
The Fortress Language Specification
Version 0.707

Eric Allen
David Chase

Victor Luchangco
Jan-Willem Maessen

Sukyoung Ryu
Guy L. Steele Jr.

Sam Tobin-Hochstadt

Additional contributors :
Joao Dias

Carl Eastlund
Joe Hallett
Yossi Lev

Cheryl McCosh

c
Sun Microsystems, Inc.

July 28, 2005

2

Contents

1 Introduction 9

1.1 Overview of Fortress 9

1.2 Organization 11

2 Basic Concepts 13

2.1 Expressions, Values, and Types 13

2.1.1 Numerals 14

2.1.2 Aggregate expressions 14

2.1.3 If expressions 18

2.1.4 While loops 18

2.1.5 For loops 18

2.1.6 Bindings 18

2.1.7 Comprehensions 20

2.1.8 Function definitions 21

2.1.9 Function calls 22

2.1.10 Operator applications 23

2.1.11 Assignments 25

2.1.12 Block expressions 26

2.1.13 Labelled block expressions 26

2.1.14 Case expressions 26

2.1.15 Atomic expressions 27

2.1.16 Throw expressions 27

3

4 CONTENTS

2.1.17 Try expressions 27

2.1.18 Function expressions 28

2.1.19 Dispatch expressions 28

2.1.20 Typecase expressions 29

2.1.21 Function contracts 29

2.2 Traits 30

2.2.1 Overriding and overloading 32

2.2.2 Method contracts 32

2.3 Objects 33

2.3.1 Object expressions 34

2.3.2 Parametric objects 35

2.4 Value Objects 36

2.4.1 Value object types 36

2.4.2 Predefined value objects 36

2.5 Types 37

2.5.1 Object types 38

2.5.2 Trait parameters 38

2.5.3 Nat type parameters 39

2.5.4 Dimensions 40

2.5.5 Dimension parameters 41

2.5.6 Type aliases 41

2.5.7 Operator parameters on traits 41

2.5.8 Parametric functions 42

2.5.9 Array types 42

2.5.10 Arrow types 42

2.6 Overloading and Multiple Dispatch 42

2.6.1 Overloaded methods 46

2.7 Operator Fixity 46

CONTENTS 5

2.8 Enclosing Operators 47

2.9 Operator Precedence 47

2.10 Interpretation of Juxtapositions 50

2.11 Tests 51

3 Advanced Language Constructs 53

3.1 Execution Model 53

3.1.1 Processes 53

3.2 Parallelism and Locality 54

3.2.1 Arrays are distributed by default 54

3.2.2 Thefor loop is parallel by default 54

3.2.3 Slack 55

3.2.4 Parallel threads 56

3.2.5 Transactions 56

3.2.6 Shared and local data 57

3.2.7 Distributions 59

3.2.8 Recursive subdivision 61

3.2.9 Primitives for constructing distributions 62

3.3 Matrix Unpasting 62

3.4 Operator Definitions 64

3.4.1 Infix/multifix operator definitions 65

3.4.2 Prefix operator definitions 65

3.4.3 Postfix operator definitions 65

3.4.4 Nofix operator definitions 66

3.4.5 Bracketing operator definitions 66

3.5 Subscripting and Subscripted Assignment Operator Method Definitions 66

3.5.1 Subscripting operator method definition 67

3.5.2 Subscripted assignment operator method definition . .. 67

3.6 Support for Domain-specific Languages 67

6 CONTENTS

3.6.1 Introduced variable names 70

3.6.2 Expanders for Fortress 70

3.6.3 Escape clauses 71

4 Program component compilation and linking 73

4.1 Overview 73

4.2 Source Code 74

4.3 Basic Fortress Operations 76

4.4 Advanced Features of Fortress Operations 84

4.5 Component-related modifiers 88

5 Abstract Syntax 89

5.1 Descriptions of Selected AST Constructs 93

5.1.1 External syntax 93

6 Concrete Syntax 95

A Fortress Calculi 103

A.1 A Fortress Basic Core Calculus 103

A.1.1 Syntax 103

A.1.2 Dynamic semantics 104

A.1.3 Static semantics 104

A.1.4 Type soundness proof 104

B Api components 115

C Support for Unicode Input in ASCII 119

C.1 Distributed Pasting 120

C.2 String Literals 121

C.3 Identifiers and Numeric Literals 121

D Detailed Rules for Operator Precedence 125

CONTENTS 7

D.1 Bracket Pairs for Enclosing Operators 125

D.2 Arithmetic Operators 127

D.2.1 Multiplication and Division 127

D.2.2 Addition and Subtraction 128

D.2.3 Miscellaneous Arithmetic Operators 129

D.2.4 Set Intersection, Union, and Difference 130

D.2.5 Square Arithmetic Operators 130

D.2.6 Curly Arithmetic Operators 131

D.3 Relational Operators 131

D.3.1 Equivalence and Inequivalence Operators 131

D.3.2 Plain Comparison Operators 132

D.3.3 Set Comparison Operators 134

D.3.4 Square Comparison Operators 135

D.3.5 Curly Comparison Operators 136

D.3.6 Triangular Comparison Operators 137

D.3.7 Chickenfoot Comparison Operators 137

D.3.8 Miscellaneous Relational Operators 137

D.4 Boolean Operators 138

D.5 Other Operators 139

8 CONTENTS

Chapter 1

Introduction

The FortressTM Programming Language is a general-purpose, statically typed, component-based programming lan-
guage designed for producing robust high-performance software with high programmer productivity.

In many ways, Fortress is intended to be a “growable language”, i.e., a language that can be gracefully extended
and applied in new and unanticipated contexts. Fortress supports state-of-the-art compiler optimization techniques,
scaling to unprecedented levels of parallelism and of addressable memory. Fortress has an extensible component
system, allowing separate program components to be independently developed, deployed, and linked in a modular and
robust fashion. Fortress also supports modular and extensible parsing, allowing new notations and static analyses to
be added to the language.

The name “Fortress” is derived from the intent to produce a “secure Fortran”, i.e., a language for high-performance
computation that provides abstraction and type safety on par with modern programming language principles. Despite
this etymology, the language is a new language with little relation to Fortran other than its intended domain of ap-
plication. No attempt has been made to support backward compatibility with existing versions of Fortran; indeed,
many new language features were invented during the design of Fortress. Many aspects of Fortress were inspired
by other object-oriented and functional programming languages, including The JavaTM Programming Language [5],
NextGen [6], Scala [20], Eiffel [16], Self [1], Standard ML [17], Objective Caml [14], Haskell [22], and Scheme [13].
The result is a language that employs cutting-edge featuresfrom the programming-language research community to
achieve an unprecedented combination of performance and productivity.

1.1 Overview of Fortress

Two basic concepts in Fortress are that ofobjectand oftrait. An object consists offieldsandmethods. The fields of
an object are specified in its definition. An object definitionmay also include method definitions.

Traits are named program constructs that declare sets of methods. They were introduced in the Self programming
language, and their semantic properties (and advantages over conventional class inheritance) were analyzed by Schärli,
Ducasse, Nierstrasz, and Black [23]. In Fortress, a method declared by a trait may be eitherabstractor concrete:
abstract methods have onlyheaders; concrete methods also havedefinitions. A trait mayextendother traits: itinherits
the methods declared by the traits it extends (except those that itoverrides). A trait declares the methods that it inherits
as well as those explicitly declared in its definition.

Every object has a set of traits; an object includes every method declared by any of its traits. An object inherits the
concrete methods of its traits and must include a definition for every method declared but not defined by its traits. It is

9

10 CHAPTER 1. INTRODUCTION

also allowed to override the definition of a concrete method inherited from a trait.

object traits fStarSystem, OrbitingObject g
sun = Sol
planets =f Mercury, Venus, Earth, Mars,

Jupiter, Saturn, Uranus, Neptune, Pluto g
position = Polar (25000 lightYear, 0 radian)!: radian/s := 2 � radian / 226 million year in s

accelerate(�) = ! := ! + �
end

In this example, the objectSolarSystem is defined with the traitsStarSystem andOrbitingObject . The
fields! andposition are defined with appropriate quantities. The fieldsun is defined to be another object named
Sol , and the fieldplanets is defined to be a set of objects. The methodaccelerate is defined to take a single
parameter�, and update the! field of the object. As this example illustrates, Fortress provides static checking of
physical units and dimensions on quantities.

Note that the identifiers used in this example are not restricted to ASCII character sequences. Fortress allows the use
of Unicode characters in program identifiers, as well as subscripts and superscripts. (See Appendix C for a discussion
of Unicode and suggested input methods for Fortress programeditors). Fortress also allows multiplication to be
expressed by simple juxtaposition, as can be seen in the definitions of ! andposition . Fortress also allows for
operator overloading, as well as a facility for extending the syntax with domain-specific languages.

Although Fortress is statically and nominally typed, typesare not specified for all fields, nor for all method parameters
and return values. Instead, wherever possible,type inferenceis used to reconstruct types. In the examples throughout
this specification, we often omit the types when they are clear from context. Additionally, types can be parametric
with respect to other types and values (most notably naturalnumbers).

These design decisions are motivated in part by our goal of making the scientist/programmer’s life as easy as possible
without compromising good software engineering. In particular, they allow us to write Fortress programs that preserve
the look of standard mathematical notation.

In addition to objects and traits, Fortress allows the programmer to define top-level functions. Functions are first-class
values: They can be passed to and returned from functions, and assigned as values to fields and variables. Functions
and methods can be overloaded, with calls to overloading methods resolved by multiple dynamic dispatch. Keyword
parameters, variable size argument lists, and multiple return values are also supported.

Fortress programs are organized intocomponents, which export and importapis and can be linked together. Apis
describe the “shape” of a component, specifying the types intraits, objects and functions provided by a component.
All external references within a component (i.e., references to traits, objects and functions implemented by other
components) are to apis imported by the component. We discuss components and apis in detail in Chapter 4.

To address the needs of modern high-performance computation, Fortress also supports a rich set of operations for
defining parallel execution and distribution of large data structures. This support is built into the core of the language.
For example,for loops in Fortress are parallel by default.

1.2. ORGANIZATION 11

1.2 Organization

This language specification is organized as follows. In Chapter 2, the basic concepts of the Fortress programming
model are explained, including objects, types, and functions. Many examples illustrating the concrete syntax are
provided. In Chapter 3, advanced language constructs are described. In particular, the Fortress model of parallelism
and support for domain-specific languages are discussed. InChapter 4, the compilation and deployment model is
described, including a discussion of Fortress components and apis. In Chapter 5, the abstract syntax is explained.
Finally, in Chapter 6, the Fortress concrete syntax is defined in BNF notation.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Concepts

2.1 Expressions, Values, and Types

Expressionsare program constructs that reduce tovalues. Every value has alocation. Every location holds a single
value. Two values are identical iff they have the same location. Every expression has astatic type. Every value has a
runtime type. Some types have names; two types with the same name are identical. Generic typesare parametric with
respect to types and values. Two instantiations of a generictype are identical iff their arguments are identical.

Types are related by a subtyping relation, which is reflexive, transitive, and antisymmetric. Fortress programs are
checked before they are executed to ensure that if an expression e reduces to a valuev, the runtime type ofv is a
subtype of the static type ofe.
Some types are defined by programs; others are built into the language. The built-in typeAny is a supertype of all
types. Every finite set of typesfT1; :::; Tng is itself a type, referred to as theintersectionof T1; :::; Tn. fT1; :::; Tng
is a subtype of all of its subsets. An intersection type is nota first-class type; intersection types are used for bounds
on trait parameters, trait variables inwhere clauses as described in Section 2.5.2, and for type inference. They cannot
appear in programs as explicit expression types and they cannot be nested.

For every finite set of types, there is also a type denoting a unique least upper boundof those types. The least upper
bound of a set of typesS is a supertype of every typeT 2 S and of the least upper bound of every proper subset ofS.
Least upper bound types are not first-class types; they are used solely for type inference and they cannot be expressed
directly in programs. In some circumstances, a named type isidentified with a least upper bound type, as discussed in
Section 2.2.

There are built-in types forBool , Char , String , the special type() (pronounced “void”), and several numeric types.
These types are mutually exclusive; no value has more than one of them. Values of these types are immutable. Many
of them are identified with special expressions calledliterals.

The two values of typeBool are the literalsTrue andFalse . Two expressionse ande0 can be compared via an
expression of the forme = e0 (where the types ofe ande0 are not mutually exclusive). An expression of this form
evaluates toTrue iff e ande0 reduce to identical values.

Values of typeChar are arbitrary characters in Unicode 4.0.0 [8], enclosed in single quotes (e.g.,’a’ , ’A’ , ’ �’).
Values of typeString are sequences of characters enclosed in quotation marks (e.g., " � r2"). Escape sequences in
strings abide by the conventions of the Java Programming Language.

13

14 CHAPTER 2. BASIC CONCEPTS

The only value with type() is the literal() . References to the value() as opposed to the type() are determined by
context.

The numeric types share the common supertypeNum. Fortress includes types for arbitrary-precision integers (of typeZ), rational numbers (of typeQ), fixed-size representations for integers including the typesZ8, Z16,Z32,Z64,Z128,
their unsigned equivalentsN8, N16,N32,N64,N128, floating-point numbers of various precisions (some having hard-
ware support), intervals (of typeInterval JXK, abbreviated as[X℄, whereX can be instantiated with any number type),
and imaginary and complex numbers of fixed size (in rectangular form with typesC n for n = 16; 32; 64; 128; 256 and
polar form with typePolar JXK whereX can be instantiated with any complex number type).

For floating-point numbers, Fortress supports typesR32 andR64 to be 32 and 64-bit IEEE 754 floating-point numbers
respectively, and defines two functions on types:Double JFK is a floating-point type twice the size of the floating-
point typeF, andExtended JFK is a floating-point type sufficiently larger than the floating-point typeF to perform
summations of “reasonable” size.1 Other built-in types are introduced in this specification asthey are needed.

2.1.1 Numerals

Every numeral is a non-empty sequence of digits and letters with an optional decimal point, starting with a digit
(possibly zero), and an optional radix as a subscript.

Examples: 27 7fff16 0fff16 101011012 3.14159265 3.110375528
Numerals are not directly converted to any of the number types because, in common mathematical usage, we expect
them to be polymorphic. As a simple example, consider the literal 3.1415926535897932384 ; it is a bad idea to
immediately convert it to a floating-point number because that may introduce a rounding error. If that literal is used
in an expression involving floating-point intervals, it is better to convert it directly to an interval. Therefore literals
that would be consideredREAL in Fortran have their own types in Fortress,Numeral JXK (whereX is the radix). This
approach allows library designers to decide how literals should interact with other types of objects.

2.1.2 Aggregate expressions

Aggregate expressionsreduce to values that are themselves homogeneous collections of values. Aggregate expressions
in Fortress are provided for sets, maps, lists, tuples, matrices, and arrays.

Set expressions: Elements are enclosed in braces and separated by commas, e.g.,

{0, 1, 2, 3, 4, 5} (* This set has six elements. *)

This expression evaluates to a set containing six elements,as explained in the comment immediately proceeding it.
Comments in Fortress are delimited by tokens(* and*) and can be nested.

The type of a set expression isSet JTK, whereT is the least upper bound of the types of all element expressions of the
set. This type can be abbreviated asfTg in contexts where there is no ambiguity with intersection types.

Set containment is checked with the operator2. For example:

3 2 f0, 1, 2, 3, 4, 5 g
1 This formulation of floating-point types follows a proposalunder consideration by the IEEE 754 committee.

2.1. EXPRESSIONS, VALUES, AND TYPES 15

reduces toTrue . The subset relationship is checked with the operator�. For example:

f0, 1, 2 g � f0, 3, 2 g
reduces toFalse .

Map expressions: Elements are enclosed in brackets, separated by commas, andmatching pairs are separated by7!, e.g.,

[0 7! ’a’, 1 7! ’b’, 2 7! ’c’]

The type of a map expression isMap[S,T] whereS is the least upper bound of the types of all domain element
expressions, andT is the least upper bound of the types of all range element expressions. This type can be abbreviated
as[S 7! T] .

A mapm is indexed by placing an element in the domain ofm enclosed in brackets immediately after an expression
evaluating tom. For example, if:

m = [’a’ 7! 0, ’b’ 7! 1, ’c’ 7! 2]

Thenm[’b’] evaluates to1.

List expressions: Elements are enclosed in angle bracketsh andi and are separated by commas, e.g.:

h0,1,2,3 i
The type of a list expression isList JTK whereT is the least upper bound of the types of all elements. This type can
be abbreviated ashTi.
A list l is indexed by placing an index enclosed in angle brackets immediately after an expression evaluating tol. For
example:

h3,2,1,0 ih2i
evaluates to1.

Tuple expressions: Elements are enclosed in parentheses and separated by commas, e.g:

(0,1,2)

Unlike other aggregate expressions, tuple expressions do not evaluate to values; they evaluate totuplesof values. This
distinction is subtle but important. For example, variables cannot be bound to a tuple of values (as discussed in Section
2.1.6). If an elemente0 of a tuple expressione evaluates to a tuple, the elements ofe0 areflattenedinto e. For example,
the expression:

16 CHAPTER 2. BASIC CONCEPTS

((0,1),(2,(3),4),5)

evaluates to the tuple of values:

(0,1,2,3,4,5)

A tuple of one element is flattened to its element. The expression (0) evaluates to the value0.

The static type of a tuple expression has atuple type: (T0, � � � , Tn) . A well-formed tuple type does not contain
tuple types itself. The typeT of a tuple expressione is formed by flattening the types of all elements intoT . For
example , the type of:

((0,1),(2,(3),4),5)

is

(Numeral J10K, Numeral J10K, Numeral J10K, Numeral J10K, Numeral J10K, Numeral J10K)
Matrix expressions: Elements are enclosed in brackets. Elements along a row are separated only by whitespace, as
in the following example:

[1 0 0]

All matrices have two or more elements. All matrices have twoor more dimensions. Two dimensional matrices of
size1 � n are row vectors. Two dimensional matrices of sizen � 1 arecolumn vectors. Two dimensional matrix
expressions are written by separating rows with newlines orsemicolons. If a semicolon appears, whitespace before
and after the semicolon is ignored, as in the following four examples, which are all equivalent:

[3 4
5 6]

[3 4 ;
5 6]

[3 4

; 5 6]
[3 4 ; 5 6]

The parts of higher-dimensional matrices are separated by repeated-semicolons, where the dimensionality of the result
is equal to one plus the number of repeated semicolons. Here is a3� 3� 3� 2 matrix:

2.1. EXPRESSIONS, VALUES, AND TYPES 17

[1 0 0
0 1 0
0 0 1 ;; 0 1 0

1 0 1
0 1 0 ;; 1 0 1

0 1 0
1 0 1

;;;

1 0 0
0 1 0
0 0 1 ;; 0 1 0

1 0 1
0 1 0 ;; 1 0 1

0 1 0
1 0 1]

The elements in a matrix expression may be either scalars or matrices themselves. If they are matrices, then they are
“flattened” into the enclosing matrix, as discussed in Section 3.3. The elements along a row (or column) must have the
same number of columns (or rows), though two elements in different rows (columns) need not have the same number
of columns (rows).

The type of ak dimensional matrix expression isMatrix JTK[n0 � :::� nk�1] , whereT is the least upper bound of the
types of the elements andn0 � :::� nk�1 are the sizes of the matrix in each dimension. This type can beabbreviated
asT[n0 � :::� nk�1] .

An n-dimensional matrixM is indexed by placing a sequence ofn indices enclosed in brackets, and separated by
commas, after an expression evaluating toM . For example:

M = [1 2 3; 4 5 6; 7 8 9]

thenM[1,0] evaluates to 4.

Array expressions: Elements are enclosed in brackets. Elements along a row are separated by commas:

[1, 0, 0]

Elements of multidimensional arrays are separated by newlines and sequences of semicolons, as with matrices. (Note
that there is no conflict with matrix notation because all matrices have at least two elements). The type of ak dimen-
sional array expression isArray JTK[n0, � � � , nk�1] , whereT is the least upper bound of the types of the elements
andn0; :::; nk�1 are the sizes of the array in each dimension. This type can be abbreviated asT[n0, � � � , nk�1] .
(Note that there is no conflict with matrix type notation because matrices must have at least two dimensions).

Arrays are indexed in the same manner as matrices.

18 CHAPTER 2. BASIC CONCEPTS

2.1.3 If expressions

An if expression consists of the reserved wordif followed by a test expression, followed by the reserved wordthen ,
a sequence of expressions, a sequence ofelif clauses (each consisting of the reserved wordelif followed by a
test expression, the reserved wordthen , and a sequence of expressions), an optionalelse clause (consisting of the
reserved wordelse followed by a sequence of expressions), and finally the reserved wordend . For example,

if x 2 f0, 1, 2 g then 0
elif x 2 f3, 4, 5 g then 3
else 6 end

The type of anif expression is the least upper bound of the types of all clauses. If there is noelse clause in anif
expression, then the last expression in every clause must evaluate to() .

2.1.4 While loops

while loops are written as follows:

while expr do
exprs

end

The value of awhile loop is() .

2.1.5 For loops

for loops are written as follows:

for v1 g1,v2 g2,� � �vn gn do
exprs

end

The loop header is made up of a series ofgenerators. Generators are described in Section 3.2.2. Each generatorbinds
one or more loop variables. A loop variable scopes over the remaining generators and over the body of the loop. By
default, loop iterations are assumed to run in parallel. Theorder of nesting of generators does not imply anything
about the relative order of loop iterations. Multiple nested loops preserve the order of loop iterations. The value of a
for loop is() .

2.1.6 Bindings

A binding is an expression that declares a variable. The nameof a variable can be any valid Fortressidentifier, which is
a non-empty sequence of alphanumeric characters in Unicode4.0.0 that begins with a letter, and that is not areserved
word. Throughout this text, reserved words are identified when they are first discussed.

2.1. EXPRESSIONS, VALUES, AND TYPES 19

The scope of a variable is the rest of the innermostenclosing contextof its binding. Several Fortress language con-
structs define new enclosing contexts; we mention each such construct when we define it.

There are four forms of binding expression. The first form:

name: type= expr

declaresnameto be an immutable variable with static typetype whose value is computed to be the value of the
expressionexpr. The static type ofexprmust be a subtype oftype.

The second (and most convenient) form:

name= expr

declaresnameto be an immutable variable whose value is computed to be the value of the expressionexpr; the static
type of the variable is the static type ofexpr.

The third form:

var name: type= expr

declaresnameto be a mutable variable of typetypewhose initial value is computed to be the value of the expression
expr. As before, the static type ofexpr must be a subtype oftype. The modifiervar is optional when ‘:= ’ is used
instead of ‘=’ as follows:

[var] name: type:= expr

The first three forms are referred to asdefined bindings. The fourth form:

[var] name: type

declares a variable without giving it an initial value (where mutability is determined by the presence of thevar

modifier). It is a static error if the variable is referred to before it has been given a value either by another binding
expression or by assignment. Whenever a variable bound in this manner is given a value, the type of that value must be
a subtype of its declared type. This form allows declarationof the types of variables to be separated from definitions,
and it allows programmers to delay assigning to a variable before a sensible value is known.

All forms can be used withtuple notationto bind multiple variables together. A tuple of variables tobind is enclosed
in parentheses and separated by commas, as are the types declared for them:

(name[, name] �) : (type[, type] �)
Alternatively, the types can be included alongside the respective variables, optionally eliding types that can be inferred
from context:

(name[: type][, name[: type]] �)

20 CHAPTER 2. BASIC CONCEPTS

Alternatively, a single, non-tuple, type can be declared for all of the variables:

(name[, name] �) : type

This notation is especially helpful when a function application returns a tuple of values. Note, however, that tuples are
not values in Fortress. In particular, a single variable cannotbe bound to a tuple.

