthesize
compound domains from these primitives. Domains are first class concepts
in the language in that variables of domain type can be declared and can be
fields in classes. Because of their complex structure and special semantics,
Chapel provides special syntax for declaring variables of domain type:

[const] var 〈symbol〉 :domain [〈domain spec〉]
[= 〈range information〉];

where the details of 〈domain spec〉 and 〈range information〉 vary with the
specific kind of domain as described below. When 〈domain spec〉 is omitted,
it will be inferred from range information or from assignments to the variable.
The optional const attribute indicates that range information may not be
modified once it is set.

Like sequences, a domain may have a specific bounded set of indices, in
which case it said to be definite or it may have an unbounded set of potential
index values in which case it said to be indefinite.

Domains can be used in contexts in which sequences are expected, such
as for loops. In this case, they evaluate to the underlying set of index values
in domain order. For example:

var a [D] : float;

var b [D] : float;

forall i in D do

a(i) = 2*b(i);

or

[i in D] a(i) = b(i);

For indefinite domains, the iteration will be defined to be over the set of
indices that is determined by previous usage of the domain as described
later.

Index Types For each domain, there is a corresponding index type. Such
an index type is a subtype of the type of the values used to index the domain
and can be used in appropriate contexts. Variables of this type can be
declared using the index of generic type constructor. In the above example
this might be:
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var j : index of D;

If the indices of D are integers, then the type of j is a subtype of integer.
This is the type of control variables of for loops that iterate over domains.
We also permit the use of index in a parameterized form:

var j :index(D);

which is equivalent to the above.
Each domain variable includes an index method that maps values into

instances of the corresponding index type. For example:

j = D.index(k)

Values of index type are known to be valid and may have specialized rep-
resentations to facilitate accessing arrays defined for that domain. It may
therefore be less expensive to access arrays using values of appropriate index
type rather than values of the more general type the domain is defined over.

Arithmetic Domains An arithmetic domain has tuples of integers as the
index type. The values of these tuples are constrained to lie within a bound-
ing box with strides specified as a tuple of arithmetic sequences. At the point
of declaration, we permit either the rank of the domain to be specified or the
range information. The latter is specified via an arithmetic index set of like
rank. For example

var w : domain(1);

var x : domain(1) = 1..n;

var y : domain = 1..n;

var z : domain(1..n)

All these define domains that are indexed simply by integers. The first does
not specify the bounding information while the second and last do. The last
three are equivalent.23 Other examples of arithmetic domains are:

23It might be argued that the definition of y is ambiguous since we could also use an
indefinite domain domain(:integer). How should this be resolved?
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var x1 : domain(3); – rank-3
var y1 : domain(2) = (1..n, 1..m);

var z1 : domain(1..n, 1..m, 1..k by 2);

The shape of arithmetic domains is the same as shape of the cross-product
of the arithmetic sequences that define the bounding information. The rank
of an arithmetic domain must be a compile-time constant (parameter).

The bounding information for an arithmetic domain is called its range.
The range can be specified by initializer, by assignment to the domain vari-
able, or by an explicit call to set_range with such a value. This information
can be explicitly accessed via the range method as well. Thus y.range for
y as defined above is the value of type index(1) denoted 1..n. This can be
changed by assignment or by set_range method:

y = 2..m;

call y.set range(3..100);

The difference between these is described below in section 8.5.
Assignment between two domain variables is defined to be a transfer of

range information. Thus an assignment, D1 = D2, is interpreted as:

call D1.set range(D2.range);

This is true for function argument passing as well, and it applies to other
classes of definite domains described below.

Enumerated Domains Enumerated types and the type boole can also
be used to define a domain. For example:

enum Colors { red,blue,green,yellow }
var x : domain(Colors);

var y : domain(boole);

Here x is a domain whose indices are values from the enumerated type Colors
and y is a domain indexed by values false and true. The left-to-right order
of enumeration values defines the domain order and false is before true.
Such domains have no separate range information.
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Indefinite Domains Scalar types are primitive types, enumerated types,
class references, and tuples, unions, or records of scalar types. Any scalar
type may be used to define an indefinite domain. Arrays of such domains
are simply dictionaries mapping from values to variables. For example:

var people : domain(string, integer);

var age [people] :integer;

...

age(’fred’, 4) = 42;

Here people is a domain whose index values consist of a string and an integer.
There is no bounding information for such a domain and the elements of the
domain vary as the program evolves. A new index is logically added to such a
domain when an array element corresponding to that index is defined. In the
example above, (’fred’,4) is added to people as an effect of the assignment
to age. Index values can also be added with an explicit add method as in:

call people.add(’fred’,4);

The add method can be invoked with components of the tuple type, an
instance of the tuple type or a sequence whose elements have this tuple type.

When an indefinite domain is used in a context where a sequence is ex-
pected, then the sequence of values is determined by the set of index values
used so far in the program.

for p in people do

age(p) += 1;

The order of elements in an indefinite domain is not defined but is consistent
as long as no elements are added to or removed from the domain.

Indefinite domains support a remove method that removes index values
from the domain. This method has a single argument that is either a value
of index type or a sequence of such values. When an indefinite domain is
defined over a tuple type, then remove may also be invoked with arguments
corresponding to the components of the tuple:
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var p = (’fred’, 4);

call people.remove(p); – remove an element
call people.remove(’sally’, 2); – specified as components

It is legal to call remove when its argument identifies a value not currently
in the index set. Such an operation has no effects.

For indefinite domains, the += and -= operators are simply sugar over
calls to add and remove. The right hand operands may also be either values
or sequences of values of suitable scalar type:

people -= (’fred’, 3); – remove an element
people += (’fred’, 4); – add an element

An indefinite domain also supports a member? function that can test
whether a particular value is part of the index set. It can also be invoked
with either a tuple or the components of the tuple and it returns a boole.
For example:

var s : seq of (string, int);

var new = [p in s] if (not people.member?(p)) then p;

...

if(people.member?(’sally’, 3)) ...

Opaque Domains An opaque domain is a form of indefinite domain where
there is no algebra on the types of the indices. These are denoted by the
keyword opaque in the domain specification:

var D : domain opaque;

New index values for this domain are explicitly requested via a new method.
For example

var d [1..n] :index of D = D.new();

Opaque domains permit more efficient implementations than indefinite do-
mains under the assumption that creation of new domain index values is
rare.24

24They also don’t have to support the index method.
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The remove method can be invoked for a single index value or a sequence
of index values. Those values will be removed from the domain and any
values associated with them reclaimed. Given the definitions above, we might
remove the first 5 elements created above: D.remove(d(1..5))

Sub-domains A sub-domain is a domain whose values are elements of a
base domain. A sub-domain is specified by identifying the base domain in
the 〈domain spec〉. For example:

var D : domain (1..n,1..m);

var Interior : domain (D) = (2..n-1, 2..m-1);

Sequencing of the index values in the sub-domain is consistent with the order
of those values in the base domain.

The index values for a sub-domain are a subtype of the index values of the
base domain and can be used where base domain index values can be used.
To convert from base domain index to sub-domain index requires explicit use
of the sub-domain index method: For example:

var d = D.index(4,4) ; – base domain index
var i = Interior.index(d); – sub-domain index
var A [D] : float;

var B [I] : float;

... A(i) ... – valid, i is a subtype of d

... B(d) ... – valid, but perhaps more expensive

The last expression is valid because d is a subtype of (integer,integer)
and such a tuple can be used to index into a domain but there may be greater
cost to verify that it is a valid index value.

In the case of arithmetic domains, the sub-domain range information
may be specified as a separate strided bounding box. That box may involve
indefinite sequences which are constrained by the bounding box of the base
domain.

Product Domains There are two ways to build compound domains from
base domains. One is to form a regular product domain where index values
in the product are tuples of index values from the component domains. The
syntax for this uses tuple notation for the component domains:
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〈domain spec〉 = 〈domain spec1 〉 , ..., 〈domain speck〉

where an example might be:

var A : domain opaque ;

var B : domain (2);

var C : domain (A,B);

Here C is a domain consisting of tuples of values where the first term is an
element of A and the second term is an element in B. In the case of regular
products, if x and y are index values of A and (x, i) is an index in C then
(y, i) is also an index in C. Arithmetic domains with rank greater than 1 are
merely special cases of regular product domains.

Range information for a regular product domain is specified as a tuple of
the range information for the component domains for which range informa-
tion may be specified.

The syntax for irregular domains uses the array syntax:

〈domain spec〉 = [ 〈domain spec〉 ] 〈domain spec〉

where an example might be

var D : domain [A] B;

where the interpretation of this declaration is that the domain D is an array
of sub-domains of B. Each of those sub-domains may have different subsets
of the base domain B. Here, the domain A is referred to as the outer domain
and B is called the inner domain.

Range information for irregular domain consists of a tuple where the first
component is the range information for the outer domain, A in this example,
and the second is a sequence of range information for the inner domains. The
set_range method may be called with just the first component of these, after
which subscript notation can be used to set ranges for element domains:

call D.set range(A range information);
call D(i).set range(B range information);

set_range may also be called with complete information. For example:
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var Triangle : domain [ (1) ] (1);

Triangle.set range(1..n, [i in 1..n] (1..i));

This declares a domain that is a rank-1 array of rank-1 domains. The ar-
guments to set_range first define the outer domain and then each domain
in that outer domain. When the outer domain is opaque, the range for that
domain consists of the number of elements.

The order of elements in a product domain is the lexical-graphic order
induced by the orders of the component domains.

Sparse Domains A sparse domain is a general kind of sub-domain where
the set of sub-domain index values is arbitrary rather than structured as
in the arithmetic case. A sparse domain is indicated by a sparse keyword
and the set of index values may be specified by explicit enumeration. For
example:

var Node : domain (1..n) ;

var active : seq of (Node, Node);

...

var Edges : domain sparse (Node,Node) = active;

var weight [Edges, 1..3] :real;

call Edges.add(...);

call Edges.remove(...);

Here Edges is a sparse sub-domain of the regular product domain consisting
of pairs of integers in the range 1 to n. For each element in Edges, there is a
short 3-vector of floating point values designated by weight. These variables
are only defined for elements in the sparse sub-domain, not for all elements
in the dense base domain. The range information is specified as a sequence
of pairs of base domain values. When the range information changes, so does
the places where weight variables are allocated.

The operators += and -=, when their target is a sparse domain, are in-
terpreted as adding or removing elements of the domain respectively and are
simply a different way to invoke the add and remove methods.

Anonymous Domains An array declaration can identify a domain by
name or as a domain specification. In the later case, specification are per-
mitted corresponding to regular products of definite domains, and previously
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defined domains. This can be nested to indicate irregular products. Some
examples are:

var w [1..n,1..m] :integer;

var x [1..n, Colors] :float;

var D :domain ...;

var y [1..n, D] :float;

var z [i in D] [1..f(i)] :float;

The domain for variable w is is the rank-2 arithmetic domain with the spec-
ified bounding information. The domain for x is the product of the rank-1
domain with specified range and the enumeration domain implied by Colors.
The domain for y is the regular product of the rank-1 domain and the do-
main D. The domain of z is the irregular product of D and the collection of
rank-1 arithmetic domains with specified range information. These anony-
mous domains implicitly have the const attribute and may not be modified.

8.4 Domain Arguments

When a formal argument of a function is specified as being a domain, then
the actual argument must also be a domain. In this case, the actual is not
treated as a sequence. Rather, the formal is bound to a reference to the actual
as is done for instances of classes. If an explicit 〈intent〉 is specified, then
a new domain is created and range information is communicated between
formal and actual. For example:

var d : domain (1); function foo( x : domain) {
...

x = 1..n;

...

}
function bar(in x : domain) {...}
foo(d);

bar(d);

Function foo receives a reference to d and so the assignment to x will change
the range information for d. Variable x in variable bar is a separate domain
that is initialized to the range information from d.
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8.5 Array-Domain Association

When the 〈domain spec〉 of an array identifies a specific domain variable,
then the array is said to be associated with the domain. This association
means that changes in the set of names in the domain are reflected in the
set of variables mapped by the array and any array aliases. Sub-domains are
similarly associated with the base domain and changes in the base domain
may remove elements from the sub-domain.

When an arithmetic domain is specified without bounds information, or
a sparse domain is specified without an initial set of elements, the domain
is said to be unallocated. This information may later be specified using the
set_range method of the domain after which the allocate method may be
called. No variables are created for arrays when they are associated with
unallocated domains. When the allocate method is invoked, variables are
created for these arrays.

Arrays that are associated with unallocated domains may not have ini-
tializers25 and may not refer to the elements unallocated domains in the
specification of range information in irregular products.

The range information for a domain may be changed by a call to set_range,
or for sparse domains by calls to add and remove. After range information
has been changed, the method reallocate(preserve_data:boole = true)

may be called to update the associated arrays. The argument to this meth-
ods determines whether existing values in those arrays are preserved where
possible. When range information for a domain is modified by assignment
to the domain, this is equivalent to a call to set_range followed by a call to
reallocate(preserve_data=true).

In this context, when we preserve data values, it means that any value
that was a valid index before the reallocation and remains a valid index after
the allocation will maintain its value, yet the index may refer to a different
variable.