Here are some simple examples of binding expressions:

� = 3.141592653589793238462643383279502884197169399375 108209749445923078

binds the variable� to an approximate representation of the mathematical object �. It is also legal to write:

� : Float = 3.141592653589793238462643383279502884197169 399375108209749445923078

This definition enforces that� has static typeFloat .

In this example, the declaration of the type of a variable andits definition are separated:

� : Float� = 3.141592653589793238462643383279502884197169399375 108209749445923078

The following example binds multiple variables using tuplenotation.

var (x, y): Int = (5, 6)

The following three expressions are equivalent:

(x, y, z): (Int, Int, Int) = (0, 1, 2)
(x:Int, y:Int, z:Int) = (0, 1, 2)
(x, y, z): Int = (0, 1, 2)

2.1.7 Comprehensions

Fortress provides “comprehension” syntax for several of the built-in aggregate types.

Set comprehensions are enclosed in braces, with a left-handexpression separated by a| from a sequence of boolean
expressions and generators. The generators bind variablesexactly as in afor loop. The boolean expressions act as
filters. For example, the comprehension:

f x2 | x f0,1,2,3,4,5 g, x MOD 2 = 0 g
denotes the set

2.1. EXPRESSIONS, VALUES, AND TYPES 21

{0,4,16}

Array comprehensions are like set comprehensions (except that they are syntactically enclosed in brackets). However,
an array comprehension may have multiple clauses as follows:

a = [(x,y,1) = 0.0 | x 1:xSize, y 1:ySize
(1,y,z) = 0.0 | y 1:ySize, z 2:zSize
(x,1,z) = 0.0 | x 2:xSize, z 2:zSize
(x,y,z) = x+y*z | x 2:xSize, y 2:ySize, z 2:zSize]

Each clause conceptually corresponds to an independent loop. Clauses are run in order.

2.1.8 Function definitions

A function definition is similar to a binding expression for an immutable variable: it establishes a name for a function
whose scope is its entire enclosing context. Function definitions can be mutually recursive.

Syntactically, a function definition consists of the name ofthe function, followed by all type parameters (described
in Section 2.5), all value parameters with their (optionally) declared types, the optional types of all return values, the
thrown exceptions, an optional contract for the function (discussed in Section 2.1.21), and finally the body. Value
parameters cannot be mutated inside the function body. For example, here is a definition of a simple function:

swap(x:Any, y:Any):(Any, Any) = (y, x)

This function has no type parameters, throws no checked exceptions, and has no contract. It takes two parameters of
type Any and returns a tuple of two values. Namely, it returns its parameters in reverse order. If the return type is
elided, it is inferred to be the static type of the body. The following definition ofswap has the same return type as the
above definition:

swap(x:Any, y:Any) = (y, x)

Similarly, function parameter types can often be inferred from the body of the function. When a least upper bound can
be inferred for a parameter from the body of the function, that parameter need not be declared explicitly. In the case
of swap, the unique least upper bound of bothx andy happens to be typeAny. Thus, the following definition ofswap

has the same parameter types and return type as the above definitions:

swap(x, y) = (y, x)

When a function is called, the body of the function is evaluated in a new enclosing context, extending the enclosing
context in which it is defined with all parameters bound to their arguments.

A function parameter is allowed to include adefault expression, which is used when no argument is bound to the
parameter explicitly. The default expression of a parameter x of function f is evaluated each time the function is
called without a value provided forx at the call site. All parameters declared to the right-hand side ofx must include
default expressions as well andx scopes over the remaining parameters and over the body of thefunction. The default
expression ofx is evaluated in an environment extending the environment inwhich f is defined with all parameters
textually precedingx bound to their arguments.

22 CHAPTER 2. BASIC CONCEPTS

If no type is declared for a parameter with a default, the typeis inferred from the static type of its default expression.
Syntactically, this default value is specified after an= sign. For example, we can write:

wrap(xs, ys = xs) = [xs, ys]

The functionwrap returns an array containing its parameters. If a value for only the parameterxs is given towrap

at a call site, the value ofxs is bound toys as well, and an array that containsxs as both of its indices is returned.
Default parameters can be bound at a call site by keyword arguments, as described in Section 2.1.9.

The rightmost parameter of a function definition that does not have a default expression is allowed to have typeT...

for any typeT. A parameter with this type is avarargsparameter; it is used to pass a variable number of arguments to
a function as a single array. For example:

asArray(xs:Object...) = xs

takes an arbitrary number of arguments and returns an array containing them all.

If a function does not have a varargs parameter then the number of arguments is fixed by the function’s type. A varargs
parameter is not allowed to have a default expression.

Function definitions can be immediately preceded by the following special modifiers:

io: Functions and methods which perform externally visible effects such as I/O are said to beio functions. Anio

function must not be invoked from a non-io function.

pure: If a method has no visible side effects, it is said to bepure . This means that no side effects are performed to
references. New objects may be allocated freely. A pure function invokes only other pure functions.

2.1.9 Function calls

A function value consists of three parts: the function’s type, its body, and the environment in which it is defined.

As with languages such as Scheme and the Java Programming Language, function calls in Fortress are call-by-value.
Each argument passed to a function is evaluated to a value before the function is applied. Arguments to a function can
be specified at a call site in one of two ways,positionallyor by askeyword arguments.

1. Positionally. If none of the parameters of a function definition include default expressions, the arguments are
passed to the function as a tuple of expressions. The values of these expressions are bound to the parameters of
the function in the order specified in the function declaration. If the last parameterp in the function declaration
has typeT... for some typeT, then all arguments whose position is greater than or equal to the position ofp
are placed in an immutable array (i.e., an object of typeArray JTK), and bound top.

2. With keyword arguments. If a function definition consistsof k parameters without default expressions (and no
varargs parameter) followed byj parameters with default expressions, then there is a sequence ofk expressions
passed positionally, followed by a sequence of bindings to parameters with default values. The firstk arguments
are bound to the firstk parameters of the function, as specified in its definition. The remaining arguments are
passed as bindingsv=e. For each bindingv=e, the value ofe is bound to the parameter with namev. If a boolean
expressione1=e2 is passed as an argument, it must be parenthesized as(e1=e2) . If the function hask parameters

2.1. EXPRESSIONS, VALUES, AND TYPES 23

without default expressions followed by a varargs parameter p, then any arguments after the firstk that are not
passed as bindings are placed in an immutable array and boundto p. Parameters specified with default values
can be bound only by keyword arguments.

Parameters not explicitly bound are bound to their default values. If a parameter that has no default value is not
explicitly bound to an argument, a static error is signaled.

If the application of a functionf ends by calling another functiong, tail-call optimization must be applied. Storage
used by the new environments constructed for the application of f must be reclaimed.

Examples:

sqrt(x)
atan(y, x)
makeColor(red=5, green=3, blue=43)
processString(s, start=5, end=43)

If the function takes a single argument, then the argument need not be parenthesized:

sqrt 2
sin x
log log n

Most function applications do not include explicit instantiations of type arguments; the type arguments are statically
inferred from the context of the function application.

2.1.10 Operator applications

To support a rich mathematical notation, Fortress allows most Unicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions, as well as these characters and character combinations:

! @ # $ % * + - = | : < > / ?
-> --> => ==> :-> <= >= /= ** !!

In addition, a token that is made up of a mixture of uppercase letters and underscores (but no digits), does not begin or
end with an underscore, and contains at least two different letters is also considered to be an operator:

MAX MIN SQRT TIMES

Some of these uppercase tokens are considered to be equivalent to single Unicode characters, but even those that are
not can still be used as operators.

All of the operators described above can be used as prefix, infix, postfix, or nofix operators as described in Section 2.7;
the fixity of an operator is determined syntactically, and the same operator may have definitions for multiple fixities. A
simple example is that ‘- ’ may be either infix or prefix, as is conventional. As another example, the Fortress standard
library (discussed in Chapter 4) defines ‘! ’ to be a postfix operator that computes factorials when applied to integers.

24 CHAPTER 2. BASIC CONCEPTS

Simple juxtaposition is also regarded as an infix operator inFortress. When the left operand is a function, juxtaposition
performs function application; when the left operand is a number, juxtaposition conventionally performs multiplica-
tion; when the left operand is a string, juxtaposition conventionally performs string concatenation.

Here are some examples of Fortress expressions where the brackets indicate subscripts:

(-b + sqrt(bˆ2 - 4 a c)) / 2 a
nˆn eˆ(-n) sqrt(2 pi n)
a[k] b[n-k]
x[1] y[2] - x[2] y[1]
1/2 g tˆ2
n(n+1)/2
(j+k)!/(j! k!)
1/3 3/5 5/7 7/9 9/11
17.3 meter/second
17.3 m_/s_
u DOT (v CROSS w)
u � (v � w)
(A UNION B) INTERSECT C
(A [B) \ C
i < j <= k AND p PREC q
i < j � k ^ p � q
print("The answers are " (p+q) " and " (p-q))

Another class of operators is always postfix: a ‘ˆ ’ followed by any ordinary operator (with no intervening whitespace)
is considered to be a superscripted postfix operator. For example, ‘̂ * ’ and ‘ˆ+ ’ and ‘ˆ? ’ are available for use as part
of the syntax of extended regular expressions. As a very special case, ‘̂T ’ is also considered to be a superscripted
postfix operator, typically used to signify matrix transposition.

Certain infix mathematical operators that are traditionally regarded asrelational operators, delivering boolean re-
sults, may bechained. For example, an expression such asA � B � C � D; it is treated as being equivalent to
(A � B) ^ (B � C) ^ (C � D) except that the expressionsB and C are evaluated only once (which matters
only if they have side effects). Fortress restricts such chaining to operators of the same kind and having the same sense
of monotonicity; for example, neithera � B � C nor A � B � C is permitted.

Any infix operator that does not chain may be treated asmultifix. If n � 1 occurrences of the same operator separaten operands wheren � 3, then the compiler first checks to see whether there is a definition for that operator that
will acceptn arguments. If so, that definition is used; if not, then the operator is treated as left-associative and
the compiler looks for a two-argument definition for the operator to use for each occurrence. As an example, the
cartesian productS1 � S2 � � � � � Sn of n sets may usefully be defined as a multifix operator, but ordinary addition
p + q + r + s is normally treated as((p + q) + r) + s .

Finally, more than two dozen pairs of brackets are availablethat can be defined by the user as functions on any number
of arguments. For example, angle bracketsh i (not to be confused with the less-than and greater-than signs < >) may
be used as a defined function of any desired number of arguments:

opr h x:Num i : Num = xˆ2
opr h x:Num, y:Num i : Num = xˆ2 + yˆ2
opr h x:Num, y:Num, z:Num i : Num = xˆ2 + yˆ2 + zˆ2h 3 i (* evaluates to 9 *)h 3, 4 i (* evaluates to 25 *)h 2, 3, 4 i (* evaluates to 29 *)

2.1. EXPRESSIONS, VALUES, AND TYPES 25

Alternatively, we might have written a single definition to handle any number of arguments:

opr h x:Num... i : Num = SUM[a 2 x] aˆ2h i (* evaluates to 0 *)h 3 i (* evaluates to 9 *)h 3, 4 i (* evaluates to 25 *)h 2, 3, 4 i (* evaluates to 29 *)h 2, 3, 4, 5 i (* evaluates to 54 *)

While the standard Fortress libraries are quite rich, thereare many possible operators that are not predefined by the
standard Fortress libraries and so are available for language extension by users.

Every operator application is equivalent in behavior to a function call. The behavior of every Fortress operator is
defined by an explicit operator declaration. Frequently such a declaration will simply invoke an appropriate method.
For example, the boolean operatorsAND, OR, XOR, andNOTare defined in the standard Fortress library as

opr AND(BoolOperators x, BoolOperators y) = x.and(y)
opr OR (BoolOperators x, BoolOperators y) = x.or (y)
opr XOR(BoolOperators x, BoolOperators y) = x.xor(y)
opr NOT(BoolOperators x) = x.not()

(The arguments are of typeBoolOperators so that these operator definitions may be shared by other types, such as
BoolInterval , that support such operators. The traitBool extends the traitBoolOperators . These are details that
are of concern to library designers; application programmers need not be aware of them.)

2.1.11 Assignments

An assignment expression consists of a left-hand side indicating one or more variables to be updated, an assignment
token, and a right-hand-side expression.

The assignment token may be ‘:= ’, to indicate ordinary assignment; or may be any operator (other than ‘: ’ or ‘ =’ or
‘<’ or ‘ >’ or ‘ / ’) followed by ‘=’ with no intervening whitespace, to indicate compound (updating) assignment.

A left-hand side may be a single variable or a tuple. If it is a tuple, then the right-hand side must be either a tuple of
equal length or a funtion application that returns multiplevalues, equal in number of the length of the left-hand-side
tuple.

If the left-hand side is a tuple and the assignment token is ‘:= ’, then each element of the tuple may be a variable or
a binding consisting of a variable, a colon, and a type (in which case the variable is declared as a local variable and
initialized to a value rather than being assigned). If the left-hand side is a tuple and the assignment token is other
than‘:= ’, then each element of the tuple must be a variable; bindingsare not permitted in this case. Examples:

x := f(0)
c[i,j] := c[i,j] + a[i,k] b[k,j]
(a, b, c) := (b, c, a) (* Permute a, b, and c *)
(q:Int, r:Int) := quotientAndRemainder(x, y) (* Bind q and r *)
(q, s:Int) := quotientAndRemainder(x, y) (* Assign q but bin d s *)
x += 1
(x, y) += (delta_x, delta_y)
myBag = myBag [newItems

26 CHAPTER 2. BASIC CONCEPTS

myBag [= newItems

Variables updated in assignment expressions must be already declared.

The value of an assignment expression is() .

2.1.12 Block expressions

A block expression consists of the reserved worddo, a series of expressions, and the reserved wordend . The value of
a block expression is the value of the last expression in the block. Some compound expressions have clauses that are
implicitly block expressions. Here are examples of function definitions whose bodies are block expressions:

f(x: R64) = do
(sin(x) + 1)2

end

foo(x: R64) = do
y = x
z = 2 x
y + z

end

mySum(i: Z64): Z64 = do
acc:Int := 0
for j 0:i do

acc := acc + j
end
acc

end

2.1.13 Labelled block expressions

Block expressions may be labelled with a name and any inner expression can exit the labelled block with an optional
value. The same name is required after bothlabel andend .

label I95
if goingTo(Sun)
then exit I95 with x32B
end

end I95

2.1.14 Case expressions

A case expression evaluates atest expressionand determines which of a set of case clauses applies to the test expres-
sion’s value. When an applicable case clause is found (checking from left to right), the body of that case clause (and
only that clause) is evaluated. If no applicable clause is found, an exception is thrown.

2.1. EXPRESSIONS, VALUES, AND TYPES 27

To find which case clause applies, theguarding expressionof each case clause is evaluated in turn and compared to
the value of the test expression. The two values are comparedaccording to an optional binary method named by an
identifier specified in thecase expression immediately after the test expression. For example, we could write:

case planet 2 off Mercury, Venus, Earth, Mars g) "inner"f Jupiter, Saturn, Uranus, Neptune, Pluto g) "outer"
else) "remote"

end

The special case clauseelse always applies; if it appears in acase expression, it must appear as the rightmost clause.

If the binary method is omitted, it defaults to= or2:

case 2 + 2 of
4) "it really is 4"
5:7) "we were wrong again"

end

The special reserved wordslargest andsmallest may appear in a test expression context to select the largest(or
smallest) quantity from a set of case clauses:

case largest of
mile) "miles are larger"
kilometer) "we were wrong again"

end

A more interesting example is described in Section 3.3.

2.1.15 Atomic expressions

An atomic expression consists of the reserved wordatomic followed by a block expression. The block expression is
executed as an atomic transaction. See Section 3.2.5 for a discussion of atomic memory transactions.

A function or method with modifieratomic acts as if its entire body were surrounded in anatomic expression.

2.1.16 Throw expressions

A throw expression consists of the reserved wordthrow followed by an expression which has the traitException .
The thrown exception must be caught in an enclosingtry expression or declared in thethrows clause of the enclosing
function definition.

2.1.17 Try expressions

try expressions start with the reserved wordtry followed by a sequence of expressions, and thencatch , forbid ,
andfinally clauses, as in the following example:

28 CHAPTER 2. BASIC CONCEPTS

try
do

in = read(file)
write(in, newFile)

end
catch e

IOException) throwException(e)
end

If a thrown exception matches the exception in aforbid clause, an exceptoin is thrown. For example, we could also
write the abovetry expression as follows:

try
do

in = read(file)
write(in, newFile)

end
forbid IOException
end

finally clauses intry expressions are likefinally blocks in the Java Programming Language. Thefinally

clause is executed after the exception handler completes. For example,

try
open(file)
do

in = read(file)
write(in, newFile)

end
catch e

IOException) throwException(e)
finally

close(file)
end

2.1.18 Function expressions

Function expressions denote functions. They start with thereserved wordfn followed by a parameter list, optional
return type,), and finally an expression. Unlike defined functions, function expressions are not allowed to include
type parameters,where clauses, and contracts described in Section 2.5.8. Here is asimple example:

fn(x:double)) if x < 0 then -x else x end

2.1.19 Dispatch expressions

Fortress supportsdispatch expressions, which provide a shorthand for multiple dispatch on a sequence of types. The
form of these expressions is as follows:

2.1. EXPRESSIONS, VALUES, AND TYPES 29

dispatch (v1=e1, v2=e2,..., vn=en) in
(t11, t12,..., t1n)) exprsv1
(t21, t22,..., t2n)) exprsv2

...
(tm1, m2,..., tmn)) exprsvm

end

A dispatch expression evaluates the expressionse1; � � � ; en and then performs a type dispatch, exactly as if each
clause were the header of an overloaded function described in Section 2.2.1. The most specific clause is chosen, and
the corresponding value expressionsexprsvj are evaluated (and the value of the last expression ofexprsvj is the value
of the construct). All the rules of function overloading apply; in particular, ambiguity is not allowed and the order of
the clauses is irrelevant.

If n = 1, the parentheses may be elided, as in the following example:

dispatch x = myLoser.myField in
String) x.append("foo")
Num) x + 3
Thread) x.run()
Object) yogiBerraAutograph

end

Note that “x” has a different type in each clause.

The syntactic sugar

dispatch x in ... end

(wherex is a valid local identifier) is equivalent to:

dispatch x = x in ... end

At least one clause’s type must be a supertype-or-equal of all the other clauses’ types.

2.1.20 Typecase expressions

A typecase exression has the same syntax as adispatch expression except that the reserved wordtypecase occurs
in place ofdispatch . However, atypecase expression evaluates its clauses from top to bottom, and thefirst match
is chosen. What would be forbidden ambiguity in adispatch expression is allowed in atypecase expression.

2.1.21 Function contracts

Function contracts consist of three parts: arequires part, anensures part, and aninvariant part.

The requires part consists of a sequence of expressions of typeBool . Therequires clause is evaluated during a
function call before the body of the function. If any expression in a requires clause does not evaluate toTrue , an
exception is thrown. For example, we can add arequires clause to ourfactorial function as follows:

30 CHAPTER 2. BASIC CONCEPTS

factorial(n:Int)
requires n � 0

= if n = 0 then 1
else n factorial(n-1) end

The ensures part consists of a sequence ofensures clauses. Each such clause consists of a sequence of expres-
sions of typeBool , optionally followed by aprovided clause. Aprovided clause begins with the reserved word
provided followed by an expression of typeBool . For each clause in theensures part of a contract, theprovided

clause is evaluated immediately after therequires clause during a function call (before the function is executed). If
a provided clause evaluates toTrue , then the expressions preceding thisprovided clause are evaluated after the
function is executed. If any of the expressions evaluated after function execution does not evaluate toTrue , an excep-
tion is thrown. The expressions preceding theprovided clause can refer to the return value of the function. If there
is a single return value for the function, aresult variable is implicitly bound to the return value of the function. If
there are multiple return values, an immutable array namedresult contains these values. Aresult variable scopes
over the expressions preceding theprovided clause. For example, we can write the following function:

print(input:List)
ensures sorted(result) provided sorted(input)

= if x 6= Empty then
print(first(input))
print(rest(input))

end

The invariant clause consists of a sequence of expressions ofany type. These expressions are evaluated before and
after a function call. For each expressione in this sequence, if the value ofe when evaluated before the function call
is not equal to the value ofe after the function call, an exception is thrown.

2.2 Traits

Programmers can define new types in their programs throughtraits. Traits are named collections ofmethods, which
are functions that can be inherited and overridden. Methodsare invoked onobjects, which are values that have traits.

Syntactically, a trait definition starts with a sequence of modifiers followed by the reserved wordtrait , followed by
the name of the trait, an optional set ofextendedtraits, an optional set ofexcludedtraits, an optional set ofboundson
the trait, a list of method declarations and definitions, andthe reserved wordend . Syntactically, a method declaration
is identical to a function declaration, except that a special self parameter is provided immediately before the name of
the method. When a method is invoked, theself parameter is bound to the object on which it is invoked. If noself

parameter is provided explicitly, it is implicitly a parameter with nameself .

For example, the following trait definition:

trait Catalyst extends Molecule
self.catalyze(reaction: Reaction): ()

end

defines a traitCatalyst with no modifiers, noexcludes clauses, and nobounds clauses. TraitCatalyst extends
a single trait namedMolecule . A single method (namedcatalyze) is declared, which has a parameter of type
Reaction and the return type() .

2.2. TRAITS 31

Methods are invoked with the following syntax:

receiver. app

wherereceiverevaluates to the receiver of the invocation (bound to theself parameter of the method). There must
be no whitespace on either side of the ‘. ’, and there must be no whitespace between the method name andthe left
parenthesis of the argument list.app is syntactically identical to a function application, except that the non-self

arguments must be parenthesized, even if there is only one ofthem. All non-self parameters are bound in a manner
identical to function application. Examples:

myString.toUppercase()
myString.replace("foo", "few")
SolarSystem.accelerate((�/2 radian) / 452 million year)

Even if a method takes a single argument, it must nevertheless be parenthesized:

myNum.add(otherNum) (not myNum.add otherNum)

Every trait extends the built-in traitObject . Every trait with anextends clause extends every trait appearing in its
extends clause. If a traitT extends traitU , we callT a subtrait ofU andU a supertrait ofT . Extension is transitive;
if T extendsU it also extends all supertraits ofU . Extension is also reflexive:T extends itself. The extension relation
induced by a program is the smallest relation satisfying these conditions. This relation must form an acyclic hierarchy
rooted at traitObject .

We say that traitT strictly extendstrait U if and only if (i) T extendsU and (ii) T is notU . We say that traitT
immediately extendstraitU if and only if (i) T strictly extendsU and (ii) there is no traitV such thatT strictly extendsV andV strictly extendsU . We callU an immediate supertraitof T andT an immediate subtraitof U . If a trait
definition ofT includes abounds clause, the trait must not be extended with immediate subtraits other than those
that appear in itsbounds clause. Furthermore,T serves as the least upper bound of the traits appearing in itsbounds

clause. For example, the trait:

trait Molecule
bounds {OrganicMolecule, InorganicMolecule}
mass(): Mass

end

is bounded by two traits:OrganicMolecule andInorganicMolecule . Therefore, the following trait definition is
not allowed:

(* Not allowed! *)
trait ExclusiveMolecule extends Molecule end

If a trait T excludes a traitU , the two traits are mutually exclusive. No object can have them both, no third trait
can extend them both, and neither can extend the other.U can optionally excludeT . For example, we define traits
OrganicMolecule andInorganicMolecule as follows:

trait OrganicMolecule extends Molecule
excludes {InorganicMolecule}

32 CHAPTER 2. BASIC CONCEPTS

end

trait InorganicMolecule extends {Molecule} end

OrganicMolecule excludesInorganicMolecule . It does not matter thatInorganicMolecule has noexcludes

clause; the traits are mutually exclusive solely on accountof the definition ofOrganicMolecule . For example, the
following trait definition is not allowed:

(* Not allowed! *)
trait InclusiveMolecule extends {InorganicMolecule, Org anicMolecule} end

A trait is allowed to have multiple immediate supertraits. The following trait has two immediate supertraits:

trait Enzyme extends {OrganicMolecule, Catalyst}
reactionSpeed(): Speed
catalyze(reaction) = reaction.accelerate(reactionSpee d())

end

Traits inherit methods from their immediate supertraits; In fact, a trait inherits every method from every one of its
immediate supertraitsexceptfor methods that are overridden by declarations in the traititself. In our example,Enzyme

inherits the abstract methodmass from OrganicMolecule and overrides the abstract methodcatalyze from trait
Catalyst .

We say that a declaration of a function or methodoccursin a trait definition if and only if the trait definition either
syntactically contains the declaration or inherits the declaration. If a declaration occurs in a trait definition, we say
the trait definitionsuppliesthe declaration. For example, traitEnzyme supplies methodsmass andcatalyze , but it
syntactically contains only the declaration of methodcatalyze .

2.2.1 Overriding and overloading

A signatureof a method consists of the name of the method, the number and types of its formal parameters, and the
names of keyword arguments. Note that the type of the receiver of a method and the return type of a method are not
parts of its signature. A method declarationoverridesa declaration in a supertrait if and only if thesignaturesof the
two declarations match exactly. If a declaration with return typeT is overridden by a declaration with return typeU,
thenU must extendT. It is not permitted for an abstract method declaration to override a concrete method declaration.

If a trait inherits multiple methods with the same name, those declarations must conform to the restrictions explained
in Section 2.6 on multiple dispatch.

For every trait, there is a corresponding static type with the same name, called atrait type. If trait S extends traitT ,
then the trait type ofS is a subtype of the trait type ofT . If an expressione has a trait type, then any method supplied
by the trait can be invoked one.
2.2.2 Method contracts

Contracts on methods are handled similarly to the manner described in [10]. In particular, substitutability under
subtyping is preserved.

2.3. OBJECTS 33

Evaluation of a call sitee:m(:::), wheree has static typeT , proceeds as follows. First,e is reduced to a valuev with
runtime typeU . LetC be the contract declared in the declaration ofm determined by static typeT . We callC thepivot
contractof the call site. Therequires clause ofC is checked. If thatrequires clause fails, aCallerViolation

exception is thrown.

Otherwise, consider every contractC 0 in every declaration ofm that overrides the declaration ofm determined byT ,
as well as declarations ofm in any supertype ofT . If C 0 occurs in a typeV that is a supertype ofe’s runtime typeU ,
then therequires clause ofC 0 is checked. If any suchrequires clause fails, aContractHierarchy exception is
thrown.

Otherwise, consider every contractC 00 in every declaration ofm that occurs either in a supertype ofU (includingU itself). The provided clauses ofC 00 are evaluated. For everyprovided clause that evaluates toTrue , the
correspondingensures clause is recorded in a tableE for later evaluation. Similarly, theinvariant clauses ofC 00
are evaluated and the results are stored inE for later comparison.

Then the body ofm (as determined bye’s runtime typeU) is evaluated. After evaluation of the body, allensures

clauses inE that are declared in the contract inU are checked, and allinvariant clauses inE declared inU are
checked to ensure that they reduce to values equal to the values they reduced to before evaluation of the body. If any
such check fails, aCalleeViolation exception is thrown. Otherwise, all otherensures clauses andinvariant

clauses inE are checked. If any of these clauses fail, aContractHierarchy exception is thrown.

2.3 Objects

Objectsare values that have object types described in Section 2.5.1. Objects containfieldsandmethods, and have a
set of traits from which they inherit methods.

Syntactically, an object definition begins with a sequence of modifiers followed by the reserved wordobject , fol-
lowed by the name of the object, the traits of the object, thefieldsof the object, the methods of the object, and finally
the reserved wordend . The traits of an object are listed in an optionaltraits clause, which starts with the reserved
word traits followed by a sequence of one or more trait references separated by commas and enclosed in braces ‘f’
and ‘g’. If a traits clause contains only one trait, the enclosing braces may be elided. If an object definition has no
traits clause, the object is understood to have only traitObject .

For example, we define an empty list object with traitList as follows:

object Empty traits {List}
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

This object has no fields and four methods.

Fields are variables local to an object. They must not be referred to outside their enclosing object definitions. Field
declarations in an object are syntactically identical to defined bindings, with the same meanings attached to the form
of binding. However, special modifiers can precede a field declaration:

hidden: By default, a field declaration implicitly defines agettermethod for the field. This method takes no argu-
ments, has the same name as the field, and a return type equal tothe field type. The implicitly defined getter returns

34 CHAPTER 2. BASIC CONCEPTS

the value of the field when called. A field with modifierhidden has no implicitly defined getter.

settable: A field with this modifier has an implicitly definedsetter. This method takes a single parameter (with
no default) whose type is the type of the field. It returns() . When called, the implicitly defined setter rebinds the
corresponding field to its argument. A settable field must notbe immutable.

Method declarations in objects are identical to their syntax in traits.

The implicitly defined getters and setters of fields can be overridden with methods with the appropriate signatures,
names, and return types. An explicitly defined getter must include the modifiergetter . An explicitly defined setter
must include the modifiersetter .

A getter method must be invoked with the syntax:

expr. name

wherenameis the name of the getter.

A setter method must be invoked with theassignment syntax:

expr1. name:= expr2
Getter and setter methods can be declared in traits as well. Syntactically, such definitions are bindings. If such
a binding is a defined binding, a getter is defined with the expression in the defined binding. If the binding is not a
defined binding, the getter is abstract. If the binding includes the modifiersettable an abstract setter is also declared.
If the binding includes the modifiersettable andhidden , only an abstract setter is declared. Such a binding must
not include the modifierhidden without settable , or a static error is signaled.

A getter must not be overridden by a method other than a getter. A setter must not be overridden by a method other
than a setter.

2.3.1 Object expressions

Object expressions denote objects. They start with the reserved wordobject followed by the ordinary aspects of
an object definition (except for the name). Unlike top-levelobject definitions, object expressions are not allowed to
include type parameters,where clauses, and contracts. For example, the following is a valid Fortress expression:

object traits fStarSystem, OrbitingObject g
sun = Sol
planets =f Mercury, Venus, Earth, Mars,

Jupiter, Saturn, Uranus, Neptune, Pluto g
position = Polar (25000 lightYear, 0 radian)!: radian/s := 2 � radian / 226 million year in s

accelerate(�) = ! := ! + �
end

This expression evaluates to a new object, with traitsStarSystem andOrbitingObject .

2.3. OBJECTS 35

2.3.2 Parametric objects

Object definitions are also allowed to be parametric with respect to other objects. Object parameters are specified after
an object’s type parameters. They are enclosed in parentheses and are separated by commas. Syntactically, each object
parameter is identical to the beginning of a field definition;it consists of a sequence of modifiers followed by the name
of the parameter, followed by a: , a type, and, optionally, a default value. Here is an exampleof a parametricCons

object with traitList JTK:
object Cons JTK

(first: T,
rest : List JTK)

traits List JTK
cons (x) = Cons(x,self)
append(xs) = Cons(first,rest.append(xs))

end

Note that this declaration implicitly introduces the “factory” function:

ConsJTK(first:T, rest:List JTK)
which is used in the body of the trait to define thecons andappend methods. Multiple factory functions can be
defined by overloading a parametric object with functions. For example:

ConsJTK(first:T) = Cons(first,Empty)

transient: A parameter to a parametric object can be declaredtransient , indicating that it doesn’t correspond to
a field in an instantiation of the object.transient parameters are in scope only in other field definitions of an object;
they are not in scope in the object’s method definitions.

Fields can be explicitly defined within a parametric object as usual. All fields of an object are initialized before that
object is made available to subsequent computations.

As with functions, parametric object definitions are allowed to include contracts (requires , ensures , andinvariant

clauses). Syntactically, these contracts appear after thetraits clause and before the field definitions of an object.
They are called at the appropriate times during an instantiation of the object.

wrapped: If the fieldf with trait typeT is declared to have modifierwrapped , then the enclosing object implicitly
includes “forwarding methods” for all methods inT . Each of these methods simply calls the corresponding method on
the object referred to by fieldf . If the object definition enclosingf explicitly defines a methodm that conflicts with
an implicitly defined forwarding methodm0, then the enclosing object contains only methodm, notm0. The signature
of m must be a valid overriding signature ofm0 or a static error is signaled.

For example, in the following definitions:

trait Dictionary JTK
put(x:T):()
get():T

end

36 CHAPTER 2. BASIC CONCEPTS

object WrappedDictionary JTK
(wrapped val:Dictionary JTK)
traits Dictionary JTK
get() = throw Error

end

the parametric objectWrappedDictionary implicitly includes the following forwarding method:

put(x) = val.put(x)

If get were not explicitly defined inWrappedDictionary , thenWrappedDictionary would also include the for-
warding method:

get() = val.get()

2.4 Value Objects

There is a special modifiervalue in the language. Conceptually, an object definition with modifier value is under-
stood to define what is called in many languages aprimitive value. For example, here is a definition of a parametric,
primitive, Complex number:

value object Complex(real:Double, imaginary:Double)
opr +(other:Complex) = Complex(real + other.real(),

imaginary + other.imaginary())
...

end

A variable defined with modifiervalue (including the name of an object definition) implicitly has modifier pure ,
indicating that it must not be assigned to. The fields of avalue object are implicitlypure , indicating that they cannot
be assigned to.

2.4.1 Value object types

If a trait T has modifiervalue , all objects with that trait are required to be value objects. The object type defined by a
value object implicitly has the modifiervalue .

2.4.2 Predefined value objects

We are now in a position to expand our description of several of the built-in types, and, in some cases, how they might
be implemented in a library. For Java there was a conscious attempt to minimize the number of distinct primitive types
to reduce programmer confusion. Fortress has a richer set oftypes to address a richer set of programming situations.

2.5. TYPES 37

Booleans

Booleans include the traditionalTrue /False objects:

value trait Bool end
value object True traits Bool end
value object False traits Bool end

opr ^(b0:Bool, b1:Bool):Bool
opr _(b0:Bool, b1:Bool):Bool
opr :(b0:Bool):Bool
opr �(b0:Bool, b1:Bool):Bool

opr ^(b0:True, b1:Bool) = b1
opr _(b0:True, b1:Bool) = True
opr :(b0:True) = False
opr �(b0:True, b1:Bool) = :b1

opr ^(b0:False, b1:Bool) = False
opr _(b0:False, b1:Bool) = b1
opr :(b0:False) = True
opr �(b0:False, b1:Bool) = b1

We also provide forBool intervals and possibly otherBool algebras.

Characters

In addition to theChar andString types already described, Unicode also has the idea of a grapheme, which is sort
of like a character but may be represented as a sequence of Unicode code points, typically a base character plus a set
of combining marks such as accents. We may want to allow for “grapheme” and “grapheme string” data types. For
this purpose,Grapheme andString should be traits, which various sorts of objects may have. Because users of other
languages will expectChar to be small and cheap, we will use that to name the value type ofUnicode characters, and
it will have the traitGrapheme, but so will other objects that contain appropriate sequences of characters. Similarly,
UTF32String , UTF8String , GraphemeString , and so on may have the traitString .

Numbers

In addition to the number types already described, Fortressallows various numeric (and other) types of traits in libraries
that represent algebraic structures of interest such as monoids, groups, rings, and fields. For example, reduction
operators generally can accept any type of a monoid trait with the appropriate binary operator.

2.5 Types

Types in Fortress include all built-in types, all trait types, and all object types. Additionally, Fortress supports several
forms of parametric polymorphism, described in this section.

38 CHAPTER 2. BASIC CONCEPTS

2.5.1 Object types

A defined object has an object type (of the same name). The object type defined by an object definition includes,
as abstract methods, all of the public methods, including all implicitly defined getters and setters, introduced by the
object definition (i.e., those methods not declared by any traits of the object). It extends all of the declared traits of the
object. No other objects can have the object type and no traits can extend an object type

2.5.2 Trait parameters

A trait is allowed to be parametric with respect to other traits. Thesetrait parametersare listed in white square brackets
‘J’ and ‘K’ immediately after the name of the trait. We use the termnaked trait variableto refer to an occurrence of
a trait variable as a stand-alone trait (rather than as a syntactic subcomponent of a larger trait reference). They are in
scope in the entire body of the trait definition, and can appear in any context that an ordinary type can appear, except
that a naked trait variable must not appear in theextends clause of the trait definition. Here is a parametric version
of trait List :

trait List JTK
first(): T
rest (): List JTK
cons (x: T): List JTK
append(xs: List JTK): List JTK

end

Trait parameters are allowed to have bounds placed on them ina where clause. Awhere clause begins with the re-
served wordwhere , followed by a sequence of trait parameter constraints enclosed in braces ‘f’ and ‘g’ and separated
by commas. For example, we could place a constraint on the trait parameter ofList as follows:

trait List JTK where fT extends Comparable g
first(): T
rest (): List JTK
cons (x: T): List JTK
append(xs: List JTK): List JTK
sort (): List JTK

end

A where clause is allowed to introduce new traitvariables, i.e., identifiers for traits that may not be trait parameters.
Trait variables that are not also trait parameters are in scope only in theextends andwhere clauses of a trait. For
example, we can write a trait definition like the following:

trait C JSK extends D JTK
where fS extends T g

end

In this example, for every subtypeS of T, CJSK is a subtype ofDJTK. For example, bothCJObject K andCJSolarSystem K
are subtypes ofDJObject K.
Each trait constraint in awhere clause is either a type alias (described in 2.5.6) or begins with the name of a naked
trait variable, followed by the reserved wordextends , followed by a trait reference. This trait reference is allowed

2.5. TYPES 39

to be any valid trait reference in the enclosing scope including a naked trait variable. Mutually recursive bounds are
allowed inwhere clauses. A trait parameter that is not explicitly bound in awhere clause is implicitly bound by trait
Object . All trait variables in an object or trait definition must occur either as a trait parameter or as a bound trait
variable in awhere clause.

Trait definitions are allowed to extend other instantiations of themselves. For example, we can write:

trait C JSK extends C JTK
where fS extends T g

end

In this definition, for every subtypeS of T, CJSK is a subtype ofCJTK.2 A trait parameter that is bound by a naked
trait variable must not appear in the types of method parameters. A trait parameter that serves as the bound of a trait
variable must not appear in the types of method return values. These restrictions apply both to programmer-defined
methods and to the implicitly defined methods such as getters.

In fact, trait definitions need not have any trait parametersin order to have awhere clause. For example, the following
trait definition is legal:

trait C extends D JTK
where fT extends Object g

end

In this definition, traitC is a subtrait ofeveryinstantiation of parametric traitD. Thus, traitC has all of the methods
of every instantiation ofD. By thinking of the declaration this way, we can see what limitations we need to impose on
the body of traitC in order for it to be sensible. If traitC inherits a method definition that refers toT, it really contains
infinitely many methods (one for each instantiation ofT), so it must be possible to infer which method is referred to
at a call site. IfC inherits an abstract method definition, then an object with trait C must be able to define this method
without referring to trait variableT, (which is not in scope in the definition ofC, nor in any object definition with trait
C). In Fortress, the only valid way to write such a method body is to throw an exception.

Object definitions are also allowed to includewhere clauses. Here is an alternative definition of anEmpty list:

object Empty traits List JTK where fT extends Object g
first() = throw Error
rest () = throw Error
cons(x) = Cons(x,self)
append(xs) = xs

end

whereCons is defined in Section 2.3.2 andself denotes the object itself.

2.5.3 Nat type parameters

Trait definitions are allowed to be parametric with respect to a sequence ofnat type parameters. These parameters are
instantiated at runtime with numeric values. They are allowed to be used to instantiate othernat type parameters, or
to appear in any context that a variable of typenat can appear, except that they cannot be assigned to. Syntactically, a

2Effectively, we have expressed the fact that the type parameter S of C is covariant.

40 CHAPTER 2. BASIC CONCEPTS

nat type parameter is declared along with other type parameters, and begins with the reserved wordnat followed by
a variable name. For example, the following functionf :

f Jnat n K(x:Length 2n): Length n = sqrt(x)

declares anat type parametern, which appears in both the parameter type and return type off .

The set of expressions allowed to instantiate anat type parameter includes allnat constants along with allnat

type parameters, and is closed under addition and multiplication. Static determination of the equivalence of such
expressions is limited to a simple normalization process where all factors are distributed, the variables of each term
are put in lexicographic order, and the normalized terms areput in lexicographic order. For example, thenat type:

(d + a) � (c + b)

is normalized to:

a � b + a � c + b � d + c � d
Method and function definitions are also allowed to be parametric with respect to a sequence ofnat type parameters.

2.5.4 Dimensions

There are special types calleddimensionsthat are separate from traits. Dimensions must be declared globally in a
program component. For every two dimensionsD andE, there is a dimensionD E, corresponding to the product of
the dimensionsD andE and a dimensionD/E , corresponding to the quotient of the dimensionsD over E. There is
also a dimensionDˆn (henceforth writtenDn) for everynat typen. Instances of a given dimension are referred to as
quantities. The set of declared dimensions have the algebraic structure of a free abelian group. The identity element
of this group is dimensionUnity which represents dimensionless quantity. The syntactic sugar1/D is equivalent to
Unity/D for all dimensionsD.

For each dimensionD referred to in a Fortress program component other than dimensionUnity , exactly one variable
of that dimension must be declared globally as aunit variable and must not include a definition. This variable may
appear in the definitions of other variables of the same dimension. For example, we might include the following
declarations in a program:

dim Length
unit m : Length
k = 1000

circumference = 40075 k m

Although exactly oneunit variable of each dimension must not include a definition, other variables are allowed to be
unit variables along with a definition. If multiple imported variables of a given dimension are declared to beunit ,
all but one must be given a definition in the importing programcomponent.

2.5. TYPES 41

2.5.5 Dimension parameters

Trait definitions are allowed to be parametric with respect to a sequence of dimension parameters. Syntactically, a
parameter begins with the reserved worddim followed by a variable name, and occurs alongside other typeparameter
declarations. For example, here is a function that is parametric with respect to a dimension:

trait Coordinates Jdim DK
nth(n:Int):D

end

These parameters are allowed to appear in any context that a dimension can appear.

2.5.6 Type aliases

Fortress allows names to serve as aliases for more complex type instantiations. Thetype aliasbegins with the reserved
word type followed by the alias name, followed by=, followed by the type it stands for. Here are some examples:

type IntList = List JInt K
type Area = Length 2

type BinOp = (Float, Float) ! Float

All uses of type aliases are expanded before type checking. Type aliases do not define nominal equivalence relations
among types. Type aliases must not be recursively defined.

2.5.7 Operator parameters on traits

Traits may be parameterized with respect to operator symbols and names of methods. Syntactically, these parameters
occur along with other trait parameters and are prefixed withthe reserved wordopr . Here are some examples:

trait UnaryOperator JT, opr OPR K
where f T extends UnaryOperator JT,OPRK g
OPR():T

end

trait BinaryOperator JT, opr OPR K
where f T extends BinaryOperator JT,OPRK g
OPR(that:T):T

end

trait UnaryPredicate JT, opr OPR K
where f T extends UnaryPredicate JT,OPRK g
OPR():Bool

end

trait BinaryPredicate JT, opr OPR K
where f T extends BinaryPredicate JT,OPRK g
OPR(that:T):Bool

end

42 CHAPTER 2. BASIC CONCEPTS

2.5.8 Parametric functions

Functions and methods are also allowed to be parametric withrespect to a sequence of trait,nat , and dimension
parameters. Syntactically, these trait parameters are listed in white square brackets immediately before a function’s
ordinary parameters. They are in scope in the entire body of the method definition, and are allowed to appear in all
contexts that ordinary types appear. Bounds may be put on these parameters in awhere clause occurring after all other
parts of the header of a function. For example, here is a simple polymorphic function for creating lists:

List JTK(rest: T...) where fT extends Object g =
do

length = rest.length()
if length = 0 then Empty
else Cons(rest[0], List(rest.asTuple(1, length - 1)) end

end

Here is a simple function that is parametric with respect to adimension:

square Jdim DK(x:D):D 2 = x2

2.5.9 Array types

Array types are written asT[e0, e1, ..., em] whereT is the type of the elements andei (0 � i � m) is either a
nat type corresponding to the size of thei-th dimension of the array or the rangen1: n2 meaning that an index of thei-th dimension of the array is betweenn1 (inclusive) andn2 (exclusive).

2.5.10 Arrow types

Functions can be passed as arguments and returned as values.The types of function values are calledarrow types. An
arrow type specifies the types of parameters to the function,the types of return values, and (optionally) the checked
exceptions of thrown values. Syntactically, an arrow type occurs in either of the following forms:

1. Positionally. The type consists of a sequence of parameter types in parentheses followed by the token!,
followed by a sequence of return types, and optionally athrows clause. Here are some examples:

(Float, Float) ! Float
Int ! (Int, Int) throws IOException

2. With keyword arguments. This form is like the positional form, except that some parameters have names. All
parameters with names are default parameters that should becalled with keyword arguments. For example:

(Int, Int, p:Printer) ! Int

2.6 Overloading and Multiple Dispatch

Fortress allows functions and methods to be overloaded in the context of a single lexical scope. Calls to overloaded
functions and methods are resolved via dynamic dispatch. Inthis section, we define the mechanism for this dynamic
dispatch, and the restrictions placed on overloaded definitions. First, we introduce some terminology.

2.6. OVERLOADING AND MULTIPLE DISPATCH 43

Recall that two traits can also be defined to be disjoint, according to theirexcludes clauses. Therefore any two traits
A andB are related by exactly one of the following relationships:

equality A = B A is B

subtrait A� B Astrictly extendsB
supertrait A� B Bstrictly extendsA
incompatible A k B A is disjoint fromB

incomparable A� B none of the above

We writeA� B to mean thatA extendsB (that is,(A� B)_ (A = B)); similarly, we writeA� B to mean thatB extends
A (that is,(A� B) _ (A = B)).
Similarly, a trait can be defined to have a fixed set of immediate subtraits, according to itsbounds clause.

We write T+ to mean a sequence ofn typesT1; T2; : : : ; Tn, and we writeT� to mean a sequence ofn + 1 types
T0; T1; T2; : : : ; Tn. Henceforth we assume thatn is the same for all sequences under discussion, restrictingour atten-
tion to only functions and methods that haven parameters and to function calls and method calls that haven arguments.
Everything that follows is true separately for each possible value ofn. Method declarations, function declarations,
method calls, and function calls do not interact at all if they have different values forn. Functions and methods with
variable argument parameters must not be overloaded. Similarly, functions and methods with keyword parameters
must not be overloaded. However, there can be a single function with keyword parameters and with the same name as
a set of overloaded functions; calls to this function can be determined syntactically, as keyword arguments are always
present. For brevity, we refer to functions and methods thatcan be overloaded asdispatched functions.

Any two sequences of types are related by one of five relationships:

equality T+ = U+ 81 � i � n : Ti = Ui
more specific T+ � U+ (81 � i � n : Ti � Ui) and notT+ = U+
less specific T+ A U+ (81 � i � n : Ti � Ui) and notT+ = U+
incompatible T+ k U+ 91 � i � n : Ti k Ui
incomparable T+ � U+ none of the above

We writeAv B to mean(A� B) _ (A = B); similarly, we writeAw B to mean(AA B) _ (A = B).
A dispatched function is overloaded only with other dispatched functions whose definitions appear in the same lexical
scope. If a dispatched function definition uses the same nameas a function or method in an enclosing scope, all
dispatched functions with that name in the enclosing scope are shadowed; only functions of that name in the new
scope are accessible. When a subtraitT of a traitSdefines a set of overloaded methodsN with the same name as a set
of overloaded methodsM in S, the methodsN overridethe methodsM if and only if for every methodmin N there is
a methodmin M with the same signature; a call to such a method on an objectO with trait T dispatches to a method
in N.