If the base domain has not been allocated when the sub-domain is de-
clared, then the sub-domain is not allocated. After the base domain is al-
located, a separate allocate method must be invoked on each sub-domain.
A reallocate method must be used on each sub-domain when the base
domains change.

25If the type of the elements of the array have a default initial value, that will be used
when the array is allocated.
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8.6 Expressions and Domains

In an expression context, a reference to an array X over domain D is treated
as the expression: [i in D] X(i). In this last expression, the reference to D

is used to indicate a sequence of all of the indices of D in their natural order.
A bare “ ” operator may be used as a subscript for a domain or an array

defined over a domain. This is interpreted as selecting all legal values for the
subscript position regardless of the index type for that domain. A domain
or array reference involving such a selection is called a slice of the object.

A bare “*” operator may also be used as a subscript for references to
domains and arrays but only in iterator control contexts. This operator is
used to identify a set of non-empty slices by filtering an input sequence. Here
is a simple example:

var D : domain sparse [A] B;

for i in D(*,50) do

...

The values assumed by i are those where (i,50) is a valid index in D. We
call this a projection of D.

This example is generalized as follows: consider an expression of the form
X[i1, . . . , ip] where some of these index values are “*”. Of the remaining
subscripts, some are scalar and some are sequence expressions. Let S denote
the cross product of those sequences. The effect of this expression is to filter
S such that replacing the “*” with “_” and the sequence subscripts with
the value from S yields an expression that is a non-empty sequences. We
generalize the previous example to:

var cols : seq of B;

for i in D(*, cols) do

Here, i assumes a sequence of values that would be returned by:

[j in D] if any([c in cols] D.member?(j,c)) then j

The initializer expression for an array declaration is a sequence expression
determined by the underlying domain for iteration control. Like other domain
references, element values may be given names for use in the expression
context. For example:
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var D : domain(1..n);

var iota [i in D] : integer = i;

class F {
constructor new();

}
var objects [D] = F.new();

Here we define a domain D and two arrays over that domain. The first is an
array of integers where symbol i is bound to each element of D as we evaluate
the initializer expressions. The array objects holds references to instances
of class F. The constructor F.new is invoked once per element of D, but this
time we don’t need a name for that value.

Domains of expressions .

8.7 Array Aliasing

An array may declared that reuses variables from another array. The syntax
for this is:

var 〈symbol〉 [[〈domain spec〉]] => 〈expr〉;

Here 〈expr〉 must evaluate to an array reference or a sequence of variables
that has the same shape as 〈domain spec〉. Those variables are not evaluated,
rather a new mapping to those variables is established. This new mapping
is called an alias since the same variable is now known by different names.
For example:

var xi[1..98] => x[2..99];

now xi(2) is the same variable as x(3) but xi has a different domain than x.
If the 〈domain spec〉 is omitted, then it is assumed to be the same as the
domain of 〈expr〉. In the case of arithmetic domains, an indefinite arith-
metic sequence may also be used as long as bounding information for each
dimension of the domain is well-defined.

The implementation of such an alias may be done by translating index
values from the target domain into index values in the source domain and
then using the source array. This will be done whenever the source and
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target domains are simple cross-products of arithmetic sequences, possibly
transformed by translate, spread and reshape operations. In this case we
use the term ‘view” to describe the relationship. The keyword view may
precede the keyword var. This will generate a compile-time error if a view
can not be used for such an implementation.

When a view is not used, then the alias is implemented as an array of
references declared over the target domain.

8.8 Array Arguments

Aliasing is the argument passing mechanism when arrays are formal argument
of a function. The formal argument may have a different domain from the
actual or may inherit its domain from the actual argument. The extended
syntax for arguments includes:

[〈intent〉] 〈symbol〉 [ [〈param domain〉] ] ] [:〈type〉]

where 〈intent〉 now refers to the variables that are referred to by the domain.
When an 〈intent〉 is specified as in, inout, or out, the new variables are
created and values are copied to or from the actual argument as for scalars. If
the intent is const, then no copies are made and as for scalars, assignment to
array elements is not permitted. Unlike scalars, assignment to array elements
to do not require specification of intent since the default is to pass elements
“by reference”.

If 〈param domain〉 is or has the form ? 〈symbol〉, then the domain specified
in the actual argument is used here. Given:

function foo(f:[?D]) ...

var D1 : domain(2) ;

var x [D1] : integer;

call foo(x); – f => x[D1]
call foo(x[1..n, 1..m]); – f => x[1..n,1..m]
call foo(x[1..n,2]); – f[1..n] => x[1..n,2]

The first call to foo will associate D with D1. In the second D will be a sub-
domain of D1 corresponding to the specification range. In the third case, D1
is a rank-1 arithmetic domain with range 1..n.
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A 〈param domain〉 may be specified as a domain variable from the enclos-
ing lexical context or from a formal argument. Such a specification requires
that the actual argument conform to that domain:

var D : domain(2) ;

function foo(f :[D]) ...

var D1 : domain(2);

var x[D1];

call foo(x) ; – f[D] => x[D1];

In these cases, an alias is established between the formal argument and
the actual and no new variables are instantiated. A view keyword may
precede the 〈intent〉 and represents a requirement that argument passing for
this argument be implemented with a view.

If a sequence is an actual argument passed to a formal array argument,
the domain of the actual is determined by the shape of the sequence. This
will be the domain of integers or integer tuples that are value subscript of
the sequence.

8.9 Array Functions and Objects

An array may be defined by associating a domain with a function. The
syntax for this is similar to other function definitions:

function 〈symbol1 〉 [ 〈symbol2 〉 :〈domain〉] [:〈type〉] 〈block〉

The square brackets indicate an array definition. 〈symbol1 〉 is the name of
the array and 〈symbol2 〉 a variable of domain index type that is local to
the function and referred to as the formal argument. The term 〈domain〉
identifies a domain variable in the enclosing lexical context. 〈type〉 is the
type of values stored in the array and 〈statement〉 computes an instance of
that type or a variable of that type.

Note that 〈domain〉 is a variable and while it is specified like an argument
type, a reference to it is part of the function value bound to 〈symbol1 〉, This
reference is consulted when a function is used in an aggregate context.

When 〈domain〉 has a rank greater than 1, then 〈symbol2 〉 may be re-
placed with a comma separated list of symbols that will be bound to the
components of the tuples that make up the actual argument. In this case,
the actual argument may be a tuple or a list of values of component types.
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8.10 Notes on Arrays and Domains

Default Values Maybe an initializer for an indefinite domain can be in-
terpreted as the value associated with a newly created element if it has not
been previously defined.

var dict [ string ] = ’’;

We also want to allow such values to be specified for sparse domains even
when the sparse domain is unallocated.