A declaration isvisiblefrom a given program pointZ if it occurs in a trait definition or blockB that lexically contains
Z.

We write f(P +) to refer to a declaration for a function namedf whose parameter types are the sequenceP+. By an
abuse of notation, we similarly writef(A +) to refer to a call to a function namedf where the arguments given in the
call have (static) typesA+. By a further abuse of the notation, we writef(X +) to describe a call to a function for
which the dynamic object types of the calculated actual arguments at run time areX+. (Note that if the type system is
sound—which we certainly hope it is!—thenX+ v A+ v P+.) Context will distinguish which of these three cases are
meant.

A declarationf(P +) is more specificthan another declarationf(Q +) iff P+ � Q+.

44 CHAPTER 2. BASIC CONCEPTS

A declarationf(P +) is dynamically applicableto a function callf(X +) with dynamic argument typesX+ iff P+ w X+.

A declarationf(P +) is statically applicableto a function callf(A +) with static argument typesA+ iff P+ w A+.

A declarationf(P +) is accessibleto a function callf(X +) iff it is visible from the function call.

A declarationf(P +) is applicableto a function callf(X +) iff it is dynamically applicable to the function call.

The basic principle for a function call or method call, as in Java, is that we wish to identify a unique concrete dec-
laration that is the most specific among all declarations that are both accessible and applicable at the point of the
call. (However, the meanings of the terms “accessible” and “applicable” are slightly different for Fortress from their
meanings for Java.) If there is no such concrete declaration, it is of course an error; moreover, if there are two or more
such concrete declarations, no one of which is more specific than all the others, the call is said to beambiguous, which
is also an error.

Now we introduce a requirement on programs that is more stringent than in Java.

The Meet Rule (for functions): Suppose that two distinct declarations for a function namedf are
accessible at some pointZ in a Fortress program (Z need not be the site of a function call); call these
two declarationsf(P +) : R+ andf(Q +) : S+, whereP+ andQ+ are the sequences of parameter types and
R+ andS+ are the sequences of return types for the two declarations. It is a static error if the following
condition does not hold:

either
P+ k Q+
[parameter types are disjoint at some parameter position]

or
all three of81 � i � n : (Pi � Qi _ Pi = Qi _ Pi � Qi)

[parameter types are comparable at all positions]
and 91 � i � n : Pi 6= Qi

[parameter types differ at some position]
and

there is a declaration visible fromZ for f(P + u Q+):T +, whereT+ v R+ ^ T+ v S+
[if there is an ambiguity, a third declaration with more specific or equal return types must resolve it]

where themeetoperator on sequences of types is defined as

(P+ u Q+)i =
8>>>><>>>>:

Pi if Pi � Qi
Pi if Pi = Qi
Qi if Pi � Qi
undefined ifPi k Qi
undefined ifPi � Qi

Notice that this requirement makes no mention of any specificfunction call that might refer to such declarations. This
is in contrast to Java, where the prohibition against ambiguity applies only to method calls that actually appear in the
program.

Notice also that it may be thatP+ u Q+ = P+ or P+ u Q+ = Q+, in which case the requirement that there be a
declaration forf(P + u Q+) is trivially satisfied, there is no ambiguity, and a separatethird declaration is not needed
after all.

To put this requirement simply: static overloading ambiguity is forbidden. If two function declarations create the

2.6. OVERLOADING AND MULTIPLE DISPATCH 45

potential for an ambiguous function call because neither ismore specific than the other, then there must be a third
function declaration that is more specific than either and covers all the ambiguous cases.

(This requirement should not be difficult to obey, especially because the compiler can give useful feedback. First
example:

foo(x:Num, y:Integer) = ...
foo(x:Integer, y:Num) = ...

Assuming thatInteger � Num, the compiler reports that these two declarations are a problem because of ambiguity
and suggests that a new declaration forfoo(Integer, Integer) would resolve the ambiguity. Second example:

bar(x:Printable) = ...
bar(x:Throwable) = ...

Assuming thatPrintable � Throwable , the compiler reports that these two declarations are a problem because
Printable andThrowable are incomparable but possibly overlapping types.)

Now consider a function callf(X +) at some program pointZ. Let � be the set of parameter type sequences of
function declarations off that are visible atZ and dynamically applicable to the call, and let� be the set of parameter
type sequences of function declarations off that are visible fromZ and statically applicable to the call. Moreover,
let Æ be the subset of� such that8d 2 Æ : :9d0 2 � n fdg : d0 � d and let� be the subset of� such that8s 2 � : :9s0 2 � n fsg : s0 � s.
Claims (to be proved):

1. j�j � 1
2. jÆj � 1
3. If j�j = 1 thenjÆj = 1
4. If � = fsg andÆ = fdg thend v s

Put into words:

1. It is impossible for a function call to be statically ambiguous. (This is a consequence of the Meet Rule.)

2. It is impossible for a function call to be dynamically ambiguous. (This is also a consequence of the Meet Rule.)

3. If there is a statically most specific applicable declaration, then there is a dynamically most specific applicable
declaration.

4. The parameter type sequence for the dynamically most specific applicable declaration is more specific than, or
the same as, the parameter type sequence for the statically most specific applicable declaration.

Therefore an implementation strategy may be used in which the statically most specific applicable declaration is
identified at compile time, and the run-time dispatch mechanism need only consider dispatching among that declaration
plus declarations that are more specific than that declaration.

46 CHAPTER 2. BASIC CONCEPTS

2.6.1 Overloaded methods

Now we discuss additional rules for overloaded methods and method calls.

A method call X0.m(X+) is first resolved based on the runtime typeX0 of the receiver, and then by the runtime types
X+ of the arguments. When a subtraitQ0 of a traitP0 defines a set of overloaded methodsN with the same name as
a set of overloaded methodsM in P0, the methodsN override the methodsM if and only if for every methodm inN there is a methodm in M with the same signature. Furthermore, the signatures of overloaded methods in a trait
definition must respect the same constraints as the signatures of a set of overloaded functions.

2.7 Operator Fixity

Most operators in Fortress can be used variously as prefix, postfix, infix, nofix, or multifix operators. (Some operators
can be used in pairs as enclosing (bracketing) operators—see Section 2.8.) The Fortress language dictates only the
rules of syntax; whether an operator has a meaning when used in a particular way depends only on whether there is a
definition in the program for that operator when used in that particular way (see Section 3.4).

The fixity of a non-enclosing operator is determined by context. To the left of such an operator we may find (1) a
primary expression, (2) another operator, or (3) a comma, semicolon, or left encloser. To the right we may find (1) a
primary expression, (2) another operator, (3) a comma, semicolon, or right encloser, or (4) a line break. Considered
in all combinations, this makes twelve possibilities. In some cases one must also consider whether or not whitespace
separates the operator from what lies on either side. The rules of operator fixity are specified by Figure 2.1, where the
center column indicates the fixity that results from the leftand right context specified by the other columns:

left context whitespace operator fixity whitespace right context

primary

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

primary

primary

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

operator

primary yes
no

error (postfix)
postfix

, ; right encloser

primary yes
no

infix
postfix

line break

operator prefix primary
operator prefix operator
operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser prefix primary
, ; left encloser prefix operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (prefix) line break

Figure 2.1: Operator Fixity (I)

A case described in the center column of the table as anerror is a static error; for such cases, the fixity mentioned
in parentheses is the recommended treatment of the operatorfor the purpose of attempting to continuing the parse in

2.8. ENCLOSING OPERATORS 47

search of other errors.

The table may seem complicated, but it all boils down to a couple of practical rules of thumb:

1. Anyoperator can be prefix, postfix, infix, or nofix.

2. An infix operator can beloose(having whitespace on both sides) ortight (having whitespace on neither side),
but it mustn’t belopsided(having whitspace on one side but not the other).

3. A postfix operator should have no whitespace before it and should be followed (possibly after some whitespace)
by a comma, semicolon, right encloser, or line break.

See Section 2.1.10 for a discussion of how infix operators maybe chained or treated as multifix operators.

2.8 Enclosing Operators

These operators are always used in pairs as enclosing operators:

(/ /) (\ \)
[] [/ /] [\ \] [* *]
{ } {/ /} {\ \} {* *}

</ /> <\ \>
<</ />> <<\ \>>

(ASCII encodings are shown here; they all correspond to particular single Unicode characters.) There are other pairs
as well, such asb
 andd e.
These operators may also be used as enclosing operators:

| | || || ||| |||
/ / // // /// ///
\ \ \\ \\ \\\ \\\

but there is a trick to it, because on the face of it you can’t tell whether any given occurrence is a left encloser or a
right encloser. Again, context is used to decide, this time according to Figure 2.2:

This is very similar to the table in Section 2.7; a rough rule of thumb is that if an ordinary operator would be considered
a prefix operator, then one of these will be considered a left encloser; and if an ordinary operator would be considered
a postfix operator, then one of these will be considered a right encloser.

In this manner, one may use| | for absolute values,|| || for matrix norms, and// // for continued fractions.

2.9 Operator Precedence

Fortress specifies that certain operators have higher precedence than certain other operators, so that one need not use
parentheses in all cases where operators are mixed in an expression. However, Fortress does not follow the practice of

48 CHAPTER 2. BASIC CONCEPTS

left context whitespace operator fixity whitespace right context

primary

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

primary

primary

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

operator

primary yes
no

error (right encloser)
right encloser

, ; right encloser

primary yes
no

infix
postfix

line break

operator error (left encloser)
left encloser

yes
no

primary

operator error (left encloser)
left encloser

yes
no

operator

operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser left encloser primary
, ; left encloser left encloser operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (left encloser) line break

Figure 2.2: Operator Fixity (II)

other programming languages in simply assigning an integerto each operator and then saying that the precedence of
any two operators can be compared by comparing their assigned integers. Instead, Fortress relies on defining traditional
groups of operators based on their meaning and shape, and specifies specific precedence relatonships between some
of these groups. If there is no specific precedence relationship between two operators, then parentheses must be
used. For example, Fortress does not accept the expressiona + b [c ; one must write either(a + b) [c or
a + (b [c) . (Whether or not the result then makes any sense depends on what definitions have been made for the
+ and[operators—see Section 3.4.)

Here are the basic principles of operator precedence in Fortress:

� Subscripting ([]), superscripting (ˆ), member selection (.), method invocation (. name(: : :)), and postfix
operators have higher precedence than any operator listed below; within this group, these operations are left-
associative (performed left-to-right).� Tight juxtaposition, that is, juxtaposition without intervening whitespace, has higher precedence than any oper-
ator listed below. The associativity of tight juxtaposition is type-dependent; see Section 2.10.� Next,tight fractions, that is, the use of the operator ‘/ ’ with no whitespace on either side, have higher precedence
than any operator listed below. The tight-fraction operator has no precedence compared with itself, so it is not
permitted to be used more than once in a tight fraction without use of parentheses.� Loose juxtaposition, that is, juxtaposition with intervening whitespace, has higher precedence than any operator
listed below. The associativity of loose juxtaposition is type-dependent and is different from that for tight
juxtaposition; see Section 2.10.� Prefix operators have higher precedence than any operator listed below.

2.9. OPERATOR PRECEDENCE 49� The infix operators are partitioned into certain traditional groups, as explained below.� Binding and assignment operators (=, := , +=, -= , ^=, _=, \=, [=, and so on) have lower precedence than any
operator listed above.

The majority of infix binary operators are divided into four general categories: arithmetic, relational, boolean, and
other. The arithmetic operators are further categorized asmultiplication/division/intersection, addition/subtraction/union,
and other. The relational operators are further categorized as equivalence, inequivalence, chaining, and other. The
boolean operators are further categorized as conjunctive,disjunctive, and other.

The arithmetic and relational operators are further divided into groups based on shape:

� “plain” operators:+ � � � = � � � 	 �
 � � � � � < � � >�no� � � � � etc.� “rounded” or “set” operators:\ e [d ℄ � � � � b
 6� * + 6� etc.� “square” operators:u t � v w A 6v 6w etc.� “curly” operators:f g � � � � � 64 6< � etc.� “triangular” relations:C E D B 6 5 4 7 etc.� “chickenfoot” relations:<� �> etc.

The principles of precedence for binary operators are then as follows:

� A multiplication or division or intersection operator has higher precedence than any addition or subtraction or
union operator that is in the same shape group.� Certain addition and subtraction operators come in pairs, such as+ and�, or� and	, which are considered to
have the same precedence and so may be mixed within an expression and are grouped left-associatively. These
addition-subtraction pairs are theonly cases where two different operators are considered to have the same
precedence.� An arithmetic operator has higher precedence than any equivalence or inequivalence operator.� An arithmetic operator has higher precedence than any relational operator that is in the same shape group.� A relational operator has higher precedence than any boolean operator.� A conjunctive boolean operator has higher precedence than any disjunctive boolean operator.

While the rules of precedence are complicated, they are intended to be both unsurprising and conservative. Note that
operator precedence in Fotrress is not always transitive; for example, while+ has higher precedence than< (so you can
write a + b < c without parentheses), and< has higher precedence thanOR(so you can writea < b OR c < d

without parentheses), it isnot true that+ has higher precedence thanOR—the expressiona OR b + c is not permitted,
and one must instead write(a OR b) + c or a OR (b + c) .

Another point is that the various multiplication and division operators donot have “the same precedence”; they may
not be mixed freely with each other. For example, one cannot write u � v � w; one must write(u � v) � w or
(more likely) u � (v � w) . Similarly, one cannot writea � b / c � d; but juxtaposition does bind more tightly
than a loose (whitespace-surrounded) division slash, so one is allowed to writea b / c d , and this means the same
as(a b)/(c d) . On the other hand, loose juxtaposition binds less tightly than a tight division slash, so thata b/c d

means the same asa (b/c) d . On the other other hand, tight juxtaposition binds more tightly than tight division, so
that(n+1)/(n+2)(n+3) means the same as(n+1)/((n+2)(n+3)) .

50 CHAPTER 2. BASIC CONCEPTS

There are two additional rules intended to catch misleadingcode: it is a static error for an operand of a tight infix
operator to be a loose juxtaposition, and it is a static errorif the rules of precedence determine that a use of infix
operatora has higher precedence than a use of infix operatorb, but that particular use ofa is loose and that particular
use ofb is tight. Thus, for example, the expressionsin x + y is permitted, butsin x+y is not permitted. Similarly,
the expressiona � b + c is permitted, as area�b + c anda�b+c , but a � b+c is not permitted. (The rule detects
only the presence or absence of whitespace, not the amount ofwhitespace, soa � b + c is permitted. You have to
draw the line somewhere.)

When in doubt, just use parentheses. If there’s a problem, the compiler will (probably) let you know.

2.10 Interpretation of Juxtapositions

The manner in which a juxtaposition of three or more items should be associated requires type information and aware-
ness of whitespace. (This is an inherent property of customary mathematical notation, which Fortress designed to
emulate where feasible.) Therefore a Fortress compiler must produce a provisional parse in which such multi-element
juxtapositions are held in abeyance, then perform a type analysis on each element and use that information to rewrite
the n-ary juxtaposition into a tree of binary juxtapositions. All we need to know is whether each element of a juxtapo-
sition is a function.

A loose juxtaposition is reassociated as follows:

� First the loose juxtaposition is broken into chunks; wherever there is a non-function element followed by a
function element, the latter begins a new chunk. Thus a chunkconsists of some number (possibly zero) of
functions followed by some number (possibly zero) of non-functions.� The non-functions in each chunk, if any, are replaced by a single element consisting of the non-functions grouped
left-associatively into binary juxtapositions.� What remains in each chunk is then grouped right-associatively.� Finally, the sequence of rewritten chunks is grouped left-associatively.

(Notice that no analysis of the types of newly constructed chunks is needed during this process.)

Here is an example:n (n+1) sin 3 n x log log x . Assuming thatsin and log name functions in the usual
manner and thatn, (n+1) , andx are not functions, this loose juxtaposition splits into three chunks:n (n+1) and
sin 3 n x andlog log x . The first chunk has only two elements and needs no further reassociation. In the second
chunk, the non-functions3 n x are replaced by((3 n) x) . In the third chunk, there is only one non-function, so
that remains unchanged; the chunk is the right-associated to form (log (log x)) . Finally, the three chunks are
left-associated, to produce the final interpretation((n (n+1)) (sin ((3 n) x))) (log (log x)) . Now the
original juxtaposition has been reduced to binary juxtaposition expressions.

A tight juxtaposition follows a different strategy:

� If the tight juxtaposition contains no function element, orif only the last element is a function, go on to the
next step. Otherwise, consider the leftmost function element and examine the element that follows it. If that
latter element is not parenthesized, it is a static error; otherwise, replace the two elements with a single element
consisting of a new juxtaposition of the two elements (in thesame order), and perform a type analysis on this
new juxtaposition. Then repeat this step on the original juxtaposition (which is now one element shorter).� Left-associate the remaining elements of the juxtaposition.

2.11. TESTS 51

(Note that this process requires type analysis of newly created chunks along the way.)

Here is an (admittedly contrived) example:reduce(f)(a)(x+1)sqrt(x+2) . Suppose thatreduce is a curried
function that accepts a functionf and returns a function that can be applied to an arraya (the idea is to use the
function f , which ought to take two arguments, to combine the elements of the array to produce an accumulated
result).

The leftmost function isreduce , and the following element(f) is parenthesized, so the two elements are replaced
with one: (reduce(f))(a)(x+1)sqrt(x+2) . Now type analysis determines that the element(reduce(f)) is a
function.

The leftmost function is(reduce(f)) , and the following element(a) is parenthesized, so the two elements are re-
placed with one:((reduce(f))(a))(x+1)sqrt(x+2) . Now type analysis determines that the element((reduce(f))(a))

is not a function.

The leftmost function is(sqrt) , and the following element(x+2) is parenthesized, so the two elements are replaced
with one: ((reduce(f))(a))(x+1)(sqrt(x+2)) . Now type analysis determines that the element(sqrt(x+2))

is not a function.

There are no functions remaining in the juxtaposition, so the remaining elements are left-associated:

(((reduce(f))(a))(x+1))(sqrt(x+2))

Now the original juxtaposition has been reduced to binary juxtaposition expressions.

2.11 Tests

The test modifier on a function or variable definition indicates that it is part of the test suite of a component, and
can be referred to by other parts of the test suite. A test function that takes no arguments is run by default when a
component is tested. For example, we can write the following(very short) test function forfactorial :

test testFactorial() = do
assert(factorial(0) = 1)
assert(factorial(5) = 120)

end

(This function makes use of the functionassert , provided in the Fortress standard library).

A test function may also be called directly on a component, with an appropriate set of arguments passed to it.Calling
specific test functions directly can be used to form smaller test suites.

If a variable definition includes the modifiertest , then the value of that variable is used as a test case. Test functions
that have one or more parameters are called with every permutation of test cases whose types are compatible with the
functions’ parameters.

test zero = 0
test one = 1
test five = 5

test factorial(x,y) =
if x > y then

52 CHAPTER 2. BASIC CONCEPTS

assert factorial(x) > factorial(y)
end

If an object definition includes the modifiertest , then the methods of that object with modifiertest are run when
the enclosing component is tested. The test cases applicable as arguments to the test methods of the object consist of
all test cases in the enclosing scope along with all fields of the object with modifiertest .

test object TestFactorial
test zero = 0
test one = 1
test five = 5

test factorial() = do
assert(factorial(0) = 1)
assert(factorial(5) = 120)

end

test factorial(x,y) =
if x > y then
assert factorial(x) > factorial(y)

end
end

If the object definition is parametric, then it is instantiated with every valid permutation of test cases from the enclosing
scope, and the test methods of each instantiation are run on all valid permutations of test case arguments.

The parts of a program without modifiertest must not refer to those with thetest modifier.

Chapter 3

Advanced Language Constructs

In this section, we build on the basic Fortress language elements to develop more advanced aspects of the language.
In particular, we describe the semantics of parallelism andsupport for domain-specific languages. First, however, we
define the context in which a Fortress program executes.

3.1 Execution Model

All Fortress programs are executed in the context of afortress, which encompasses the functionality of a virtual ma-
chine, as well as handling the components system, as described in Chapter 4. Fortresses are responsible for managing
the execution of processes, and can run multiple processes simultaneously.

3.1.1 Processes

A Fortress process is created whenever theexecute operation is invoked within a fortress (see 4.3). This new process
object executes the code in theexec method of the specified component.

In the execution of a Fortress process, there is a set ofthreadsand a set ofregions. Every Fortress object resides in
some region; those objects are in close proximity with respect to communication cost.

Threads are objects, and thus every thread also resides in some region. A thread consists of acontinuationP , de-
scribing the remainder of the computation thatT must complete, and an environment which maps variables inP to
objects.

Regions are objects which are grouped hierarchically to form a tree; this tree reflects the relative locality of the regions
it contains. Every pair of regions has a common ancestor in the tree, reflecting the degree of locality those locations
share. The different levels of this tree reflect underlying machine structure, such as threads within a CPU, memory
shared by a group of processors, or resources distributed across the entire machine.

53

54 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

3.2 Parallelism and Locality

Fortress is designed to make parallel programming as simpleand as painless as possible. We adopt a multi-tiered
approach to parallelism:

� At the highest level, we provide libraries which allocate locality-aware distributed arrays (Section 3.2.1) and
syntax to perform parallel looping (Section 3.2.2). Our useof parallel for loops is intended to maximize
available parallelism; this leads to computations with lots of slack (Section 3.2.3) which are easy to load balance.� Immediately below that, we provide syntax for spawning a parallel block as a new thread (Section 3.2.4), and
for synchronization using transactional memory access (Section 3.2.5).� There is an extensive library ofdistributions, which permit the programmer to specify locality and data distri-
bution explicitly (Section 3.2.7).� Finally, there are mechanisms for constructing new distributions via recursive subdivision (Section 3.2.8) of
index spaces into tree structures with individual indices at the leaves. These mechanisms are grounded in
fundamental data structures such asRegion andLinearStorage (Section 3.2.9).

We approach these from the highest level to the lowest level.The lowest level is bare-metal programming and best left
until the end.

3.2.1 Arrays are distributed by default

Arrays in Fortress are assumed to be spread out across the machine. Like arrays in Fortran, Fortress arrays are
complex data structures; simple linear storage is encapsulated by theLinearStorage type, which is used in the
implementation of arrays (see Section 3.2.9). The default distribution of an array is determined by the Fortress libraries;
in general it will depend on the size of the array, and on the size and locality characteristics of the machine running
the program. For advanced users, the distribution library (introduced in Section 3.2.7) provides a way of combining
and pivoting distributions, or of re-distributing two arrays so that their distributions match. Arrays can be created by
calling a factory function:

a = array(xSize, ySize, zSize)

Note that matrices and vectors are subtypes of arrays. They are allocated and distributed in the same way, but also
define arithmetic operations such as multiplication and addition.

3.2.2 Thefor loop is parallel by default

Generator is a trait in Fortress. Some common generators include:

l#n n consecutive integers beginning withla.indices() The index set of an arraya
The indices generator is of particular interest. Given a multidimensional array, it returns multiple values. The
parallelism of a loop on this generator follows the spatial distribution of the array as closely as possible.

3.2. PARALLELISM AND LOCALITY 55

By default, loop iterations are assumed to run in parallel. The sequential distribution can be used to change this
behavior (Section 3.2.7). For a parallel loop, the order of nesting of generators does not imply anything about the
relative order of nesting of loop iterations. In most cases,multiple generators are equivalent to multiple nested loops:

for v1 g1 do
for v2 g2 do� � �

for vn gn do
exprs

end� � �
end

end

The compiler will make an effort to choose the best possible iteration order it can for a multiple-generator loop. There
may be no such guarantee for nested loops. Thus loops with multiple generators are preferable in general:

for v1 g1v2 g2� � �vn gn do
exprs

end

In both cases generated variablesvi scope over subsequent generatorsvi+k and over the loop body.

Iterations may be re-structured to eliminate colliding dependencies, reductions may be localized as described in Sec-
tion 3.2.6, parallel iterations may be serialized, serial iterations may be parallelized, and so forth, so long as the
compiled code executesas if it matched the given source code.

Any loop iteration may throw an exception. In this case, the loop as a whole throws an exception; every loop iteration
either runs to completion, does not run at all, or runs until it encounters an exception. The exception thrown by the
loop can be any one of the exceptions thrown by individual loop iterations. In this respect nested loops have very
different exception behavior from a single multiple-generator loop.

3.2.3 Slack

Different iterations of a loop body may execute in very different amounts of time. A naively parallelized loop will
cause processors to idle until every iteration finishes. Thesimplest way to mitigate this delay is to expose substantially
more parallel units of work than there are threads to run them. Load balancing can move the resulting (smaller) units
of work onto idle processors to balance load.

The ratio between available work and number of threads is dubbedparallel slackby Blumofe [3, 4]. With support for
very lightweight threading and load balancing, slack in hundreds or thousands proves beneficial; very slack computa-
tions easily adapt to differences in the number of availableprocessors. The Fortress programmer should be aware that
slack is a desirable property, and endeavor to expose parallelism where possible.

Note that there is no particular need for slack in array layout except the desire to collocate data and computation.
In general, we expect the structure of a distributed array tobe considerably simpler (and coarser-grained) than the
equivalent generator. The built-in distributions accountfor this difference of granularity.

56 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

3.2.4 Parallel threads

We can spawn a block of code in parallel as follows:

v = spawn do
exprs

end

Here the block of code represented byexprsis run in parallel with any succeeding computation. We referto v as
a thread. Every thread returns a value (though that value might be()). We write v.value() to obtain the value
computed byexprs. If threadv has not yet completed execution,v.value() will wait until it has done so. When
exprsdo not return a value, but are executed purely for effect, we may optionally omit the binding forv—but note in
this case that there will be no simple way to detect the termination of the block.

In the absence of sufficient parallel resources, the compiler executesexprsbefore continuing execution of the code in
which thespawn occurred. We can imagine that it is actually therestof the computationafter the parallel block which
is spawned off in parallel. This is a subtle technical point,but makes the sequential execution of parallel code simpler
to understand, and avoids subtle problems with the asymptotic space behavior of parallel code [18, 11].

When a parallel block throws an exception, that exception isdeferred. Any invocation ofv.value() throws the
deferred exception. If the value of the thread is discarded,the exception itself will be silently ignored.

Note that parallel loop iterations conceptually occur in separate threads. The necessary synchronization for these
threads is performed by the compiler and runtime system.

3.2.5 Transactions

It is often convenient to imagine that a thread or a portion ofa thread behavestransactionally: all reads and writes
appear to occur simultaneously in a single atomic step. For this purpose, Fortress providesatomic blocks. For
example:

arraySum JN extends Additive, nat x K(a:N[x]):N = do
sum:N := 0
for i a.indices() do

atomic do sum:=sum+a[i] end
end
sum

end

Very long transactions can degrade performance. Two transactionsconflict when one attempts to read or write state
written by the other. When transactions conflict, their execution must be partially serialized. The exact mechanism by
which this occurs will vary; the serialization is provided by the implementation of transactional memory. In general,
the execution of one or both transactions may be abandoned, rolling back any state changes which might have occurred,
and requiring that transaction to be re-run. The longer a transaction runs and the more memory it touches the greater
the chance of conflict and the larger the bottleneck that conflict may impose.

Fortress provides a user-levelabort() function which abandons execution of a transaction and rolls back its changes,
again requiring the transaction to be re-run. This permits atransaction to perform consistency checks before commit-
ting.

3.2. PARALLELISM AND LOCALITY 57

Fortress also includes atryatomic construct, which attempts to run its body atomically. If it succeeds, the result is
returned; if the transaction aborts, either due to conflict or due to a call toabort , theTransactionFailed exception
is thrown. Conceptuallyatomic can be defined in terms oftryatomic as follows:

label AtomicBlock
while True do

try
result = tryatomic do body end
exit AtomicBlock with result

catch e
TransactionFailed) () (* continue execution *)

end
end
throw(UnreachableCode)

end AtomicBlock

Transactions may be nested arbitrarily; semantically, inner transactions appear atomic within the scope in which they
occur. Unlesstryatomic is used, this has no particular semantic impact: erasing an inneratomic block can affect
the performance, but not the correctness, of a program.

When an exception of any kind is thrown from within anatomic block or atryatomic block, and is not caught within
the block, the transaction fails. The exception continues to propagate to the enclosing context—unlessTransactionFailed

is thrown from inside anatomic block, in which case the transaction retries. All side effects to previously-allocated
objects are discarded. Side effects to newly-allocated objects are retained (these objects will be local; see the next
section). A local variable reverts to the value it held before the transaction began.

We do not provide input and output in the context of a transaction; thus, we may only call anio function from outside
an atomic block. Similarly, we do not provide nested parallelism in the context of a transaction. An interesting
exception is within apure function: since these functions have no visible side effects (see Chapter 2), such a function
may contain arbitrary parallelism, even if it occurs withinthe scope of anatomic block. Thus, onlypure and io

functions may contain parallel blocks or parallelfor loops.

It is not difficult to assign a semantics to arbitrary nestings of parallelism and transactions, permitting parallelism
everywhere—even insideatomic blocks. However, at the moment no efficient implementation strategy is known. As
a result, we defer transactions with non-pure nested parallelism to future work.

3.2.6 Shared and local data

Every datum (function or object) in a Fortress program is considered to be eithersharedor local (collectively referred
to as thesharednessof the datum). A local datum is accessible to at most one running thread. It may be accessed more
cheaply than a shared datum, particularly in the case of transactional reads and writes.

The following rules govern sharedness:� Data are considered to be local by default.� The sharedness of a datum can change on the fly.� If a datum is transitively reachable from more than one thread at a time, it must be shared.� When a reference to a local datum is stored into a shared datum(by field assignment to a shared objects, or
by assigning to a mutable variable closed over by a shared function), the local datum must bepublished. Its
sharedness is changed to shared, and all of the data to which it refers is also published.

58 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS� Local variables referenced by a thread must be published before that thread may be run in parallel with the
thread which spawned it.� Data in a field or closed-over variable of value type is assigned by copying, and thus has the sharedness of the
containing object or closure.

The sharedness of a datum should only matter for performancepurposes. Publishing can be expensive, particularly if
the structure being broadcast is large and heavily nested; this can cause an apparently short transaction (a single write,
say) to run arbitrarily long. To avoid this, the programmer can request that an object be allocated as shared by tagging
a call to the factory:

x := shared Cons(x, xs)

A datum can be published early as follows:

publish(x)

A local copy of an object can be obtained by copying it:

localVar := sharedVar.copy()

Note that function closures may not be localized by copying.

The functionality described so far is solely a performance optimization; we can’t tell whether a given datum is shared
or local, and sharedness will not make a difference to programs written using only these constructs. Two additional
methods are provided whichcanchange program behavior based on the sharedness of objects:

� o.isShared() returns true wheno is shared, and false when it is local. This permits the program to take
different actions based on sharedness; it should be used with caution.� o.localizeNoCopy() is equivalent to the following expression:

if o.isShared() then o.copy() else o end

localizeNoCopy can have unexpected behavior if there is a reference too from another local object. Publish-
ing that object will causeo to be published; updates too will be visible through the other object. By contrast, if
o was already shared, and referred to by another shared object, the newly-localized copy will be entirely distinct.

In order to perform computations as locally as possible, andavoid the need to serialize relatively simplefor loops,
Fortress gives special treatment toreductions. A reduction is a commutative, associative binary operation with an
identity (an abelian monoid) and is captured by the following trait:

trait Reduction JTK
op(l : T, r : T) : T
identity() : T

end

A loop body may contain as many of the following reductions asdesired:

3.2. PARALLELISM AND LOCALITY 59

l := r.op(l,value)
l := r.op(value,l)

As long as every assignment uses the same reductionr , and the value ofl is not otherwise used in the loop body, we
sayl is reduced usingr .

Several common mathematical operators are also treated as reductions. These include+, * , AND, OR, andXOR. Note
that since there are no guarantees on the order of execution of loop iterations, there are also no guarantees on the order
of reduction.

Reductions are treated roughly as in OpenMP [21]. The local variablel is assignedr.identity() at the beginning
of the loop body or block. At the end of the loop or block, the original variable value before the loop and the final
variable values from each execution of the loop body are combined together using the reduction operator, in some
arbitrarily-determined order.

Consider thearraySum example from the previous section:

arraySum JN extends Additive, nat x K(a:N[x]):N = do
sum:N := 0
for i a.indices() do

atomic do sum:=sum+a[i] end
end
sum

end

Here the variablesum is reduced, so this loop is equivalent to the following code:

arraySum JN extends Additive, nat x K(a:N[x]):N = do
sum:N := 0
for i a.indices() do

var temp:N
atomic do

temp:=a[i]
end
sum:=sum+temp

end
sum

end

3.2.7 Distributions

Most of the heavy lifting in Fortress is performed bydistributionsand parallel blocks. The job of a distribution is to
impose parallel structure on generators, and to provide forthe allocation and distribution of arrays on the machine.

An instance of traitDistribution describes the placement of data or computation on a machine.A Distribution

acts as a transducer for generators and for arrays. It copiesan array, re-distributing its elements as it does so. It
organizes the data produced by a generator into the leaves ofa tree whose inner nodes correspond (conceptually) to
the levels of parallelism and locality on the underlying machine. Thus, a distribution does the hard work of splitting
data up and distributing it over the machine.

60 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

The intention of distributions is to separate the task of data distribution and program correctness. That is, it should be
possible to write and debug a perfectly acceptable parallelprogram using only the default data distribution provided
by the system. Imposing a distribution on particular computations, or designing and implementing distributions from
scratch, is a task left for performance tuning.

A distribution also acts as a factory for generators and arrays. We can think of these factories as being defined
in terms of transducers and the built-in default factory methods. This is the default implementation provided by
the Distribution trait; built-in distributions will usually override this implementation and construct arrays and
generators directly.

There is adefault distribution which is defined by the underlying system. Thisdistribution is designed to be reason-
ably adaptable to different system scales and architectures, at the potential cost of some runtime efficiency. Arrays and
generators which are not explicitly allocated through a distribution are given thedefault distribution. Thusarray

is merely a convenient shorthand fordefault.array .

We said in Section 3.2.2 that there is a generator,indices , associated with every array. This generator is distributed
in the same way as the array itself. When we re-distribute an array, we also re-distribute the generator.

There are a number of built-in distributions:

default Name for distribution chosen by system.
sequential Sequential distribution. Arrays are allocated in one pieceof memory.
local Equivalent tosequential .
par Blocked into chunks of size 1.
blocked Blocked into roughly equal chunks.
blocked(n) Blocked inton roughly equal chunks.
subdivided Chopped into2k-sized chunks, recursively.
interleaved(d1, d2,... dn) The firstn dimensions are distributed according tod1. . .dn,

with subdivision alternating among dimensions.
joined(d1, d2,... dn) The firstn dimensions are distributed according tod1. . .dn,

subdividing completely in each dimension before proceeding to the next.

From these, a number of composed distributions are provided:

morton n Bit-interleaved Morton order [19], recursive subdivision
in n dimensions. Local in remaining dimensions.

blocked(x1, x2,... xn) Blocked inn dimensions intoxi chunks in dimensioni;
remaining dimensions (if any) are local.

To allocate an array which is local to a single thread (and most likely allocated in contiguous storage), thelocal

distribution can be used:

a = local.array(xSize, ySize, zSize)

Other distributions can be requested in a similar way.

A generatorg can be made sequential simply by sequentializing the distribution as follows:v sequential(g)

Note that at the moment there is no way to tell the compiler that we really mean it when we ask for sequentiality, as op-
posed to saying that we should preserve sequential semantics. In future, we may distinguishlocal andsequential

distributions for this purpose.

3.2. PARALLELISM AND LOCALITY 61

Distributions can be constructed and given names:

spatialDist = blocked(n,n,1) (* Pencils along the z axis *)
spaceVecs = spatialDist.array(n,n,n,5) :Double[n, n, n, 5]
spaceMats = spatialDist.array(n,n,n,5,5):Double[n, n, n , 5, 5]

The system will lay out arrays with the same distribution in the same way in memory (as much as this is feasible),
and will run loops with the same distribution in the same way (as much as this is feasible). By contrast, this code will
likely divide up the arrays into the same-sized pieces as above, but these pieces need not be collocated:

spaceVecs = blocked(n,n,1).array(n,n,n,5) :Double[n, n, n, 5]
spaceMats = blocked(n,n,1).array(n,n,n,5,5):Double[n, n, n, 5, 5]

3.2.8 Recursive subdivision

Internally, generators accomplish their task byrecursive subdivision. This subdivision is guided by the distribution. It
is possible to write computations which follow this recursive structure directly. We can view the pattern of recursive
calls used by a generator as a tree with arbitrary fanout. At the leaves are sequential loops over index space. Interior
nodes represent recursive subdivision. Thus, we can break aparallel generator into a series of sequential generators.
Interior nodes generate a series of generators (children ofthe current generator). Leaf nodes generate the actual values
produced by the iterator. Thus, the following code follows the structure of a generator recursively, and sums the
generated values:

recSum(gen : Generator JInt K) : Int = do
sum : Int := 0
if (gen.isSequential) then

for i gen do
sum += i

end
else

for childGen gen.children() do
sum += recSum(childGen)

end
end
sum

end

This can be parallelized as follows. Note the use of thepar distribution to make every iteration of the sequential
generatorgen.children() run in parallel, and the use of a simple reduction on the variable sum.

recSum(gen : Generator JInt K) : Int = do
sum : Int := 0
if (gen.isSequential) then

for i gen do
sum += i

end
else

for childGen par(gen.children()) do
sum += recSum(childGen)

62 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

end
end
sum

end

Properties of known distributions may be exploited in this way to do complex restructuring of generated traversals.
This mechanism lies at the heart of the Fortress loop compilation strategy.

3.2.9 Primitives for constructing distributions

Every object reference, including a thread, and every array/index pair, has a corresponding region (see Section 3.1.1).
For an array, the region of the array will contain the region of any element of that array. In an array of references the
region of an array element may be different from the region ofthe object referred to by that element.

Non-array objects are allocated in a region whichisLocalTo the region in which their constructor is run, unless they
are produced by a factory with an appropriate region argument (in which case the factory itself embeds a parallel block
which constructs the object in the appropriate region).

A thread can be placed in a particular region by providing that region as an argument tospawn :

v = spawn region(a,i) do
a[i]

end
w = spawn v.region() do

v.value() * 17
end

Here the spawned thread is sent to the indicated region. Computation continues locally immediately after the spawned
region, regardless of the current load on the machine. By contrast, an ordinary unplaced spawn executes the spawned
code first, and optionally ships the region after the spawn toanother processor for execution.

Finally, Fortress provides theLinearStorage data type.LinearStorage represents contiguous, one-dimensional,
zero-indexed memory. Arrays in Fortress are constructed from individual pieces ofLinearStorage , plus objects
representing dope vectors and so forth. Again,LinearStorage is allocated in the region from which it is requested.

Recall that regions are organized into a tree-structured hierarchy. Objects are placed at an appropriate level of that hier-
archy when they are created. For example, the region of a thread might refer to the particular processor core on which
it is run, or to the multi-threaded CPU which contains that core. The region of a data object may, by contrast, refer to
the shared memory on one node of a large multiprocessor. Thus, while the memory is local to a particular thread, it
might be local to many other threads as well. Thus,ref.region andthread.region need not be equal whenref

is allocated bythread . However, it should be the case thatref.region.isLocalTo(thread.region) —that is,
ref.region will be a transitive parent ofthread.region in region hierarchy.

3.3 Matrix Unpasting

Matrix unpasting is an extension of variable declaration syntax as a shorthand for breaking a matrix into parts. On
the left-hand-side of a declaration, what looks like a matrix pasting of unbound variables serves to break the right-
hand side into pieces and bind the pieces to the variables. This syntax is concise, eliminates several opportunities for
fencepost errors, guarantees unaliased parts, and avoids overspecification of how the matrix should be taken apart.

3.3. MATRIX UNPASTING 63

The motivating example for matrix unpasting is cache-oblivious matrix multiplication. The general plan in a cache
oblivious algorithm is to break the input apart on its largest dimension, and recursively attack the resulting smaller and
more compact problems.

mmJnat m, nat n, nat p K(left:T[m � n], right:T[n � p], result:T[m � p]):() = do
case largest of

1) result[0,0] += (left[0,0] right[0,0])
m) [lefttop

leftbottom] = left
[resulttop

resultbottom] = result
t1 = spawn do mm(lefttop, right, resulttop) end
mm(leftbottom, right, resultbottom)
t1.wait()

p) [rightleft rightright] = right
[resultleft resultright] = result
t1 = spawn do mm(left, rightleft, resultleft) end
mm(left, rightright, resultright)
t1.wait()

n) [leftleft leftright] = left
[righttop

rightbottom] = right
mm(leftleft , righttop , result)
mm(leftright, rightbottom, result)

end
end

In unpasting, the element syntax is slightly enhanced both to permit some specification of the split location and to
receive information about the split that was performed. Forexample, perhaps only the upper left square of a matrix is
interesting. The programmer can add array bounds to the square unpasted element:

foo(A:T[m � n]):() = do
if m < n then

[square:[m � m] rest] = A
...

elif m > n then
[square:[n � n]

rest] = A
...

else (* A already square *)
...

end
end

If an unpasting into explicitly sized pieces does not exactly cover the right-hand-side matrix, an exception is thrown.

An element’slow#high extent specification establishes the origin for the parts from the array. The lower extent
must be bound, either before the unpasting, or earlier (left-or-above) in the unpasting. For example, suppose that an
algorithm chooses to break an array into 4 pieces, but retainthe original indices for each piece:

bar Jnat p, nat q K(X:T[r0#p � c0#q]):() = do

64 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

[A[r0#m � c0#n] B[r0#m � c0+n#q-n]
C[r0+m#p-m � c0#n] D[r0+m#p-m � c0+n#q-n]] = X

...
end

Unpasting currently does not directly support non-uniformdecomposition, and does not provide any sort of constraint
satisfaction between the extents of the parts. Thus, this decomposition would not be legal because it constrains the
split sizes to be equal without specifying the actual size.

fubar Jnat m, nat n K(X:T[m � n]):() = do
(* p and q unbound *)
[A[p � q] B[p � q]

C[p � q] D[p � q]] = X
...

end

To get this effect, the programmer should compute the constrained values:

fubar Jnat m, nat n K(X:T[m � n]):() = do
[A[m/2 � n/2] B[m/2 � n/2]

C[m/2 � n/2] D[m/2 � n/2]] = X
...

end

Some non-uniform unpastings can be obtained with composition, which can be expressed either by repeated unpasting:

unequalRows Jnat m, nat n K(X:T[m � n]):() = do
[c1[m � n/2] c2[m � n/2]] = x
[A[m/4 � n/2]

C[3m/4 � n/2]] = c1
[B[3m/4 � n/2]

D[m/4 � n/2]] = c2
...

end

or simply by nesting matrices in the antipasting:

unequalColumns Jnat m, nat n K(X:T[m � n]):() = do
[[A[m/2 � n/4] B[m/2 � 3n/4]]

[C[m/2 � 3n/4] D[m/2 � n/4]]] = X
...

end

3.4 Operator Definitions

An operator definition may appear anywhere a function definition may appear. Such definitions are like function
definitions in all respects except that an operator definition has the reserved wordopr and has an operator instead of

3.4. OPERATOR DEFINITIONS 65

an identifier. The precise placement of the operator within the definition depends on the fixity of the operator. Just as
functions may be overloaded, so operators may have overloaded definitions, of the same or differing fixities.

An operator definition has one of five forms: infix/multifix operator definition, prefix operator definition, postfix
operator definition, nofix operator definition, and bracketing operator definition. Each is invoked according to specific
rules of syntax.

3.4.1 Infix/multifix operator definitions

An infix/multifix operator definition has the reserved wordopr and then an operator where a function or method
definition would have an identifier. The definition must not have any keyword parameters, and must be capable of
accepting at least two arguments. It is permissible to use a... parameter; in fact, this is a good way to define a
multifix operator. Type parameters may also be present, between the operator and the parameter list. Example:

opr MAXJT extends Rational K(x:T,y:T):T = if x > y then x else y end

An expression consisting of an infix operator applied to an expression will invoke an infix/multifix operator definition.
The compiler considers all infix/multifix operator definitions for that operator that are both accessible and applicable,
and the most specific operator definition is chosen accordingto the usual rules for functions. If the expression is
actually multifix, the invocation will pass more than two arguments.

An infix/multifix operator definition may also be invoked by a prefix or nofix (but not a postfix) operator application
if the definition is applicable.

Note that superscripting (ˆ) may be defined using an infix operator definition even though it has very high precedence
and cannot be used as a multifix operator. (An operator definition for superscripting should have exactly two value
parameters.)

3.4.2 Prefix operator definitions

A prefix operator definition has the keywordopr and then an operator where a function definition would have an
identifier. The definition must have one value parameter, which must not be a keyword parameter or... parameter.
Type parameters may also be present, between the operator and the parameter list. Example:

opr ˜(x:Widget):Widget = x.invert()

An expression consisting of a prefix operator applied to an expression will invoke a prefix operator definition. The
compiler considers all prefix and infix/multifix operator definitions for that operator that are both accessible and appli-
cable, and the most specific operator definition is chosen according to the usual rules for functions.

3.4.3 Postfix operator definitions

A postfix operator definition has the keywordopr where a function definition would have an identifier; the operator
itself followsthe parameter list. The definition must have one value parameter, which must not be a keyword parameter
or ... parameter. Type parameters may also be present, between thereserved wordopr and the parameter list.
Example:

66 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

opr (n:Integer)! = PRODUCT[i 1:n] i (* factorial *)

An expression consisting of a postfix operator applied to a primary expression will invoke a postfix operator definition.
The compiler considers all postfix operator definitions for that operator that are both accessible and applicable, and
the most specific operator definition is chosen according to the usual rules for functions.

3.4.4 Nofix operator definitions

A nofix operator definition has the keywordopr and then an operator where a function definition would have an
identifier. The definition must have no parameters. Example:

opr :() = ImplicitRange

An expression consisting only of a nofix operator will invokea nofix operator definition. The compiler considers all
nofix and infix/multifix operator definitions for that operator that are both accessible and applicable, and the most
specific operator definition is chosen according to the usualrules for functions.

Uses for nofix operators are rare, but those rare examples arevery useful. For example, the colon operator is used to
construct subscripting ranges, and it is the nofix definitionof : that a lone: to be used as a subscript.

3.4.5 Bracketing operator definitions

A bracketing operator definition has the reserved wordopr where a function definition would have an identifier. The
value parameter list, rather than being surrounded by parentheses, is surrounded by the brackets being defined. A
bracketing operator definition may have any number of parameters, keyword parameters, and... parameters in the
value parameter list. Type parameters may also be present, between the reserved wordopr and the parameter list. Any
paired Unicode brackets may be so definedexceptordinary parentheses and white square brackets.

(* angle bracket notation for inner product *)
opr <| x:Vector, y:Vector |> = SUM[i x.indices()] x[i] * y[i]

(* vector space norm (may not be the most efficient) *)
opr ||x:Vector|| = sqrt <| x, x |>

An expression consisting of zero or more comma-separated expressions surrounded by a bracket pair will invoke a
bracketing operator definition. The compiler considers allbracketing operator definitions for that type of bracket pair
that are both accessible and applicable, and the most specific function is chosen according to the usual rules. For
example, the expression<|p,q|> might invoke the sample bracketing method shown above.