Another approach would be to use the default value of the underlying
type. For example:

type String :string = ’’; var dict [ string ] : String;

In this case, dict[s] returns ’’ when not dict.member?(s).

Distribution for indefinite domains This might be done with hashing
function defined over the infinite space. Load balancing might become an
issue...

Implicit Subscripts We want a mechanism to allow subscripts to be im-
plicit when we iterate over domains.

[S] A = B;

where if A or B is defined over S, a subdomain of S or a domain that is a
product where a term is S, then we use the “current value” of the iteration
to select the appropriate slice of the array.

Other things

1. How to specify non-represented implicit value in sparse arrays

2. Some sort of ability to associate an “out-of-bounds” function with an
array which can print errors or implement boundary conditions.

3. More information on array subscripting, especially for arrays of arrays
– can we use integers, tuples, tuples of integers, do they have to corre-
spond, what does it mean to partially subscript an array, etc.
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4. I’d obviously like to see some sort of concept similar to ZPL’s flood/grid
dimensions, especially if we allow implicit subscripts.

5. reductions/scans on arrays

6. Along with the implicit subscripts, I think some sort of relative indexing
would be very convenient to keep expressions shorter, sweeter:

[(i, j) in S] A(i, j) = B(i-1, j) + B(i+1, j) + B(i, j-1) + B(i, j+1)

or

[ind in S] A(ind) = B(ind+(-1,0)) + B(ind+(1,0)) + B(ind+(0,1)) + B(ind+(0,-1));

vs.

[S] A = B@(-1,0) + B@(1, 0) + B@(0,-1) + B@(0,1)

it’s sugary, but very convenient, I think.

7. can one index into arrays using arrays? Is the interpretation zipper vs.
cross-product? (I suspect we support both depending on the style of
brackets used?).

124



9 Parallelism and Synchronization

Chapel is an explicitly parallel programming language. Parallelism is intro-
duced into a program via three constructs and is coordinated via a small
number of synchronization mechanisms. To avoid any unintended implica-
tions, we use the terms “computation” and “sub-computation” to refer to
distinct, concurrently executing portions of a program.

9.1 Parallel Expressions

A sequence expression of the general form:

[i in S] f(i)

where S is a sequence, array, or domain is normally executed in parallel even
though the results have a well defined sequential order. Unordered reduce

and scan operations are also parallel by nature.
An assignment statement such as:

X(S) = Y;

where X is an array and S a sequence of index values is also executed con-
currently in an element wise manner. If there are duplicate values in the
sequence S, then the order of writes to the selected variables of X is non-
determined.

The ordered keyword can be used as a unary operator to suppress parallel
execution of a sequence expression that can involve side-effects to memory.
This expression:

... ordered f(〈s1 〉

where f is some function and 〈s〉 a sequence will evaluate each instance of f
one at a time and in sequence order. The ordered keyword does not inhibit
parallelism inside of f.

9.2 Parallel Statements

Forall Statements Chapel supports a variant of for that allows concur-
rent execution:
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[ordered] forall 〈var〉 in 〈expr〉 〈block〉

Here 〈var〉 is either a symbol or a tuple of symbols and 〈expr〉 evaluates to
a sequence of suitable type. This statement evaluates 〈block〉 once for each
element in the sequence. The evaluation of each of these statements can be
executed concurrently and is considered a separate computation.

The ordered keyword has no effect if 〈expr〉 is a sequence value but affects
order of evaluation when 〈expr〉 is an iterator.

Without the ordered keyword, the evaluation of 〈expr〉 can proceed con-
currently with evaluation of the statements as well. Alternately, 〈expr〉 could
be fully evaluated before any 〈block〉 is evaluated.

When the ordered keyword is present, the only concurrency between
statements is the concurrency that is explicitly specified in the iterator. This
allows an iterator to not only define a sequence of values, but to impose a
partial order on that sequence. An example will follow.

In either case, control continues with the statement following the forall

only after all statement instances have been completely evaluated.

Control transfers such as goto, break, continue, and return are not
permitted either into or out of the body of a forall statement. Return
statements are also not permitted inside a forall. A yield statement is
permitted, however.

Cobegin Statements A second form of parallelism is the cobegin state-
ment which has syntax:

cobegin 〈compound statement〉

Here, every statement in the list that makes up the 〈compound statement〉
is executed concurrently with every other statement and is considered a sep-
arate computation.

Control continues after all of these statements have been evaluated. As
with a forall, control transfers are not permitted either into or out of the
body of a cobegin statement.

Begin Statements The begin statement is an unstructured way to create
a new computation executed only for its side-effects. This is the syntax:
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begin 〈block〉 ;

The specified statement is executed in parallel with the balance of the initi-
ating computation which continues with the statement following the begin.
Control transfers in to or out of 〈block〉 are prohibited, including return and
yield statements.

Serial Statement The serial statement is used to control the width or
safety of a parallel computation. It has this syntax:

serial 〈expr〉 〈block〉 ;

where 〈expr〉 evaluates to a boolean value. Regardless of that value, 〈block〉 is
evaluated. If the value evaluates to true however, any dynamically encoun-
tered forall or cobegin statement is executed sequentially. For example,
we might have a recursive tree iterator that uses tree height to determine
where concurrency should be used:

class Tree {
var is leaf : boolean;

var left : Tree;

var right : Tree;

}
iterator Tree.walk {

if(is leaf) yield(this);

else

serial(height <= 10)

cobegin {
yield(left.walk);

yield(right.walk);

}
}

This iterator could be used in conjunction with an ordered forall to ag-
gregate work to avoid parallelism overhead.26

26My expectation is that we clone functions that may be executed in a serial context so
we can avoid the overhead of testing and suppressing parallelism.

127



TODO: Specialized Scheduling

9.3 Synchronization

Synchronization coordinates accesses to shared variables. One form of syn-
chronization is the execute order requirements associated with forall and
cobegin statements. Here introduce synchronization directly associated with
variables. We introduce two kinds of synchronized variables whose semantics
include execution order and memory consistency requirements.

Single Assignment Variables Single assignment variables are declared
by adding the keyword single at the beginning of a variable declaration.
For example:

single [var] x;

Such variables may only be defined once during their dynamic lifetime. Any
reference to the variable before it is defined causes the computation to sus-
pend execution and wait for the value. Thus a recursive algorithm to sum
values in a tree might appear as follows:

function Tree.sum() {
if(is leaf) return value;

single var x ;

begin x = left.sum;

var y = right.sum;

return x+y;

}

While a cobegin might be a more suitable formulation, this fragment creates
an asynchronous computation to compute the sum of the left sub-tree while
the main computation continues with the right sub-tree. The final reference
to x will be delayed until the assignment completes and that value will be
used as a summand.

A single variable can have record type but in this case all fields must
be assigned at the same time. Assignments to individual fields are not per-
mitted.

When a single variable has an initializer, the evaluation of that initializer
is implicitly performed as an asynchronous computation. Thus:
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single var x = left.sum;

is equivalent to the above where the declaration and assignment are sepa-
rated.

Any variable declaration in a cobegin is implicitly treated as a single

variable for references in other statements of the cobegin. The above exam-
ple might then be written as:

function Tree.sum() {
if(is leaf) return value;

var z;

cobegin {
var x = left.sum;

var y = right.sum;

z = x+y;

}
return z;

}

The assignment to z waits for x and y to be available and then produces the
value z.

sync Variable A synchronized variable generalizes the single assignment
variable to permit multiple definitions. Synchronized variables are declared
with the attribute sync, as in this example:

sync [var] buffer ;

A sync variable is logically either defined or not. When it is not defined,
computations that attempt to read that variable are delayed until it becomes
defined by the next assignment to it, which atomically changes the state
to defined. When the variable is defined, a use of the variable consumes
the value and atomically transitions the state back to undefined. If there
are multiple computations waiting, one is non-deterministically selected to
receive the value and the rest wait for the next value. If a computation
attempts to assign into a sync variable that is currently defined, the effect
of that assignment is delayed until the variable becomes undefined again.
If there are multiple computations attempting such an assignment, one is
non-deterministically selected and the result continue to wait.
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A sync variable can hold a value of record type but in this case the entire
record must be read and written. Reads and writes of individual non-const
fields are not permitted.

sync variables allow a sequence of values to be communicated between
computations using a single shared variable. They also can be used as build-
ing blocks for more traditional synchronization primitives such as semaphores
and monitors.

Synchronized variables support a number of special methods. These in-
clude:

sync var s;

s.purge – force s to be undefined.
s.read – wait for the variable to be defined and

– return the value but don’t reset to undefined
s.write(x) – force s to be defined with value ’x’ even if it

– is already defined.

Memory Consistency The Chapel implementation permits holding the
values of variables in alternate locations which we will refer to as caches.
The implementation may prefetch by copying a value from a variable to a
cache before an access to that variable is executed. It may store a value into
a cache after it is assigned but not write it to the variable in which case we
say the cache is dirty.

There are restrictions on caching to ensure effective communication be-
tween concurrent computations. These restrictions are defined in terms of
input and output synchronization points.

An input synchronization point occurs when a computation performs an
operation, such as reading a synchronized variable, that may cause that com-
putation to be delayed. This also includes waiting for sub-computations asso-
ciated with forall and cobegin statements. Any cached value of a variable
that might have been modified by concurrent computation must be treated
as invalid at the input synchronization point. This is called invalidating the
cache.

An output synchronization point occurs when a computation performs an
operation that may enable another computation to begin or resume execu-
tion. This includes starting a forall or cobegin or accessing a synchronized
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variable. Any dirty value of a variable that might be accessed by another
computation must be flushed from cache back to the location of the variable.

Chapel does not guarantee communication of values between concurrent
computations unless there is appropriate synchronization to coordinate pro-
ducer and consumer.

Because of their role in coordinating threads, synchronized variables can
not generally be cached.

Unordered Variables Both single and sync variables can be further at-
tributed as unordered. This attribute suppresses the input and output syn-
chronization points associated with accesses to these variables. Use of this
attribute therefore increases the effectiveness of caching by allowing more
state to be preserved in various caches. Unordered variables are appropriate
when the variable will hold the entire effect associated with a subcomputa-
tion. For example:

function Tree.sum() {
if(is leaf) return value;

unordered single var x = left.sum;

var y = right.sum;

return x+y;

}

The _unordered attribute on x allows any cached state to be retained when
the value of x is subsequently required.

9.4 Atomic Transactions

An atomic transaction is a region of the program that appears to execute as
if all other computations in the program are suspended. It is indicated as:

atomic 〈block〉 ;

where 〈block〉 is executed as if it were serialized by a serial statement.
The behavior of an atomic statement is defined operationally in terms

of acquiring ownership of variables. Each variable in the program may have
an owning computation. Inside an atomic statement, before each variable
reference, the current computation attempts to acquire ownership of the
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variable. If the variable is owned by another computation, a deadlock might
occur if the computation naively waits. At such a point the implementation
may abort the statement. This means we release ownership of all variables
owned by the current computation without changing any of their values,
and we restart execution at the beginning of 〈block〉. Visible side-effects
to variables are delayed until 〈block〉 completes. At this point we say the
atomic statement commits, and all variables it owns are released and any
modifications to variables are made.

The implementation of the atomic statement must insure forward progress,
but the details of how ownership information is maintained and when com-
putations are aborted is not defined here.

Here is an example of an atomic transaction:

var found = false;

atomic {
if(head == obj) {

found = true;

head = obj.next;

}
else {

var last = head;

while(last != null) {
if(last.next == obj) {

found = true;

last.next = object.next;

break;

}
last = last.next;

}
}

Inside the atomic statement is a simple sequential implementation of remov-
ing a particular object denoted by obj from a singly linked list. This is an
operation that is well-defined, assuming only one computation is attempting
it at a time. The atomic statement insures that, for example, the value of
head does not change after it is first in the first comparison and subsequently
read to initialize last. The variables eventually owned by this computation
are found, head, obj, and the various next fields on examined objects.
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The effect of an atomic statement extends into called functions. Thus if we
have some method associated with a list that removes an object, that method
may not be parallel safe but could be invoked inside an atomic statement for
safety:

var found ;

atomic found = head.remove(obj);

Chapel defines three operations that are used to optimize atomic state-
ments to avoid overheads. They are the _invariant, _private, and _release

operations. The first two are similar in that they identify variables that are
either known to be invariant over a program interval, or known to not be
accessed by any other computation. In either case, the protocol to assert
ownership and delay side-effects can be avoided. The _release operator
identifies a variable currently owned by the computation that has not been
modified and will not be accessed again. The current computation’s owner-
ship is revoked and another computation can assert ownership.

These operations might be used to tune the above code to reduce over-
heads. For example:

var found;

atomic {
private found = false;

if(head == invariant obj) {
found = true;

head = invariant obj.next;

}
else {

var last = release head;

while(last != null) {
if(last.next == obj) {

found = true;

last.next = invariant obj.next;

break;

}
last = release last.next;

}
}

}
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These avoid overheads on the computation’s private variables obj and found.
It also allows a list-removal operation to be pipelined by releasing ownership
of the list head and various link fields as soon as they will no longer be
referenced. The assertion that obj.next is invariant reflects the fact that no
other variables need to be acquired to allow the transaction to complete, not
that the field is actually invariant. The implementation is free to prove these
attributes and apply them automatically. For example, we would expect the
implementation to identify last as a private variable without programmer
assertion.