3.5 Subscripting and Subscripted Assignment Operator Method Definitions

A subscripting or subscripted assignment operator method definition may appear anywhere a method definition may
appear. Such definitions are like method definitions in all respects except that a subscripting or subscripted assignment
operator method definition has the reserved wordopr and has special syntax instead of an identifier. Just as methods
may be overloaded, so subscripting and subscripted assignment operator methods may have overloaded definitions.

3.6. SUPPORT FOR DOMAIN-SPECIFIC LANGUAGES 67

3.5.1 Subscripting operator method definition

A subscripting operator method definition has the reserved word opr where a method definition would have an iden-
tifier. The value parameter list, rather than being surrounded by parentheses, is surrounded by a pair of brackets. A
subscripting operator method definition may have any numberof value parameters within the brackets, keyword pa-
rameters, and... parameters in that value parameter list. Type parameters may also be present, between the reserved
word opr and the parameter list. Any paired Unicode brackets may be sodefinedexceptordinary parentheses and
white square brackets; in particular, the ordinary square brackets ordinarily used for indexing may be used.

(* subscripting method *)
opr [x:BizarroIndex] = self.bizarroFetch(x)

An expression consisting of a subexpression immediately followed (with no intervening whitespace) by zero or more
comma-separated expressions surrounded by brackets will invoke a subscripting operator method definition. Methods
for the expression preceding the bracketed expression listare considered. The compiler considers all subscripting
operator method definitions that are both accessible and applicable, and the most specific method is chosen according
to the usual rules. For example, the expressionfoo[p] might invoke the sample subscripting method shown above.

3.5.2 Subscripted assignment operator method definition

A subscripted assignment operator method definition has thereserved wordopr where a method definition would
have an identifier. The value parameter list, rather than being surrounded by parentheses, is surrounded by a pair of
brackets; this is then followed by the operator:= and then a second value parameter list in parentheses, whichmust
contain exactly one non-keyword value parameter. A subscripted assignment operator method definition may have any
number of value parameters within the brackets, keyword parameters, and... parameters in that value parameter list.
A result type after the second value parameter list, but it must be() . Type parameters may also be present, between
the reserved wordopr and the first parameter list. Any paired Unicode brackets maybe so definedexceptordinary
parentheses and white square brackets; in particular, the ordinary square brackets ordinarily used for indexing may be
used.

(* subscripted assignment method *)
opr [x:BizarroIndex] := (newValue:Widget) = self.bizarro Install(x, newValue)

An assignment statement consisting of an expression immediately followed (with no intervening whitespace) by zero
or more comma-separated expressions surrounded by brackets, followed by the assignment operator:= , followed
by another expression, will invoke a subscripted assignment operator method definition. Methods for the expression
preceding the bracketed expression list are considered. The compiler considers all subscript operator method defi-
nitions that are both accessible and applicable, and the most specific method is chosen according to the usual rules.
For example, the assignmentfoo[p] := myWidget might invoke the sample subscripted assignment method shown
above.

3.6 Support for Domain-specific Languages

In order to support syntax for domain-specific languages, and to allow the Fortress language to grow with time,
programmers are allowed to extend the basic syntax of Fortress in their programs. Extensions are allowed through the
use ofsyntax expanders.

68 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

Syntax expanders must be defined in the top-level scope of a program component. There are three kinds of syntax
expanders:

Simple syntax expanders

A simplesyntax expander starts with the reserved wordsyntax , followed by an identifier, followed by an=, followed
by an expression with typefortress.ast.SyntaxTree , as in the following example:

syntax Area =
RaisedTypeRef

(SimpleTypeRef
(Identifier("Length")),

SimpleTypeRef("2"))

A use site of a syntax expander consists solely of an occurrence of the expander’s identifier. This identifier is expanded
into theSyntaxTree specified in the definition of the expander.

Parametric syntax expanders

A parametricsyntax expander starts with the reserved wordsyntax , followed by anopeningidentifier, followed
by a contentsparameter (implicitly of typefortress.lang.SourceAssembly , which is a sequence of Unicode
characters and abstract syntax trees) and aterminatingidentifier. The terminating identifier is followed by an= and an
expression of typefortress.ast.SyntaxTree . Here is an example:

syntax sql exp end = parseSQL(exp)

whereparseSQL is a static function that takes aSourceAssembly , interprets it as an SQL query, and returns a
SyntaxTree consisting of constructor calls to SQL syntax nodes (definedin some SQL library).

At a use site, all characters between the opening identifier and the terminating identifier are turned into aSourceAssembly

and all escaped subsequences of thisSourceAssembly are converted into abstract syntax trees (see Section 3.6.3for
a discussion of escaped subsequences). The resultingSourceAssembly is bound to the contents parameter of the
parametric syntax expander. The use site is then expanded byevaluating the body of the expander.

For example, we could defineparseSQL so that a use site such as:

sql
SELECT spectral_class FROM stars

end

would be expanded into:

Call(Empty,
List(VarRef(Identifier("SqlQuery")),

Call(Empty,
List(VarRef(Identifier("Select")),

String("spectral_class"))),

3.6. SUPPORT FOR DOMAIN-SPECIFIC LANGUAGES 69

Call(Empty,
List(VarRef(Identifier("From")),

String("stars")))))

(The Empty lists passed toCall s are the lists of type parameters to these calls). Note that this SyntaxTree corre-
sponds to the following Fortress concrete syntax:

SqlQuery(Select("spectral_class"), From("stars"))

Parenthesized syntax expanders

A parenthesizedsyntax expander starts with the reserved wordsyntax , followed by an identifier, followed by a
sequence of parameters, each enclosed in parentheses of various forms. Each parameter enclosed in parentheses is im-
plicitly of typeSourceAssembly . After these parameters, an= and an expression with typefortress.ast.SyntaxTree

is provided. Here is an example of a parenthesized syntax expander that allows for Java-stylefor loops in Fortress
programs:

syntax jfor (inits) fbodyText g = do
bindings , inits = parseBindings (inits)
terminator, inits = parseTerminator(inits)
increment , inits = parseIncrement (inits)
body = parseForBody(bodyText)
JavaFor(bindings, terminator, increment, body)

end

Depending on how we define the parse functions in this expander, we could parse the following use site of this
expander:

jfor (int i = 0; i < 10; i++) {
System.out.println(i);

}

into aSyntaxTree denoting instantiations of parametric “Java syntax” objects such as this:

Call(Empty,
List("JavaFor",

Call(Empty,
List("JavaBinding",

Identifier("i"),
DecimalLiteral("0"))),

Call(Empty,
List("JavaOp",

Identifier("<"),
Identifier("i"),
Identifier("10"))),

Call(Empty,
List("JavaIncrement".

Identifier("i"))),

70 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

Call(Empty,
List("JavaCall",

Identifier("System.out.println"),
Identifier("i")))))

which corresponds to the Fortress concrete syntax:

JavaFor(JavaBinding("i","0"),
JavaOp("<","i","10"),
JavaIncrement("i"),
JavaCall("System.out.println", "i"))

Alternatively, the parse functions could be defined so that use sites expand into aSyntaxTree for a Fortressfor loop.

Syntax expanders must not call any functions or refer to any variables except those declared to bestatic . Addition-
ally, a syntax expander must not refer to any variables or functions that have modifiertest .

Because syntax expanders are defined at the top-level of program components, and because they are syntactically
distinguished, they can be identified before scanning or parsing. Use sites are then identified and expanded before
parsing occurs.

3.6.1 Introduced variable names

Often, when expanding concrete syntax for a domain-specificlanguage, it is useful to introduce variable binding
constructs into the resultingSyntaxTree . It is required that such bindings, in general, respect the rules of hygiene
and referential transparency [7]. Therefore, our system automatically renames identifiers, following thesyntax-case

system of Dybvig et al. [9].

3.6.2 Expanders for Fortress

As the above examples demonstrate, it is often useful to denote Fortress abstract syntax using Fortress concrete syntax.
A special set of parametric syntax expanders are defined in the api fortress.syntax for every nonterminal in
Fortress concrete syntax. The name of each expander consists of the name of the nonterminal in lowercase. The
terminating symbol for each nonterminal consists of its name prefixed withend_ . For example, the expression:

expr
x + y

end_expr

evaluates to theSyntaxTree :

Call(Empty,
VarRef(Identifier("+")),
VarRef(Identifier("x")),
VarRef(Identifier("y")))

3.6. SUPPORT FOR DOMAIN-SPECIFIC LANGUAGES 71

When one of these syntax expanders parses a binding construct, the bound identifier is replaced with an identifier
resulting from a call togensym, and all variable references captured by the original identifier are replaced with refer-
ences to the new identifier.

For convenience, there is a special parametric expander</ that behaves identically to theexpr expander. Uses of this
expander are terminated with/> and escaped with� (see Section 3.6.3 for a discussion of escape clauses).

Using thefortress.syntax expanders, we can rewrite our original example of a simple expander as follows:

syntax Area = </Length 2/>
3.6.3 Escape clauses

Programmers are encouraged to declareescapeclauses in their expanders. Escape clauses allow for nestedprogram
fragments in another concrete syntax. They occur immediately before the= sign of an expander. They start with the
reserved wordescape followed by a delimiterString . For example, we modify our SQL expander as follows:

syntax sql exp end escape ˜ = parseSQL(exp)

An occurrence of the escape character at a use site delimits either the immediately proceeding identifier or aSourceAssembly

enclosed in any of the standard parentheses. The delimitedSourceAssembly is parsed as a Fortress expression.This
expression is allowed to be a use site of a syntactic expander, which may itself have an escape clause.

We can now embed program fragments in other domain-specific languages at a use site of this expander. For example,
we could write the following function:

spectralClass(star:SourceAssembly) = sql
SELECT spectral_class FROM

SELECT ˜star FROM stars
end

Escapes at use-sites of expanders are processed from the leftmost-innermost clause outward.

72 CHAPTER 3. ADVANCED LANGUAGE CONSTRUCTS

Chapter 4

Program component compilation and
linking

Fortress programs are developed, compiled, and deployed asencapsulated upgradable componentsthat exist not only
as programming language features, but also as self-contained run-time entities that are managed throughout the life
of the software. The imported and exported references of a component are described with explicitapis, which can be
thought of as interfaces of components. With components andapis, Fortress provides the stability benefits of static
linking with the sharing and upgrading benefits of dynamic linking. 1

4.1 Overview

Components are the fundamental structure of Fortress programs. They export and import apis, which serve as “inter-
faces” of the components. Components do not refer directly to other components. Rather, all external references are
to apis imported by the component. These references are resolved by linking components together: the references of
a component to an imported api are resolved to a component that exports that api. Linking components produces new
components, whoseconstituentsare the components that were linked together.

Components are similar to modules in other programming languages, such as those of ML and Scheme [17, 14, 13].
But, unlike modules in those languages, components are designed for use during both development and deployment
of software. In addition to compilation and linking, components can be produced by upgrading one component using
another component that exports some of the apis exported by the first component.

A key aspect of Fortress components is that they are encapsulated, so that upgrading one component does not affect any
other component, even those produced by linking with the component that was upgraded. Abstractly, each component
has its own copy of its constituents. However, implementations are expected to share common constituents when
possible.

Users do not manipulate components directly. Instead, every component is installed in a persistent database on the
system. We think of this database, which we call afortress, as the agent that actually performs operations such as
compilation, linking, upgrading, and execution of components: a virtual machine, a compiler, and a library registry all
rolled into one. A fortress also maintains a list of apis thatare installed on it. A fortress also provides a shell by which
the user can issue commands to it.

1The system described in this chapter is based on that described in [2].

73

74 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

The ways in which fortresses are actually realized on particular platforms is beyond the scope of this specification.
An implementor might choose to instantiate a fortress as a process, or as a persistent object database stored in a file
system, with fortress operations being implemented as scripts that manipulate this database.

In addition to an informal description of the component system, we also formally specify key functionality of the
system, and illustrate how we can reason about the correctness of the system. Components and apis are abstract
immutable objects. A fortress maps names to components installed on the system. The fortress operations are modeled
as methods of the fortress that change the mapping.

4.2 Source Code

We call the source code for a single software component a “project”. Typically, when a project written in other
programming languages is compiled, each file in the project is separately compiled. To ship an application, these files
are linked together to form an application or library. Fortress uses a different model: a project is compiled directly into
a single component, which is installed in the compiling fortress.

From the point of view of the compiler, all the source code fora project is contained in a single file. This approach sim-
plifies the design, and gives a well-defined order for initialization of static elements of the component. However, this
approach is unworkable for components of substantial size.Therefore, the compiler can be instructed to concatenate
several source files together before compiling, while maintaining the original source location information.

After these components are compiled from source files, they can then be linked together to form larger components.

Components

In this specification, we will refer to components created bycompiling a file as “simple components”, while compo-
nents created by linking components together will be known as “compound components”.

The source code of a simple component definition begins with the reserved wordcomponent followed by an identifier,
followed by a sequence of import and export declarations, and finally a sequence of declarations and definitions.

Each import or export declaration includes api names. An apiserves as an interface of a component; it includes the
declarations (but not definitions!) of top-level functions, objects, traits, and other values. In our examples, we use
published descriptions of packages in the Java 6.0 API [24] as examples of apis expressible in our component system.
We use, as names for these apis, the names of the corresponding Java packages, withjava replaced withfortress .
For example, the following is the beginning of a source file for a fictional applicationIronCrypto :

component com.sun.IronCrypto

import fortress.io
import fortress.security

export fortress.crypto
...
end

When a component is compiled, the apis it refers to must be present in the fortress. The import declarations in a
component are not a way to abbreviate unqualified names of objects or functions. In our system, an import declaration

4.2. SOURCE CODE 75

merely allows references to the imported api to appear in thecomponent definition. References to elements of an
imported api must be fully qualified.

A key design choice we make is to require that components never refer to other components directly; all external
references are to apis. This requirement allows programmers to extend and test existing components more easily,
swapping new implementations of libraries in and out of programs at will.

For convenience, the following extended forms of import declarations are provided:

import fname+g from api
import * from api

The first declaration imports the given api and allows the listed elements (separated by commas) to be referred to
with their unqualified names. The second imports the given api and allows all elements in that api to be referred to
with unqualified names. If multiple elements with conflicting names are imported from separate apis, all references
to those elements within the component definition must be fully qualified. Every component implicitly imports a set
of core apiscalled the Fortress standard library(e.g., fortress.lang and other core apis to be determined); ev-
ery fortress has at least one component implementing all of these apis. Apreferredcomponent exporting these apis
(configurable by the user) is implicitly linked to every component installed in the fortress.

One important restriction on components is that no api may beboth imported and exported by the same component.
This restriction is necessary to make sense of the operations on components that we define in section 4.3. Formally,
we introduce two functions on components,impandexp, that return the imported and exported apis of the component,
respectively. For any component
, imp(
) \ exp(
) = ;. This restriction is required throughout to ground the
semantics of operations on components, as discussed in Section 4.3.

Every component has a unique name, used for the purposes of component linking. This name includes a user-provided
identifier. In the case of a simple component, the identifier is determined by a component name given at the top of the
source file from which it is compiled. A build script may keep atally on version numbers and append them to the first
line of a component, incrementing its tally on each compilation. The name of a compound component is specified as
an argument to thelink operation (described in section 4.3) that defines it.

Component equivalence is determined nominally to allow mutually recursive linking of components. By programmer
convention, identifiers associated with components begin with the reverse of the URL of the development team. A
fortress does not allow the installation of distinct components with the same name. Component names are used during
link andupgrade operations to ensure that the restrictions on upgrades to a component are respected, as explained
in Section 4.3.

Every component also includes a vendor name, the name of the fortress it is compiled on, and a timestamp, denoting
the time of compilation. The time of compilation is measuredby the compiling fortress, and the name of the fortress
is provided by the fortress automatically. Every timestampissued by a fortress must be unique. The vendor name
typically remains the same throughout a significant portionof the life of a user account, and is best provided as a user
environment variable.

Apis

Apis are compiled from special api definitions. These are source files which declare the entities defined by the api,
the names of all apis referred to by those declarations, and prose documentation. In short, the source code of an api
should specify all the information that is traditionally provided for the published apis of libraries in other languages.

The syntax of an api definition is identical to the syntax of a component definition, except that:

76 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

1. An api definition begins with the reserved wordapi rather thancomponent . As with components, the identifiers
associated with apis are prefixed with the reverse of the URL of the development team.

2. An api does not includeexport declarations. (However, it does includeimport declarations, which name the
other apis used in the api definition.)

3. Only declarations are included in an api definition. All method bodies and variable definitions are elided. A
method or field declaration may include the modifierabstract . (Whether a declaration includes the modifier
abstract has a significant effect on its meaning, as discussed below).

For example, consider the apisfortress.io , fortress.security , and fortress.crypto , with declarations
similar to those in their respective Java packages. These apis are interdependent. For example, bothPublicKey in
fortress.security and SecretKey in fortress.crypto have the traitfortress.io.Serializable and
the trait CipherSpi in fortress.crypto has methods that return values of typeAlgorithmParameters in
fortress.security . So the header of apifortress.crypto is written as follows:

api fortress.crypto

import fortress.io
import fortress.security
...
end

For the sake of simplicity, every reference in an api definition must refer either to a declaration in a used api (i.e., an
api named in an import declaration, or a core api, which is implicitly imported), or to a declaration in the api itself. In
this way, apis differ from signatures in most module systems: they are not parametric in their external dependencies.

Every api has a unique name that consists of a user-provided identifier. As with components, api equivalence is
determined nominally. Every api also includes a vendor name, the name of the fortress it is compiled on, and a
timestamp.

Component and api names exist in separate namespaces. For convenience, a compiler can also produce an api directly
from a project with the same name as the component it is derived from. Such an api includesmatchingdeclarations
that include all the public definitions (and only the public definitions) of the component.

A component must include, for every apia it exports, matching definitions for all the declarations ina. A matching
definition of a declarationD is a definitionC with the same name asD that includes a public member for every
member inD and that includes definitions for all members other than those declaredabstract in D. C is allowed to
include additional definitions not declared inD.

Other than its identity, the only relevant characteristic of an apia is the set of apis that it uses, denoted byuses(a).
Because an apia might expose types defined inuses(a), we require that a component that exportsa also exports all
apis inuses(a) that it does not import. Formally, the following condition holds on the exported apis of a component
:a 2 exp(
) ^ a 0 2 uses(a) =) a 0 2 imp(
) [exp(
)
4.3 Basic Fortress Operations

We now describe the operations that can be performed on a fortress by developers and end-users for developing,
installing, and maintaining components. We can think of these operations as commands to an interactive shell provided
by the fortress.

4.3. BASIC FORTRESS OPERATIONS 77

fortress.io fortress.crypto

IronIo IronCrypto

fortress.io
fortress.security

Figure 4.1: Simple components in box notation: A component is represented by a box, with the name of the component
at the top of the box. The arrow protruding from the upper right corner of a box is labeled with the apis exported by
the component. The arrow pointing into the bottom of a box is labeled with apis imported by the component. If no
apis are imported, we elide the arrow.

In this section, we discuss operations on a fortress in theirmost basic form, postponing the discussion of more advanced
options, including additional optional parameters, to Section 4.4. Although these more advanced options are critical
to performing some real-world tasks with components, it is easier to describe their behavior after the basic forms of
operations have been discussed.

Compile This operation takes the source code for a simple component (or api) definition and produces a new com-
ponent object (or api object) that is installed on the fortress. Its type is as follows:

compile(file:String):()

For example, supposeIronCrypto.fss contains the source code for the aforementionedIronCrypto application,
which importsfortress.io and fortress.security , and exportsfortress.crypto . Suppose we also have
source code,IronIo.fss , for another application,IronIo , which imports nothing and exportsfortress.io . We
generate these components by compiling the source files:

compile("IronIo.fss")
compile("IronCrypto.fss")

The results are depicted diagrammatically in Figure 4.1.

Formally, compilation takes a program and produces a new component with exported and imported apis as defined in
the program. In the example above,

imp(IronCrypto) = ffortress.io ; fortress.security g
exp(IronCrypto) = ffortress.crypto g
Link A collection of one or more components exporting different apis may be combined to form a new, compound,
component by calling thelink operation, passing the names of the components to link alongwith the name of the
resulting compound component. Syntactically, alink operation is written as follows:2

2We present only the basic form oflink here.link has additional optional arguments that we discuss in the Section 4.4.

78 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

fortress.io
fortress.crypto

IronLink

fortress.io

IronCryptoIronIo

fortress.crypto

fortress.io
fortress.security

fortress.security

Figure 4.2: A compound component: A component inside another component is a constituent of the component that
immediately encloses it.

link(result:String, constituents:String[]):()

The components being linked are calledconstituentsof the resulting component, which exports all the apis exported
by any of its constituents, and imports the apis imported by at least one of its constituents but not exported by any of
them.

For example, we can link theIronIo andIronCrypto libraries compiled above:

link(IronLink, [IronIo, IronCrypto])

The resulting component, illustrated in Figure 4.2, imports fortress.security and exportsfortress.io and
fortress.crypto .

link does not distinguish between simple and compound components, so we can get arbitrarily nested components.
For example, we can construct an applicationCoolCryptoApp by compiling another source code,IronSecurity.fss ,
for the library IronSecurity that importsfortress.io and exportsfortress.security , and then linking the
result withIronLink .

compile(IronSecurity.fss)
link(CoolCryptoApp, [IronSecurity, IronLink])

The resulting components are illustrated in Figure 4.3.

Formally, given a setC = f
1; : : : ;
kg of components, we define a partial functionlink(C) that returns the component
resulting from
1 through
k. If
 = link(C), thenexp(
) = S
02C exp(
0) andimp(
) = S
02C imp(
0)� exp(
).

4.3. BASIC FORTRESS OPERATIONS 79

IronSecurity

fortress.security

fortress.io

CoolCryptoApp

fortress.io
fortress.crypto

fortress.security

IronSecurity

fortress.security

fortress.io

IronLink

fortress.io
fortress.crypto

fortress.security

IronIo

fortress.io

IronCrypto

fortress.crypto

fortress.io
fortress.security

Figure 4.3: Repeated linking

The functionlink is partial because we do not allow arbitrary sets of components to be linked. In particular, two
components cannot be linked if they export the same api.3 This restriction is made for the sake of simplicity; it allows
programmers to link a set of components without having to specify explicitly which constituent exporting an apia
provides the implementation exported by the linked component, and which constituent connects to the constituents
that importa: only one component exportsa, so there is only one choice. Although we lose expressiveness with this
design, the user interface to link is vastly simplified, and it is rare that including multiple components that export a
given api in a set of linked components is even desirable. We discuss how even such rare cases can be supported in
Section 4.4.

For a compound component, in addition to the exported and imported apis, we want to know what its constituents
are. So we introduce another functioncns, which takes a component and returns the set of its constituents. That
is, cns(link(C)) = C . It is an invariant of the system that for any compound component
 (i.e., cns(
) 6= ;),
any api imported by any of its constituents is either imported by
 or exported by one of its constituents (i.e.,S
02cns(
) imp(
0) � imp(
) [S
02cns(
) exp(
0)). This property is crucial for executing components, as we dis-
cuss below. A simple component
 (i.e., one produced directly by compilation) has no constituents (i.e.,cns(
) = ;).
Execute Components provide implementations of the apis they export. A component isexecutableif it imports no
apis and it exports the special apiexecutable , defined as follows:

3There is one exception to this rule: the special apiupgradable , which is used during upgrades discussed below.