Chapel allows variables to have an atomic attribute to allow optimization
of ownership. For example:

class ObjType {
atomic var next : ObjType;

...

}

This declaration treats a definitions of such fields as if they are in short
atomic sections. Thus, a statement of the form:

e1.x = e2;

where x is atomic would be evaluated as:

var t1 = e1;

var t2 = e2;

atomic ( invariant t1).x = invariant t2;

The declaration also encourages the implementation to allocate any extra
storage needed to maintain ownership adjacent to the variable itself, avoiding
the overhead of mapping the variable to sparsely maintained information.

9.5 TODO

Refer to previous discussion about concurrency execution of sequences ex-
pressions. If they are parallel, do we need a way to serialize?

Can we garbage collection computations associated with single variables
when the single variable is otherwise unreferenced?
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Do we need a mechanism to name computations like we name objects?
If so, we can we do with such a name? Maybe use it for hashing to test for
equality so we can determine nested lock acquisition.
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10 Locality and Distribution

This section discusses mechanisms available in Chapel to exploit locality by
allowing a programmer to describe affinity between data and computation.
This is accomplished by associating both data objects and computations
with abstract locales. To provide a higher-level mechanism, Chapel allows a
mapping from domains to locales to be specified. This mapping is called a
distribution and it guides that placement of variables associated with arrays
and the placement of subcomputations defined over the domain.

10.1 Requirements

Here the basic requirements and target features for locality and distribution
mechanisms. Requirements:

1. The programmer must be able to express the affinity of threads and
data.

2. The placement of data objects is not part of their type and in general
have no impact on the meaning of any expression that manipulates the
object.

3. The programmer must be able to decompose a collection of objects
across a collection of locales. Specifically, a domain may have a dis-
tribution associated with it which is a mapping from index values to
locales.

4. The distribution of a domain influences the decomposition of arrays de-
fined over that domain and the computations that access those arrays.
These influences can be overridden by programmer direction.

We use the term local to refer to data objects that are associated with
the locale that a computation is running on and remote for data objects that
are not. We assume that there is some overhead associated with accessing
data that may be remote compared to data known to be local.

Features:

1. Default strategies should be available for distribution of domains where
the programmer simply suggests decomposition is appropriate.
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2. A programmer should be able to determine the locale with which an
object is associated, the locale on which a computation is running, and
determine whether these are the same.

3. It should be possible to change the distribution of a domain while
preserving all other aspects, including the values stored in arrays. We
expect to use facts about the structure of a data distribution to improve
performance, and will limit the scope of changes allowed to distributions
to facilitate optimization.

4. A protocol should be available to allow caching of remote data objects
for local use. This protocol should be integrated with the distribution
mechanism, but also be available for less structured use.

5. It should be possible for a programmer to assert that data is local.

10.2 Locales

Chapel provides a predefined data type called locale. Both data and compu-
tations can be associated with an instance of this type. The only operation
defined for this type is equality comparison.

A predefined configuration variable defines the execution environment for
a program. This environment is defined by these variables:

const config num locales:integer;

const Locales [1..num locales] :locale;

const Global :locale;

Notice that these are constants and are not subject to change during execu-
tion of the program. The variable Global holds a special value of locale
type that can be distinct from the values stored in Locales. This value is
used to denote an object or computation that has no defined affinity.

Every variable will be associated with some locale which can be queried
as 〈v〉.locale. When 〈v〉 is a reference type or has class type, the locale is
where the referenced variable or object is located rather than where 〈v〉 may
be located. Every computation will also be associated with some locale and
this can be queried with the function this_locale.

138



10.3 The on Statement

The most direct tool available to a programmer is to assert that a compu-
tation identified by a statement should be executed on a particular locale.
This is the syntax:

on 〈locale spec〉 [do] 〈statement〉
Here 〈locale spec〉 is either a value of locale type, such as locales(1)

or a variable that is implicitly mapped to its locale. The evaluation of
〈statement〉 is done in the specified locale. After that execution, the con-
taining computation will continue in the same locale as before executing the
statement. If locale equals Global then 〈statement〉 can be executed on
any locale.

A common situation will be to use the on statement in conjunction with
a forall loop accessing an array decomposed over multiple locales. For
example:

forall i in D on(a(i)) do ...

where the body of the loop will be a computation accessing a(i) and related
variables.

When a loop iterates over a sequence specified by an iterator, on state-
ments inside the iterator control where the corresponding loop body is exe-
cuted. For example, an iterator over a distributed tree might include:

class Tree {
var left :Tree, right :Tree;

iterator nodes {
yield(this);

if(bound?(left)) on(left) yield(left.nodes);

if(bound?(right)) on(right) yield(right.nodes);

}
...

forall t in tree.nodes do ...

Here, each instance of the body of the forall loop is executed on the locale
where the corresponding object t is located. The location of execution is
undefined in the case of sequence products with conflicting specifications. In
such a case an explicit on statement should be used.

By default, when new variables and data objects are created, they are
created in the locale where the computation is running.
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10.4 Domain Decomposition

A function that maps from domain index values to locales is called a distri-
bution. A domain for which a distribution function is specified is referred to
as a distributed domain. A domain supports a method, locale, that maps
index values to locales that correspond to this function. For indefinite do-
mains, this function can be invoked on values that are not part of the index
set. For other domains, the method is undefined for arguments not in the
index set.

Arrays defined over a distributed domain will have the element variables
stored on the locale determined by the distribution. Thus, if d is an index
of distributed domain D and A is an array defined over that domain, then
A(d).locale is the same as D(d).locale.

Iteration over a distributed domain implicitly executes the control com-
putation in the domain of the associated locale. If D is a distributed domain,
then given the following:

forall d in D do 〈statement〉
... [d in D] 〈expr〉

both 〈statement〉 and 〈expr〉 will be executed in locale D.locale(d). Simi-
larly, when iterating over the elements of an array defined over a distributed
domain, the controlled computations are determined by the distribution of
the domain. If there are conflicting distributions in product iterations, the
locale of the computation is not defined.

10.5 Specifying Distributions [Outline]

The syntax to specify a distribution extends the domain declaration. The
specification is somewhat complex in the general case: we want to identify a
tuple of projections of the domain to a tuple of elemental distribution func-
tions that map elements of the projection to target domains. The product of
these target domains is then used as the domain for an array of locales that
is used to complete the mapping.