80 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

api executable
public exec(args:String[]):()

An executable component may beexecutedby calling theexecute operation, resulting in a call to the component’s
implementation of theexec function in a new process. Arguments to theexec function are passed to the shell:

execute(componentName:String, args:String[]):()

We say that a component is being executed whenexecute has been called on that component and has not yet returned,
or if it is the constituent component of a component being executed. During an execution, references may be made to
apis exported by a component being executed, which may in turn make references to apis that it imports.

For references to an apia exported by the component, if the component is simple, then it contains the code necessary
to evaluate any reference to an api it exports, possibly making references to apis that it imports to do so. If the com-
ponent is compound, then it contains a unique constituent that exportsa; the reference is resolved to that constituent
component.

For external references within a constituent component, recall that all such references in a component must be to
apis that the component imports. A component being executedeither does not import any api (and thus there are no
external references to resolve), or else is a constituent ofanother component that is being executed. In the latter case,
the constituent defers the reference to its enclosing component.

For example, supposeCoolCryptoApp above is the constituent of some executable component, and when that compo-
nent is executed, it generates a reference toSecretKey in fortress.crypto , which it resolves toCoolCryptoApp .
CoolCryptoApp resolves this reference toIronLink , which resolves it toIronCrypto , which is a simple compo-
nent. Suppose that in evaluating this reference,IronCrypto generates a reference toPublicKey in fortress.security .
BecauseIronCrypto importsfortress.security , it resolves this reference to its enclosing component,IronLink ,
which in turn resolves it toCoolCryptoApp , which resolves it toIronSecurity , which is a simple component.

Not all projects are compiled to components that exportexecutable . For example, a library component does not
usually exportexecutable .

Upgrade Compound components may be upgraded with new constituent components by calling anupgrade op-
eration, passing the name of the component to upgrade (thetarget), the name of a component to upgrade with (the
replacement), and a name for the resulting component (which we call theresult). The type of theupgrade operation
is as follows:

upgrade(target:String, replacement:String, result = tar get):()

If no result name is provided, the result is bound to the name of the target, and the target is uninstalled (see below).

For example, we can upgradeCoolCryptoApp with a componentCoolSecurity , which exportsfortress.security

and imports nothing toCoolCryptoApp.2.0 .

upgrade(CoolCryptoApp, CoolSecurity, CoolCryptoApp.2. 0)

The resulting component is illustrated in Figure 4.4. Notice that the constituent,IronSecurity , exporting
fortress.security has been replaced.

A component can be upgraded only if it exports the special apiupgradable , defined as follows:

4.3. BASIC FORTRESS OPERATIONS 81

CoolCryptoApp.2.0

fortress.io
fortress.crypto

fortress.security

CoolSecurity

fortress.security

IronLink

fortress.io
fortress.crypto

fortress.security

IronIo

fortress.io

IronCrypto

fortress.crypto

fortress.io
fortress.security

Figure 4.4: An upgraded component

api upgradable
import {Component, UpgradeException} from components

public isValidUpgrade(that:Component):Boolean
public upgrade(that:Component):Component throws Upgrad eException

end

The upgradable api imports a special apicomponents that provides handles onComponent andApi objects.
Thecomponents api is described in Appendix B.

An upgrade operation on a component invokes theisValidUpgrade method, as declared in the apiupgradable .
This function must take a component and returnTrue iff it is legal to upgrade with respect to that component. The
upgrade operation throws an exception ifisValidUpgrade returnsFalse . Developers can define their own versions
of this component to restrict how their components can be upgraded. For example, they can prevent upgrades with
older versions of a component, or with a matching component from an untrusted vendor.

Theupgradable api presents a problem for our model. Its implementation by the various constituent components in
a compound component must be accessed during anupgrade operation. However, because the exported apis of the
constituent components must be disjoint, they cannot all export upgradable after linking.

82 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

We solve this problem by introducing an additional step during linking. In a link operation, a special component,
called arestriction component, is constructed automatically, based on the provided constituents. This component ex-
ports theupgradable api; its implementation is a function of all the constituents provided to thelink operation. The
provided constituents are then used to construct a new set ofconstituents that are identical to the provided constituents
except that they do not exportupgradable . These new constituents are then combined, along with the restriction
component, to form the constituents of a new compound component.

In addition to the constraints imposed by a component’sisValidUpgrade method, there are several other conditions
that must be met in order for an upgrade to be valid. These conditions are necessary to ensure that the resulting
component is well-formed and imports and exports the same apis as the target:4

1. Every api imported by the replacement must be either imported or exported by the target.

2. The apis exported by the replacement must be a subset of those exported by the target.

3. If the replacement does not subsume a constituent then either the replacement and constituent do not export any
apis in common or the constituent can be upgraded with the replacement.

The rationale for the first two conditions is straightforward: If an api is imported by the replacement but not imported
or exported by the target, then references to that api cannotbe resolved in the result (unless we also import that api in
the result). If an api is exported by the replacement but not the target, then the result will export an api not exported
by the target.

The third condition says that the constituents of the targetcan be partitioned into three sets: those that are subsumed by
the replacement, those that are unaffected by the upgrade, and all the rest, which can be upgraded with the replacement.
This condition enables recursive propagation of upgrades.That is, an upgrade not only replaces constituents at the top
level of the the component, but is also propagated into any constituents with which it exports some apis in common.
Thus, in the example above, we could have upgradedCoolCryptoApp with a component that exportsfortress.io .
However, we could not have upgradedCoolCryptoApp with a component that exports bothfortress.security

and fortress.io becauseIronLink exportsfortress.io but not fortress.security . In Section 4.4, we
show how hiding and constraining apis can help us get around many of the limitations that this condition imposes.

Formally, a predicateupg? takes two components and indicates whether the first can be upgraded with the second;
that is,upg?(
t;
r) returns true if and only if
t can be upgraded with
r. This predicate captures both the constraints
imposed by a component’sisValidUpgrade method and the conditions that guarantee the well-formedness of the
result. That is,

upg?(
t;
r) =)
t.isValidUpgrade (
r)^ imp(
r) � exp(
t) [imp(
t)^ exp(
r) � exp(
t)^ 8
 2 cns(
t):(exp(
) � exp(
r) _ exp(
) \ exp(
r) = ; _ upg?(
;
r))
Recall that in our system, unlike with dynamic linking, components are encapsulated so that an upgrade to one com-
ponent does not affect any other component on the system. We can imagine that all operations on components copy
the components that they operate on rather than share them. Because components are immutable, these two inter-
pretations are semantically indistinguishable. Convenience operations that support mass upgrades are provided on
fortresses (e.g., anupgradeAll operation that takes a component and upgrades all components in the fortress that can
be upgraded with its argument).

4 These conditions are sufficient provided there are no hiddenor constrained apis, which are discussed in Section 4.4.

4.3. BASIC FORTRESS OPERATIONS 83

Extract and install A component installed on a fortress may beextractedby calling anextract operation on the
fortress, passing the name of the component as an argument, along with an argumentprereqs , denoting the names of
all apis that must be installed on any fortress before this component can be installed.

extract(componentName:String, prereqs:{String} = {}):()

Furthermore, the destination fortress must have a component that exports these apis and is a valid upgrade of the
extracted component. Intuitively, aprereqs argument allows a component to be serialized without havingto include
all of its libraries; new libraries can be provided when the component is installed at a destination fortress.

The prereqs argument is optional; if omitted, the extracted component can be installed on any fortress. Any com-
ponent can be extracted; however only compound components can be extracted with aprereqs argument: because
extracted components must be upgradable with respect to a component exporting theirprereqs , no prereqs argu-
ment makes sense for a simple component.

The apis included in aprereqs argument must be the apis exported by some subset of the extracted component’s
constituents (or a subset of the constituents of one of its constituents, and so on, due to recursive updating).

The extracted component is serialized to a file, including all the apis it refers to (and, transitively, all apis they refer to)
and all constituent components, except those that export the prereqs . This operation does not remove the extracted
component from the fortress; there is a separateuninstall operation for that.

When the component is extracted, if noprereqs were passed to theextract operation, then the contents of the
file can be deserialized by any fortress into the extracted component, which can be installed on the fortress. How-
ever, if prereqs were passed toextract , then the file must be deserialized into a component that exports only the
installable api:

api installable
import Component from components
public reconstitute(candidate:Component):Component
end

The deserialized component is immediately linked with preferred implementations of all of its imported apis. (Pre-
ferred implementations of apis are maintained in a table by afortress, which maps each api to a list of components
that implements it, in order of preference). Because the deserialized and linked component exports theinstallable

api, it has areconstitute method that takes acandidatecomponent, which exports theprereq apis, and checks
whether the given component satisfies theisValidUpgrade condition of the extracted component. If so, it returns the
extracted component upgraded with the given component. Thereconstitute method is called by the fortress with
a new component, formed by linking the preferred componentsfor each api in the extracted components’prereqs

argument.

Note that an extracted component withprereqs apis isnot the same as an extracted component that imports the same
apis but has noprereqs apis. The latter can always be installed on a fortress, and then can be subsequently linked
with any component that exports the imported apis. In contrast, the fortress has no access to an extracted component
with prereqs apis unless it has a component that exports these apis and satisfies theisValidUpgrade method of the
extracted component. This difference provides a means for controlling access to the extracted component, for security,
legal, or other reasons.

Syntactically, aninstall operation takes the name of a file constraining an extracted component. Theinstall

operation is overloaded with another operation that takes the name of a component to matchprereqs . If this op-
tional argument is provided, and the deserialized component exports theinstallable api, then thereconstitute

method is called with the component denoted by the optional argument ofinstall , rather than the fortress’ preferred
implementation of theprereq apis. Install operations are written as follows:

84 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

install(file:String):()
install(file:String, prereqs:{String}):()

By default, a fortress adds a newly installed component to the head of the “preferred” list for every api it exports.
However, this default may be overridden by the end-user; an end-user may modify the table or even map some apis
differently during a particular installation. If one or more of the apis required by an extracted component is not mapped
to an api on the destination fortress, an exception is thrown.

There is a corresponding operation for apis,installApi , that takes a serialization of a set of apis and installs them
into a fortress.

installApi(file:String):()

This set of apis must be closed under imports. If an api that isinstalled in this way is already installed on the fortress,
the definitions must match exactly, or an exception is thrown.

Uninstall An uninstall operation takes the name of a component as an argument and removes the top-level bind-
ing of that component from a fortress. Note that the uninstalled component may have been linked to other components,
or used as a replacement in an upgrade, and the result may still be installed; anuninstall operation will not affect
these other components.

uninstall(file:String):()

There is a corresponding operation for apis,uninstallApi , that removes an api from a fortress.

uninstallApi(file:String):()

Typically, this operation is used only to remove apis that have been corrupted in some fashion.

4.4 Advanced Features of Fortress Operations

The system we have described thus far provides much of the desired functionality of a component system. However it
has a few significant weaknesses:

1. It exposes to everyone all the apis used in the developmentof a project.

2. By allowing access to these apis, it inhibits significant cross-component optimization.

3. It prevents components that use two different implementations of the same api from being linked, even if they
never actually pass references to that api between each other.

4. It restricts the upgradability of compound components, as described earlier.

We can mitigate all these shortcomings by providing two simple operations,hide andconstrain . Informally, hide

makes apis no longer visible from outside the component andconstrain merely prevents them from being exported.
An api that is constrained but not hidden can still be upgraded. There are other subtle consequences of this distinction,
which we discuss as they arise.

4.4. ADVANCED FEATURES OF FORTRESS OPERATIONS 85

Formally, we introduce two new functions on components:vis, which returns the apis of a component that have
not been hidden; andprov, which returns those visible apis that are exported by some top-level constituent of the
component (or all the exported apis of a simple component); we say these apis areprovidedby the component. We
need to distinguish provided apis because they can be imported by the top-level constituents of a component, and thus
by a replacement component in an upgrade, while other visible apis cannot be. Thus, for a compound component
,
prov(
) = vis(
) \S
02cns(
) exp(
0). For a simple component
, prov(
) = vis(
) = exp(
).
Some of the properties about the apis exported by a componentdiscussed in Section 4.3 are actually properties of
apis that are visible or provided by a component. For example, apis visible in a component cannot be imported by
that component, even if they are not exported. Other properties are really properties only of the exported apis. Most
importantly, components that do not export any common apis can be linked, as can components that share only visible
apis.

Constrain A constrain operation takes a component name of an installed component,a new component name,
and a set of apis, and produces a new component that does not export any of the apis specified. Syntactically, we write:

constrain(source:String, destination = source, apis: fString g):()
If no destination name is provided, the name of thesource is used.

The set of apis provided must be a subset of the apis exported by the component. Also, recall that every api used by
an api exported by a component must be imported or exported bythat component. Thus, if we constrain an api that is
used by any other api exported by the component, then we must also constrain that other api.

If the component is a simple component, we first link it by itself, and then applyconstrain to the result.

Formally, if
 is a compound component andA � exp(
) is a set of apis such thata 2 exp(
) ^ a 0 2 uses(a) \A =) a 2 A, we define
0 = constrain(
;A) such thatexp(
0) = exp(
) � A and for any component
00,
upg?(
0;
00) () upg?(
;
00) ^ exp(
0) 6� exp(
00). The imp, vis, prov andcnsfunctions all have the same values
for
 and
0. The extra condition on the upgrade compatibility simply captures the restriction we mentioned above,
that a replacement component should not export every api exported by the target.

Hide A hide operation is like aconstrain operation, except that the given set of apis is subtracted from the visible
and provided apis, along with the exported apis, in the resulting component.

hide(source:String, destination = source, apis: fString g):()
The requirement of apis being imported or exported wheneveran api using them is exported also applies to visible
apis. Thus, if we hide an api used by another exported api, we must hide that other api as well.

Formally, if
 is a compound component andA � vis(
) is a set of apis such thatexp(
) 6� A anda 2 vis(
) ^ a 0 2
uses(a) \ A =) a 2 A, we define
0 = hide(
;A) such thatvis(
0) = vis(
) � A, prov(
0) = prov(
) � A,
exp(
0) = exp(
)� A, and for any component
00, upg?(
0;
00) () upg?(
;
00) ^ exp(
0) 6� exp(
00) ^ vis(
00) �
vis(
0). The additional clause inupg?(
0;
00) (compared with that ofconstrain) reflects the hiding of the apis: we can
no longer upgrade apis that are hidden.

Link With constrained apis, there is a new restriction on link: Any api visible in one constituent and imported by
another must be exported by some constituent. This restriction is necessary because an api visible in a component
cannot be imported by that component. Thus, if one of the component’s constituents imports that api, then the api

86 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

must be provided by some other constituent. Other than that,the link operation is largely unchanged: the visible apis
are just all the apis visible in any constituent, and the provided apis are just those exported by any constituent. There
is a subtle additional restriction on how linked componentscan be upgraded, which we discuss below.

Rather than requiring users and developers to callconstrain andhide directly, we provide optional parameters to
the link operation to do these operations immediately. Thelink operation has the following type:

link(result:String, constituents:String[], export = fg , hide = fg):()
If the export clause is present, only those apis listed in theset followingexport are exported; the others are con-
strained. If the hide clause is present, those apis listed inthe set followinghide are hidden. An exception is thrown if
the export clause contains any api not exported by any constituent, or if the hide clause contains any api not visible in
any constituent.

Hiding enables us to handle the rare case in which programmers want to link multiple components that implement the
same api without upgrading them to use the same implementation. Before linking, the programmer simply hides (or
constrains) the api in every component that exports it except the one that should provide the implementation for the
new compound component.

For example, suppose we wish to link the following two components:� A componentNetApp that importsfortress.io and exports thefortress.net api.� A componentEditApp that importsfortress.io and exports the
fortress.swing.textrf api.

We want to link these two components to use in building an application for editing messages and sending them over
a network. But we want to use different implementations offortress.io (e.g., IoApp1 and IoApp2 for the two
components). We simply perform the following operations:

link(temp1, [NetApp, IoApp1], export = {fortress.net}, hi de = {fortress.io})
link(temp2, [EditApp, IoApp2], export = {fortress.swing. textrf},

hide = {fortress.io})
link(NetEdit, [temp1, temp2])

In this case, theNetEdit component does not export, or even make visible,fortress.io at all.

Upgrade For theupgrade operation, there is no change at all in the semantics. However, because hiding and
constraining apis allow us to change the apis exported by a component, it is possible to do some upgrades that are not
possible without these operations.

For example, suppose we have a componentIoSecurity that exportsfortress.io andfortress.security , and
we want to upgradeCoolCryptoApp with IoSecurity . As discussed above, we cannot useIoSecurity directly
becauseIronLink exportsfortress.io but notfortress.security . We can get around this restriction by doing
two upgrades, one withfortress.security hidden and the other withfortress.io hidden.

hide(IoSecurity, NewIo, {fortress.security})
hide(IoSecurity, NewSecurity, {fortress.io})
upgrade(CoolCrytoApp, NewSecurity, temp1)
upgrade(CoolCryptoApp.3.0, temp1, NewIo)

4.4. ADVANCED FEATURES OF FORTRESS OPERATIONS 87

CoolCryptoApp.3.0

fortress.io
fortress.crypto

fortress.security

NewSecurity

fortress.security

IoSecurity

fortress.io
fortress.security

IronLink-upgrade

fortress.io
fortress.crypto

fortress.security

NewIo

fortress.io

IoSecurity

fortress.io
fortress.security

IronCrypto

fortress.crypto

fortress.io
fortress.security

Figure 4.5: Upgrading with hidden apis: Crossed out apis arehidden.

88 CHAPTER 4. PROGRAM COMPONENT COMPILATION AND LINKING

The resulting component is shown in Figure 4.5.

The interplay between imported, exported, visible and provided apis introduces subtleties that not present in our
discussion above. In particular, the last of the three conditions imposed for well-formedness of upgrades is modified
to state that for any constituent that is not subsumed by a replacement component, either it can be upgraded with
the replacement, or itsvisible apis are disjoint from the apis exported by the replacement (i.e., it is unaffected by
the upgrade). To maintain the invariant that no two constituents export the same api, we need another condition,
which was implied by the previous condition when no apis wereconstrained or hidden: if the replacement subsumes
any constituents of the target, then its exported apis must exactly match the exported apis of some subset of the
constituents of the target. That is, ifupg?(
t;
r) ^ 9
 2 cns(
t): exp(
) � exp(
r) thenexp(
r) = S
2C exp(
) for
someC � cns(
t). In practice, this restriction is rarely a problem; in most cases, a user wishes to upgrade a target
with a new version of a single constituent component, where the apis exported by the old and new versions are either
an exact match, or there are new apis introduced by the new component that have no implementation in the target.

4.5 Component-related modifiers

The following modifiers are specific to the Fortress component system.

abstract

A method declaration in a trait declaration of an api might include anabstract modifier, indicating that an object of
the traitdoes notinherit the definition of the method from that trait.

private

An object, function, variable, or trait declared asprivate must not be declared by any implementing api of a compo-
nent. Apis are not allowed to include theprivate modifier on any of their constituents.

A method or field declared asprivate must not be referred to outside its enclosing object or traitdefinition.

Chapter 5

Abstract Syntax

In this chapter, we describe the abstract syntax of Fortressprograms.

First, we provide some context about the role that the abstract syntax plays in the Fortress language. For the sake of
interoperability of compilers and development tools, a Fortress compiler is required to be divided into the following
top-level phases:

� Parser

� Type Annotator

� Code Generator

The Parser passes a syntactically well-formed abstract syntax tree to the Type Annotator, the Type Annotator passes
a fully annotated type safe abstract syntax tree to the Code Generator, and the Code Generator produces a simple
component. (Note that the output of the Type Annotator is a special case of the Parser output; that is, a fully annotated
abstract syntax tree is just an abstract syntax tree.)

The only communication between these phases is the information passed in the data structures mentioned above. For
example, there is no symbol table passed between modules; all information must be encapsulated in the abstract syntax
trees.

Programmers are able to easily plug in their own modules for these various phases because the interfaces between
modules are tightly defined. For example, a programmer coulddefine his own Parser module that would work just
fine with the rest of the compiler provided that the output of the Parser is an abstract syntax tree. Alternatively, a
programmer may define his own Type Annotator and hook it up to aParser and code generator.

The data structures passed between modules should have well-defined serializations into text. That way, programmers
can write new modules in other languages and plug them into the rest of the system. Our goals with this design are to
make it easy to write new diagnostic tools, and to standardize the abstract syntax and allow for specialized notations
that parse into it.

The abstract syntax of Fortress programs in BNF notation is as follows:

89

90 CHAPTER 5. ABSTRACT SYNTAX

Program ::= Componentj Api
Component ::= Component DottedName Import� Export� Def�
Api ::= Api DottedName Import� Decl�
DottedName ::= DottedName Id�
Import ::= ImportApij ImportIds
ImportApi ::= Import DottedName[DottedName]
ImportIds ::= Import DottedName ImportFrom
ImportFrom :: AllImportsj NamedImports Id�
Export ::= Export DottedName
Def ::= VarDefj FnDefj TraitDefj ObjectDefj DefOrDecl
Decl ::= VarDeclj FnDeclj TraitDeclj ObjectDeclj DefOrDecl
DefOrDecl ::= Dimension Idj UnitVar Id TypeRefj TypeAlias
TypeAlias ::= TypeAlias Id TypeRef
VarDef ::= VarDef VarMod� Id [TypeRef] Expr
VarDecl ::= VarDecl VarMod� Id TypeRef
UniversalMod ::= Static j Test
TraitMod ::= Private j Value j UniversalMod
ObjectMod ::= TraitMod
FnMod ::= Atomic j Io j Private j Pure j UniversalMod
MdMod ::= Getter j Setter j FnMod
VarMod ::= Unit j Var j UniversalMod
FldMod ::= Hidden j Settable j Var jWrapped j UniversalMod
FnDef ::= FnDef FnMod� FnHeader Expr
FnDecl ::= FnDecl FnMod� FnHeader
FnHeader ::= FnHeader FnName TypeParam� Param� [TypeRef] FnClauses
FnName ::= Opj Id
FnClauses ::= FnClauses Throws Where Contract
Throws ::= Throws TypeRef�
Where ::= Where WhereClause�
WhereClause ::= WhereExtendsj TypeAlias
WhereExtends ::= WhereExtends Id TypeRef
Contract ::= Contract Expr� Ensures Expr�
Ensures ::= Ensures EnsuresClause�
EnsuresClause ::= EnsuresClause Expr� [Provided]
Provided ::= Provided Expr

91

TypeParam ::= SimpleTypeParamj DimensionParamj NatParamj OperatorParam
SimpleTypeParam ::= SimpleTypeParam Id [TypeRef�]
NatParam ::= NatParam Id
DimensionParam ::= DimensionParam Id
OperatorParam ::= OperatorParam Op
Param ::= Param Id [TypeRef] [Expr]
TraitDef ::= TraitDef TraitHeader(MdDef j MdDecl)�
TraitDecl ::= TraitDecl TraitHeader MdDecl�
TraitHeader ::= TraitClauses TraitMod� Id TypeParam� [Extends] Excludes[Bounds] Where
Extends ::= Extends TypeRef�
Excludes ::= Excludes TypeRef�
Bounds ::= Bounds TypeRef�
MdDef ::= MdDef MdMod� FnHeader Expr
MdDecl ::= MdDecl [Abstract] MdMod� FnHeader
ObjectDef ::= ObjectDef ObjectHeader FldDef� MdDef�
ObjectDecl ::= ObjectDecl ObjectHeader FldDecl� MdDecl�
ObjectHeader ::= ObjectHeader ObjMod� Id TypeParam� ValParam� [Traits] FnClauses
Traits ::= Traits TypeRef�
ValParam ::= ValParam [Transient] FldMod� Param
FldDef ::= FldDef FldMod� Id [TypeRef] Expr
FldDecl ::= FldDecl FldMod� Id TypeRef
TypeRef ::= IdType DottedNamej ParamType DottedName TypeArg�j SetType TypeRefj MapType TypeRef TypeRefj ListType TypeRefj TupleType TypeRef�j MatrixType TypeRef Indicesj ArrayType TypeRef Indicesj ArrowType KeywordArgType� TypeRef� TypeRef Throwsj RestType TypeRefj DimType
TypeArg ::= TypeRefj NatTypeArgj OprTypeArg
NatTypeArg ::= BaseNatTypeArg Numberj IdNatTypeArg Idj SumNatTypeArg NatTypeArg�j ProductNatTypeArg NatTypeArg�
OprTypeArg ::= Idj Op
DimType ::= UnitDimTypej NameDimType DottedNamej ExponentDimType DimType NatTypeArgj ProductDimType DimType�j QuotientDimType DimType DimType
Indicies ::= FixedDim Range�j PolyDim
Range ::= Range [NatTypeArg] [NatTypeArg]
KeywordArgType ::= KeywordArg Id TypeRef

92 CHAPTER 5. ABSTRACT SYNTAX

Expr ::= VarRef Idj Letj Flowj Valuej Comprehensionj LooseJuxt Expr�j TightJuxt Expr�j OprExpr Op Expr�j PostfixExpr Expr Opj FieldSelection Expr Idj Assignment Expr [Op] Exprj Apply Expr Exprj TypeApply Expr TypeArg�j Subscript Expr Expr�j ExternalSyntaxj ExpanderVarRef
Flow ::= Accumulator Accumulator Generator� Exprj Throw Exprj AtomicExpr Exprj Tryatomic Exprj Exit [Id] [Expr]j Block Expr�j If Expr Expr� Elif � Expr�j Try Expr� [Catch] TypeRef� Expr�j Case Expr [Id] CaseClause� Expr�j Dispatch DispatchTypecasej TypeCase DispatchTypecasej Spawn [Expr] Exprj For Generator� Exprj While Expr Exprj Label Id Expr�
Value ::= Numberj FnExpr Param� [TypeRef] Throws Exprj ObjectExpr Traits FldDef� MdDef�j Set Expr�j MapEntry�j List Expr�j Tuple Expr�j Matrix Number Extent� Expr�j Array Number Extent� Expr�j Interval Expr Exprj Infinityj Stringj Void
Extent ::= Extent Number Number
Entry ::= Entry Expr Expr
Comprehension ::= SetComprehension Expr Expr� Generator�j ArrayComprehension ArrayComprehensionClause�
Accumulator ::= AccumulatorId Idj AccumulatorBig Op
Generator ::= Generator Id� Expr

5.1. DESCRIPTIONS OF SELECTED AST CONSTRUCTS 93

Let ::= LetId Id� TypeRefj LetBinding L-Val� Exprj LetFn Id Param� [TypeRef] Throws Expr
L-Val ::= L-Scalars Id [TypeRef]j L-Array Array
Elif ::= Elif Expr Expr�
Catch ::= Catch Id CatchClause�
CatchClause ::= CatchClause TypeRef Expr�
CaseClause ::= CaseClause Expr Expr�
DispatchTypecase ::= DispatchTypecase Binding� DispatchClause� Expr�
DispatchClause ::= DispatchClause TypeRef� Expr�
Binding ::= Binding Id Expr
ArrayComprehensionClause::= ArrayComprehensionClause Binding Expr� Generator�
ExternalSyntax ::= ExternalSyntax Id SourceAssembly
ExpanderVarRef ::= ExpanderVarRef DottedName

5.1 Descriptions of Selected AST Constructs

Most of the nodes in the Fortress abstract syntax corresponddirectly to the program elements described in Chapter 2.
However, there are a few special nodes, which we describe in this section.