Outline of this section:

1. Define elementary distributions that map a source domain entirely to
an arithmetic index set that is used as the target domain. The target
domain is the domain for an array of locale values to which the data
is distributed.
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2. Define protocols for defining the distribution of opaque and indefinite
domains.

3. Extend elementary distributions to product distributions that map k
distributions to a rank-k target domain that is the product of the target
domains of the elementary distributions.

4. Define the default distribution for arithmetic domains and products of
distributed domains.

5. Define methods to specify projections of the source domain to be used
as the source domain for each of the elementary dimensions.

6. Identify parameters to distributions that can be modified and a protocol
for changing them analogous to how we change range-information.

10.6 Object Caching [Outline]

Objectives: define a protocol to identify which objects are subject to local
caching, when stale objects become invalid, when dirty objects are flushed,
how updates are combined.

Extend this protocol to collections of objects by building on the the dis-
tribution machinery.
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11 Structural Interfaces [Requirements]

Two of Chapel’s goals are to provide high-level features that improve pro-
ductivity for experimental programming and to encourage reuse. We also
want to provide a path for extension and customization of those features
that exploit the structural typing and other generic programming features of
the language.

We define a structural interface to be a generic class definition where the
fields of this class are separated into mandatory and optional. The manda-
tory fields characterize core behavior, while optional fields standardize com-
mon special cases. A class implements the interface by providing consistent
bindings for the mandatory fields and a subset of the optional fields.

Requirements

1. Syntax for identification of mandatory and optional fields.

2. Each of the high-level concepts in Chapel, should have a structural
interface. The concepts currently are: sequence, array, domain, and
distribution.

3. Description of how implementation of control constructs that interact
with these concepts may exploit optional elements of the interfaces.
This includes for and forall and expression-level iteration, especially
the parallel construction of new sequences.

For example, programmers should be able to write their own distribution
with well defined rules about how forall statements over sections of that
domain will be implemented in terms of the particular subset of the interface
that is implemented.

11.1 Reductions

The syntax for a reduction may identify a class name. For example:

[ordered] reduce 〈seq〉 by 〈class〉 [else 〈expr〉]

where 〈class〉 identifies a class that implements the interface reduce. The
fields for this interface are:
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class reduce {
type input ;

type output :input:

type state :input;

optional var zero val : state;

function input (t:input) :state return t;

function combine(t1:state, t2:state) :state;

function output(t:state) :output return t;

function combine1(t1:state, t2:input) :state

return combine(t1,input(t2));

function combine2(t1:input, t2:input) :state

return combine1(input(t1),t2);

}

The type input_type is the element type of the sequence. The type output_type
is the element type of the result which by default is the same as the input
type. The type state_type represents the intermediate state which is also
by default the same as the input type. The function input converts an input
value into a state value. The function combine takes two state values and
combines then into one value. This function is assumed to be associative
unless the ordered keyword is present in which case it need not be. The
function output converts the final state to an output value. The else clause
may be omitted in which case zero_val will be returned if it is defined and
the input sequence is empty.

A partial implementation of the reduction interface that finds the k largest
elements in a sequence is given in Figures 8 and 9. The element type of
the sequence is unspecified and the only requirements are that comparison
be supported and that there is a max value for the type. The output is a
sequence of the three largest elements possibly filled with max values.

11.2 Scans

Similar to reductions, there is an interface for defining application specific
scan semantics. ...
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class MaxK implements reduce {
parameter var k : integer;

type elt type;

type input: elt type;

record state {
var values[1..k] :elt type;

create(x : elt type) {
values(1..k-1) = elt type.max;

values(k) = x;

}
}
type output :seq(elt type);

function input(x:elt type) return state.create(x);

function combine(a :state, b:state) {
var start = 1;

for x in b.values {
-- insert ’x’ into a

for i in start..k

if(a.values[i] < x) {
a.values[i+1..k] = a.values[i..];

a.values[i] = x;

start = i+1;

break;

}
return a;

}
}
function output(y:state) return y.values;

... helper functions from Figure 9 go here
}

Figure 8: An example reduction that find the k largest values in an input
sequence.
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function combine1(a:state, b:input) {
for i in 1..k

if(a.values[i] < x) {
a.values[i+1..k] = a.values[i..];

a.values[i] = x;

break;

}
return a;

}
function combine2(a:input, b:input) {

var s = state();

if(a < b)

(a,b) = (b,a);

s.values(1) = elt type.max;

s.values(2) = a;

s.values(2) = b;

return a;

}

Figure 9: Definitions of some secondary functions needed in Figure 8.
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12 Input and Output Functions [Requirements]

Here is a short discussion of requirements and possible features for Chapel
I/O capabilities.

Requirements

1. The I/O mechanisms must be integrated into all other aspects of the
language including sequences and parallelism. Files must be object
instances with extensible semantics.

This implies the ability to read and write data aggregates plus the
ability to divide up a file so that data can be accessed by separate sub-
computations. It also requires that the results of those computations
can be combined in a well-defined manner for output.

2. The I/O mechanism must allow inter-operation with data files written
by C and Fortran or to be read by C and Fortran.

We will need a notion of record and some notion of both variable and
fixed record length files. Notions of both formatted and unformatted
files will be supported. It is undesirable to require each I/O read or
write to consume a complete record.

It is not necessary to support the precise capabilities of either C or
Fortran formating rules but building one or the other would facilitate
learning. Default formating rules for structured data should be speci-
fied as part of the type (like bound functions).

3. The I/O implementation must support stream-oriented files like sockets
as well as disk-oriented files.

This affects not only how promptly buffer data is written but also when
read-ahead is allowed to occur.

4. The lack of type-safety in this I/O model must be tolerated. The
machinery that packs and unpacks typed data must be exposed so that
such “binary” data can be manipulated by the program outside of a
file.

5. Chapel should also support type-safe files, both formatted and unfor-
matted.
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6. File operations should be atomic.

Target Features

1. It should be possible to create persistent data structures, including
object references, that can be written to and read from files.

2. It should be possible to read and write config variables to a file.

3. Can we associate static data with a file to provide a simple path to
persistent data? Can such data be stored in a database instead of a
flat file system?

4. The pre-fetching and buffering policies should be modifiable by the
application. Techniques include derived classes and configuration vari-
ables.

5. The ability to deal with binary data should be integrated into frame-
works for explicit message passing and for interfaces with external lan-
guage functions. These are both situations where type-safety can not
be enforced much as for I/O.

12.1 Files

A file is a sequence of records. The records may either be fixed or variable
length and may contain either only strings or some alphabet or binary data.
The former are called formatted while the later are called unformatted. Binary
data files may be untyped or typed.

The system provided module stdio defines the interface class type File.
This class has the two subtypes, Formatted and Unformatted. The default
constructor for any file includes this generic prototype

constructor File(system name :string = ’’,

record length :integer = 0,

read=true, write=true);

The constructor may have additional implementation specific parameters.
For example, on a UNIX system there is an additional integer argument
permission that specifies permission attributes when a new file is created.
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The system_name field is used to created an implementation dependent as-
sociation with this file and some persistent storage object or communication
stream. The default is an empty string which indicates a file whose existent
is limited to the lifetime of program execution and may be stored entirely in
memory. record_length indicates the fixed length of records where a non-
positive value indicates variable length records. The boolean parameters
read and write indicate which operations will be applied to the file.

The default constructor for Formatted files has this generic prototype of
a File plus these parameters:

constructor Formatted(file arguments,
type alphabet = ASCII,

pad :string(alphabet=alphabet) = ’ ’,

trim :boole = true,

eor :string(alphabet=alphabet) = ’\n’);

The alphabet identifies the alphabet of strings that are stored in the file.
The the first character of the pad argument is used to fill incomplete records
for fixed record length files and eor is used as record terminator. If the pad

string is empty, then it is an error to write incomplete records when a positive
record length is specified. The eor may be empty only when record_length

is positive.
The default constructor for Unformatted files is similarly an extension of

File:

constructor Unformatted(file arguments,
rec size width :integer = 4

indexed :boole = false,

typed :boole = false);

The indexed attributes indicates that additional information is stored in the
file to allow specific records in the file to be efficiently accessed. When index

is false and record_length is 0, then each record has its sizes written into
the file using an integer with representation width rec_size_width. The
default value of 4 is intended to provide compatibility with existing Fortran
variable length unformatted files.

When a file is associated with a system name, after construction, the
method open_status returns an enumeration value. This enumeration is
defined inside of the base File class and includes these values:
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enum OpenStatus { OK, NOT FOUND, INVALID NAME, ... }

The value OK indicates the file was successfully opened and associated with
the system name. NOT_FOUND indicates a file opened with write=false where
there system has no object with this name. INVALID_NAME indicate the spec-
ified system name was not valid for implementation dependent reasons. This
enumeration can include implementation dependent values. The method
open_error returns a descriptive character string related to the status suit-
able for use in diagnostic messages.

12.2 Parallelism and Files

A section of a file is a sequence of records that is treated as a separate file.
For untyped files, data stored in the file consist only of integers, float-

ing point values, complex values and strings. Boolean values are converted
to type integer(size=1) implicitly but enumerated values must be explic-
itly converted to some integral type. Data stored in typed files can be any
primitive or derived types including classes, sequences, arrays and domains.

12.3 Notes

Function Values Can we store a function closure in a typed file? There
are a set of captured values plus the name of the function to be invoked.
Can we build tables to allow mapping of these names back to functions?
This mapping might fail but we might also not have support for a data type.

Formats for variable length records It would be nice to support a
format for variable length files that is more parallel-friendly. For example, we
could maintain record lengths in some table that would allow more efficient
mapping from record number to data. This could be done as some kind of
subtyping or by having a type parameter that describes how this mapping
should be implemented.

Maybe this is not programmable but rather we just provide the option of
indexing the file.
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A Predefined Methods and Functions

〈arithmetic type〉.min Minimum value of type
〈arithmetic type〉.max Maximum value of type
〈arithmetic type〉.size Representation width in bytes
string.alphabet Alphabet a string is defined over
〈float type〉.nan An IEEE not-a-number value for the type
〈float type〉.infinity A positive IEEE infinity value
〈float type〉.precision Binary precision of the representation
〈float type〉.max exp Maximum binary Exponent
〈float type〉.epsilon Machine epsilon
〈float type〉.floor integer floor
〈float type〉.ceil integer ceiling
〈type〉.initial Initial value for unparameterized type
〈seq type〉.rank rank of a sequence, array, or domain
〈seq type〉.elt type Element type of a sequence or array
〈seq type〉.leaf type Leaf element type of a sequence
〈variable〉.locale Locale associate with variable

Figure 10: Predefined methods. A type complex(size=2k) is treated like a
type of float(k) for the inquiry methods precision, max exp, and epsilon.
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〈expr〉.type Returns the type of the expression. The
expression is not evaluated.

〈complex 〉.real real part of complex value
〈complex 〉.imag imaginary part of complex value
〈index (k)〉.lbound lower bound k-tuple
〈index (k)〉.ubound upper bound k-tuple
〈index (k)〉.stride stride k-tuple
〈index (k)〉.extent extent k-tuple
〈array〉.domain Domain of an array
〈arithmetic domain〉.range Bounding information of type 〈index (k)〉
〈domain〉.first Lexically first element in domain
〈domain〉.last Lexically last element in domain
〈domain〉.locale Map index value to locale

Figure 11: Predefined methods for values. Generally, any type method may
also be applied to a value and will implicitly refer to the type of the value.
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shift left(v,k) shift v left k bits
shift right(v,k) shift v left k bits, unsigned
shift right signed(v,k) shift v left k bits, signed
abs(x) absolute value
min(x,...) minimum of ordered values, reduction
max(x,...) minimum of ordered values, reduction
float2bits(v) convert floating point value to an integer

without changing low-level representation
bits2float(v) convert integer value to floating point

without changing low-level representation
length(s) length of sequence or string
code(s) convert first character of string to integer

according to the string’s alphabet
bound?(r) determine if a reference is bound to a vari-

able
this locale() return current locale associated with a

computation

Figure 12: Predefined functions. Generally all functions can be promoted
to sequence arguments. Those marked with “reduction” consume sequence
arguments and return scalars.
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B Index
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Index

alphabet, 16
and, 19
arithmetic domains, 110
arithmetic index set, 74
arithmetic sequence, 65
arithmetic types, 14

boolean type, 16

character sequences, 72
comments, 14
complex, 15
conforms, 23

default promotions, 18
distributed domain, 140
distribution, 137, 140

enum, 16
execution environment, 138
exported, 35

filtering predicate, 71
floating point, 15
function, 27

Global, 138

if, expression, 19
implements, 52
indefinite sequence, 71
index types, domain, 109
integer, 14
iterator, 73

let, 19
local, 137
locale, 137, 138

Locales, 138

nominal subtype, 22

on statement, 139
or, 19

primary methods, 46
projection, 119
promotion, 18
prototype, 31

rank, 68
reduction, 76
remote, 137
reserved words, 14
reshape, 76
reverse, 75

scan, 77
secondary methods, 46
sequences, 63
slice, 119
spread, 75
string type, 16
subsequence, 70
subtype, 22, 23

transpose, 75
typeselect, 61

union, 59
union type, 59

with, 61

zipper product, 67
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