5.1.1 External syntax

An ExternalSyntaxtree includes the name of astatic function and aSourceAssembly object (see Section 3.6).
The static function referred to must take aSourceAssembly object as an argument. This function is called on the
givenSourceAssembly after parsing but before type checking. The result of this call must be a new abstract syntax
tree, which is inserted in place of the external syntax treee.

There is a special tree typeExpanderVarRef used by syntactic expander functions for the sake of referential trans-
parency. These nodes should not appear in an abstract syntaxtree until that tree has been syntactically expanded to
eliminate anExternalSyntax node. AnExpanderVarRef node is introduced by a syntactic expander to refer to a
variable in the scope of theexpander definitionitself. Note: because such a variable must be in scope duringthe static
process of syntactic expansion, it must be astatic variable.

Because a syntactic expansion does not occur until the reference to the corresponding syntactic expander is actually
resolved, the variable referred to in anExpanderVarRef node is known at expansion time. Thus, a fully qualified ref-
erence to this variable (including the name of the componentin which it resides) is included in theExpanderVarRef

tree.

94 CHAPTER 5. ABSTRACT SYNTAX

Chapter 6

Concrete Syntax

In this chapter, we describe the concrete syntax of Fortressprograms in BNF notation. This syntax is “human-readable”
in the sense that it does not describe uses of whitespaces andsemicolons exactly. Instead, they are described as follows.
Fortress has three different contexts influencing the whitespace-sensitivity of expressions:

statement Expressions appearing in a block other than the last expression are in a statement-like context. Multiple
expressions can appear on a line if they are separated (or terminated) by semicolons. If an expression can legally
end at the end of a line, it does; if it cannot, it does not. A prefix or infix operator that lacks its last operand
prevents an expression from ending. For example,

an = expression +
spanning +
four +
lines

a = one-liner
four() ; on(); one(); line();

nested An expression or list of expressions appearing within parentheses or braces is nested. Multiple expressions
are separated by commas, and the end of a line does not end an expression. Because of this effect, the meaning
of a several lines of code can change if they are wrapped in parentheses. Parentheses can also be used to ensure
that a multiline expression is not terminated prematurely without paying special attention to line endings.

lhs = rhs
- aSeparateExpression

postProfit(revenue
- expenses)

pasted Fortress has special syntax for matrix pasting. Within square brackets, whitespace-separated expressions are
treated (depending on their type) as either matrix elementsor submatrices within a row. Because whitespace
is the separator, it also ends expressions where possible. In addition, newline-or-semicolon-separated rows are
pasted vertically along their columns. Higher-dimensional pasting is expressed with repeated semicolons, but
repeated newlines do not have the same effect.

95

96 CHAPTER 6. CONCRETE SYNTAX

Id2a = [1 0 ; 0 1]
Id2b = [1 0 ;

0 1]
Id2c = [1 0

0 1]
Cube2 = [1 0 ; 0 1 ;; 1 -1 ; 1 1]

A restricted form of the pasting syntax can also be used on theleft hand side of variable declarations to express
both declaration and submatrix decomposition.

[top
bot] = X

[left right] = Y
Z = [top � left top � right ;

bot � left bot � right]

Section 3.3 describes matrix unpasting in detail and includes more examples.

Program ::= Componentj Api
Component ::= component DottedName Import� Export� Def� end
Api ::= api DottedName Import� Decl� end
DottedName ::= Id (. Id)�
Import ::= import ImportFromfrom DottedNamej import AliasedNameList
ImportFrom ::= *j Idj f IdList g
IdList ::= Id (, Id)�
AliasedNameList ::= AliasedName(, AliasedName)�
AliasedName ::= DottedName[as DottedName]
Export ::= export DottedNameList
DottedNameList ::= DottedName(, DottedName)�
Def ::= VarDefj FnDefj TraitDefj ObjectDefj DefOrDecl
Decl ::= VarDeclj FnDeclj TraitDeclj ObjectDeclj DefOrDecl
DefOrDecl ::= dim Idj unit Id : DimTypej TypeAlias
TypeAlias ::= type Id = TypeRef
VarDef ::= VarMod� Id [IsType] = Exprj VarMod� Id IsType:= Expr
VarDecl ::= VarMod� Id IsType
IsType ::= : TypeRef

97

UniversalMod ::= static j test
TraitMod ::= private j value j UniversalMod
ObjectMod ::= TraitMod
FnMod ::= atomic j io j private j pure j UniversalMod
MdMod ::= getter j setter j FnMod
VarMod ::= unit j var j UniversalMod
FldMod ::= hidden j settable j var j wrapped j UniversalMod
FnDef ::= FnMod� FnHeader= Expr
FnDecl ::= FnMod� FnHeader
FnHeader ::= Id [TypeParams] ValParams[IsRetType] FnClausesj OpHeader
OpHeader ::= opr Op [TypeParams] ValParams[IsRetType] FnClausesj opr [TypeParams] ValParams Op[IsRetType] FnClausesj opr [TypeParams] LeftEncloser Params RightEncloser[IsRetType] FnClauses
FnClauses ::= [Throws] [Where] [Contract]
Throws ::= throws MayTraitTypes
MayTraitTypes ::= fgj TraitTypes
TraitTypes ::= TraitTypej f TraitTypeListg
TraitTypeList ::= TraitType(, TraitType)�
Where ::= where fWhereClauseListg
WhereClauseList ::= WhereClause(, WhereClause)�
WhereClause ::= Id Extendsj TypeAlias
Contract ::= [Requires] [Ensures] [Invariant]
Requires ::= requires Expr+
Ensures ::= ensures (Expr+ [provided Expr])+
Invariant ::= invariant Expr+
TypeParams ::= JTypeParamListK
TypeParamList ::= TypeParam(, TypeParam)�
TypeParam ::= Id [Extends]j dim Idj nat Idj opr Op
ValParams ::= ([Params])
Params ::= SimpleParamListj (SimpleParam,)� VarArgParamj (SimpleParam,)� KwdParamListj (SimpleParam,)� VarArgParam, KwdParamList
SimpleParamList ::= (SimpleParam,)� SimpleParam
SimpleParam ::= Id [IsType]
VarArgParam ::= Id : VarArgType
KwdParamList ::= (KwdParam,)� KwdParam
KwdParam ::= Id [IsType] = Expr
IsRetType ::= : RetType
LeftEncloser ::= [j { j (/ j [/ j {/ j </ j <</ j (\ j [\ j {\ j <\ j <<\ j [* j {*j Encloser
RightEncloser ::=] j } j /) j /] j /} j /> j />> j \) j \] j \} j \> j \>> j *] j *}j Encloser
Encloser ::= | j / j \ j || j // j \\ j ||| j /// j \\\

98 CHAPTER 6. CONCRETE SYNTAX

TraitDef ::= TraitHeader(MdDef jMdDecl)� end
TraitDecl ::= TraitHeader MdDecl� end
TraitHeader ::= TraitMod� trait Id [TypeParams] [Extends] [Excludes] [Bounds] [Where]
Extends ::= extends TraitTypes
Excludes ::= excludes TraitTypes
Bounds ::= bounds MayTraitTypes
MdDef ::= MdMod� FnHeader= Expr
MdDecl ::= [abstract] MdMod� FnHeader
ObjectDef ::= ObjectHeader FldDef� MdDef� end
ObjectDecl ::= ObjectHeader FldDecl� MdDecl� end
ObjectHeader ::= ObjMod� object Id [ObjectParams] [Traits] FnClauses
ObjectParams ::= [TypeParams] ObjParams
Traits ::= traits TraitTypes
ObjParams ::= ()j (SimpleObjParamList)j ((SimpleObjParam,)� transient VarArgParam)j ((SimpleObjParam,)� KwdObjParamList)j ((SimpleObjParam,)� transient VarArgParam, KwdParamList)
SimpleObjParamList ::= (SimpleObjParam,)� SimpleObjParam
SimpleObjParam ::= FldMod� SimpleParamj transient SimpleParam
KwdObjParamList ::= (KwdObjParam,)� KwdObjParam
KwdObjParam ::= FldMod� KwdParamj FldMod� transient KwdParam
FldDef ::= FldMod� Id [IsType] = Exprj FldMod� Id IsType[:= Expr]
FldDecl ::= FldMod� Id IsType
TypeRef ::= SimpleTypej ArgType! RetType[Throws]
SimpleType ::= TraitTypej ()j (TypeRef)j DimType
TraitType ::= DottedNamej DottedNameJTypeArgListKj f TypeRefgj [TypeRef7! TypeRef]j h TypeRefij TypeRef[MatrixSize]j TypeRef[[ArraySize]]
ArgType ::= SimpleTypej (TypeRef, TypeRefList)j WithVarArgTypej ((TypeRef,)� [VarArgType,] KwdArgTypeList)
WithVarArgType ::= VarArgTypej (VarArgType)j (TypeRefList, VarArgType)
VarArgType ::= TypeRef...
KwdArgTypeList ::= KwdArgType(, KwdArgType)�
KwdArgType ::= Id IsType
TypeRefList ::= TypeRef(, TypeRef)�
RetType ::= TypeRefj (TypeRef, TypeRefList)j WithVarArgType

99

TypeArgList ::= TypeArg(, TypeArg)�
TypeArg ::= TypeRefj NatTypeArgj OprTypeArg
OprTypeArg ::= Idj Op
ArraySize ::= Extent(, Extent)�
Extent ::= NatTypeArgj NatTypeArg#NatTypeArg
MatrixSize ::= NatTypeArg(� NatTypeArg)+
DimType ::= Unityj DottedNamej DimType DimTypej DimTypê NatTypeArgj DimType� DimTypej DimType� DimTypej DimType/ DimTypej 1/ DimTypej (DimType)
NatTypeArg ::= Numberj Idj NatTypeArg NatTypeArgj NatTypeArg+ NatTypeArgj NatTypeArg� NatTypeArgj (NatTypeArg)
Expr ::= Idj Letj Flowj Valuej Comprehensionj Expr [JTypeArgListK] Expr�j PreOp Exprj Expr Op[Expr]j Expr . Idj Expr AssignOp Expr[, GeneratorList]j ExternalSyntax
Flow ::= Accumulator[GeneratorList] Exprj throw Exprj atomic Doj tryatomic Doj exit [Id] [with Expr]j Doj if Expr then Expr+ (elif Expr then Expr+)� [else Expr+] endj try Expr+ [catch Id (TraitType) Expr+)+]

[forbid TraitTypes] [finally Expr�] endj case Expr [Id] of (Expr) Expr+)+ [else) Expr+] endj dispatch DispatchTypecasej typecase DispatchTypecasej spawn [Expr] Doj for GeneratorList Doj while Expr Doj label Id Expr� end Id

100 CHAPTER 6. CONCRETE SYNTAX

Value ::= Numberj 1j Stringj Emptyj fn ValParams[IsRetType] [Throws]) Exprj object [Traits] FldDef� MdDef� endj Aggregatej Parenthesized
Empty ::= fg j [] j h i j ()
Aggregate ::= f ExprListgj [EntryList]j h ExprListij (ExprList)j [Expr (Expr j ;)� Expr]j [ExprList]
ExprList ::= Expr (, Expr)�
EntryList ::= Entry (, Entry)�
Entry ::= Expr 7! Expr
Parenthesized ::= | Expr |j IntervalL Expr, Expr IntervalR
Comprehension ::= f Expr | Expr� GeneratorListgj [(Binding | Expr� GeneratorList)+]
IntervalL ::= [
IntervalR ::= ℄
Accumulator ::=

P jQ j 8 j 9 j BIG Op
AssignOp ::= := j Op=
GeneratorList ::= Generator(, Generator)�
Generator ::= IdList Expr
Do ::= do Expr� end
DispatchTypecase ::= DispatchBindingsin (DispatchTypeRefs) Expr+)+ [else) Expr+] end
DispatchBindings ::= Idj Bindings
DispatchTypeRefs ::= TraitTypej (TraitTypeList)
Bindings ::= Bindingj (BindingList)
Binding ::= Id = Expr
BindingList ::= Binding(, Binding)�
Let ::= L-Vals= Exprj L-Vals [:= Expr]j L-ValNoTypes[IsType] = Exprj L-ValNoTypes[IsType] [:= Expr]j L-ValNoTypes: TypeRef� = Exprj L-ValNoTypes: TypeRef� [:= Expr]j Id ValParams[IsRetType] [Throws] = Expr
L-Vals ::= L-Valj (L-Val, L-ValList)
L-Val ::= [var] Id [IsType]j Unpasting
L-ValList ::= L-Val (, L-Val)�
L-ValNoTypes ::= L-ValNoTypej (L-ValNoType, L-ValNoTypeList)
L-ValNoType ::= [var] Id
L-ValNoTypeList ::= L-ValNoType(, L-ValNoType)�

101

Unpasting ::= [L-Elt (Paste L-Elt)�]
L-Elt ::= Id [[L-ArraySize]]j Unpasting
L-ArraySize ::= L-Extent(�L-Extent)�
L-Extent ::= Exprj Expr: Exprj Expr#Expr
Paste ::= (Whitespacej ;)+
ExternalSyntax ::= syntax Id [Id Id] [Escape] = Exprj syntax Id (ParenthesizedId)+ [Escape] = Expr
Escape ::= escape String
ParenthesizedId ::= f Id g j (Id) j [Id]

102 CHAPTER 6. CONCRETE SYNTAX

Appendix A

Fortress Calculi

A.1 A Fortress Basic Core Calculus

In this section, we define a basic core calculus for Fortress.We call this calculusBasic Core Fortress. Following the
precedent set by prior core calculi such as Featherweight Generic Java [12], we have abided by the restriction that all
valid Basic Core Fortress programs are valid Fortress programs.

A.1.1 Syntax

A syntax for Basic Core Fortress is provided in Figure A.1. Weuse the following notational conventions:

� We use/ for extends andtraits .� For brevity, we omit separators such as, and; from Basic Core Fortress.� �!� is a shorthand for a (possibly empty) sequence�1, � � � , �n.� Similarly, we abbreviate a sequence of relations�1 / N1, � � � , �n / Nn to
����!� / N� We use�i to denote theith element of�!� .� For simplicity, we assume that every name (type variables, field names, and parameters) is different and every

trait/object declaration declares unique name.� We prohibit cycles in type hierarchies.

The syntax of Basic Core Fortress allows only a small subset of the Fortress language to be formalized. Basic Core
Fortress includes trait and object definitions, method and field invocations, andself expressions. The types of Basic
Core Fortress include type variables, instantiated traits, instantiated objects, and the distinguished traitObject . Note
that we syntactically prohibit extending objects. Among other features, Basic Core Fortress doesnot include top-level
variable and function definitions, overloading,excludes clauses,bounds clauses,where clauses, object expressions,
and function expressions. Basic Core Fortress will be extended to formalize a larger set of Fortress programs in the
future.

103

104 APPENDIX A. FORTRESS CALCULI�; � type variablesf method namex field nameT trait nameO object name�; � 0; � 00 ::= �j Nj OJ�!� KN;M;L ::= T J�!� Kj Objecte ::= xj selfj OJ�!� K(�!e)j e. xj e. fJ�!� K(�!e)

fd ::= fJ����!� / NK(��!x: �): � = e
vd ::= x: � = e
td ::= trait T J����!� / NK / f�!N Object g �!fd end

od ::= object OJ����!� / NK(��!x: �) / f�!N Object g �!vd
�!
fd end

d ::= td trait definitionj od object definitionp ::= �!
d e program

Figure A.1: Syntax of Basic Core Fortress

A.1.2 Dynamic semantics

A dynamic semantics for Basic Core Fortress is provided in Figure A.2. This semantics has been mechanized via
the PLT Redex tool [15]. It therefore follows the style of explicit evaluation contexts and redexes. The Basic Core
Fortress dynamic semantics consists of two evaluations rules: one for field access and another for method invocation.
For simplicity, we use ‘ ’ to denote some parts of the syntax that do not have key roles in a rule.

A.1.3 Static semantics

A static semantics for Basic Core Fortress is provided in Figures A.3, A.4, and A.5. The Basic Core Fortress static
semantics is based on the static semantics of FeatherweightGeneric Java (FGJ) [12]. The major difference is the
division of classes into traits and objects. Both trait and object definitions include method definitions but only object
definitions include field definitions. With traits, Basic Core Fortress supports multiple inheritance. However, due to
the similarity of traits and objects, many of the rules in theBasic Core Fortress dynamic and static semantics combine
the two cases. Note that Basic Core Fortress allows parametric polymorphism, subtype polymorphism, and overriding
in much the same way that FGJ does.

A.1.4 Type soundness proof

We prove the type soundness of Core Fortress using the standard technique of proving a progress theorem and a subject
reduction theorem. The proof follows.

Lemma A.1.1 (Method Bodies).If mtypep(f;OJ�!� K) = fJ����!� / NK �!� 0 ! � 00g then there existse such that

A.1. A FORTRESS BASIC CORE CALCULUS 105

Evaluation contexts and redexes v ::= OJ�!� K(�!v)E ::= []j OJ�!� K(�!v E�!e)j E. xj E. fJ�!� K(�!e)j OJ�!� K(�!v). fJ�!� K(�!v E�!e)R ::= OJ�!� K(�!v). xj OJ�!� K(�!v). fJ�!� K(�!v)C ::= Tj O
Evaluation rules:p ` E[R] �! E[e]

[R-FIELD]
object OJ����!� / K(���!x0:) �����!x: = e 2 pp ` E[OJ�!� K(�!v). xi] �! E[[��!�=�℄[��!v=x0℄ei]

[R-METHOD]
object O (

���!x0:) 2 p mbodyp(fJ�!� 0 K; OJ�!� K) = f(�!x) ! egp ` E[OJ�!� K(�!v). fJ�!� 0 K(�!v0)] �! E[[��!v=x0℄[OJ�!� K(�!v) =self ℄[��!v0=x℄e]
Method body lookup:mbodyp(fJ�!� K; �) = f(�!x) ! eg

[M B-BOTH]
CJ����!� / K �!

fd 2 p fJ����!�0 / K(���!x0:) = e 2 f�!fdg
mbodyp(fJ�!� 0 K; CJ�!� K) = f[��!�=�℄[���!� 0=�0℄(�!x0) ! eg

[M B-SUPER]
CJ����!� / K / f�!N g �!

fd 2 p f 62 f�������!Fname(fd)g
mbodyp(fJ�!� 0 K; CJ�!� K) = [Ni2f�!Ngmbodyp(fJ�!� 0 K; [��!�=�℄Ni)

[M B-OBJ] mbodyp(fJ�!� K;Object) = ;
Function/method name lookup:Fname(fd) = f
Fname(fJ����!� / NK(��!x: �): � = e) = f

Figure A.2: Dynamic Semantics of Basic Core Fortress

106 APPENDIX A. FORTRESS CALCULI

Environments� ::= �����!� <: N� ::= ��!x : �
Program typing: ` p : �

[T-PROGRAM]
p = �!d; e p ` �!d ok p; ;; ; ` e : �` �!d; e : �

Definition typing: p ` d ok

[T-TRAITDEF]

� = �����!� <: N p; � ` �!N ok p; � ` �!M ok p; �; ;;T ` �!fd ok8f 2 f�������!Fname(fd)g:jownerp(f; T)j � 1p ` trait T J����!� / NK / f�!Mg �!fd end ok

[T-OBJECTDEF]

� = �����!� <: N p; � ` �!N ok p; � ` �!� ok p; � ` �!M okp; �;��!x : � ` �!vd ok p; �;��!x : � ;O ` �!fd ok8f 2 f�������!Fname(fd)g:jownerp(f;O)j � 1p ` object OJ����!� / NK(��!x: �) / f�!Mg �!vd
�!
fd end ok

Field typing: p; �; � ` vd ok

[T-FIELDDEF]
p; � ` � ok p; �; � ` e : � 0 p; � ` � 0 <: �p; �; � ` x: � = e ok

Method typing: p; �; �;C ` fd ok

[T-M ETHODDEF]

CJ����!�0 / K / f�!Mg 2 p overridep(f; f�!Mg; J����!� / NK �!� ! �0)�0 = � �����!� <: N p; �0 ` �!N ok p; �0 ` �!� ok p; �0 ` �0 okp; �0; � self : CJ�!�0, K ��!x : � ` e : � 0 p; �0 ` � 0 <: �0p; �; �;C ` fJ����!� / NK(��!x: �): �0 = e ok

Method overriding: overridep(f; f�!N g; J����!� / NK �!� ! �)
[OVERRIDE]

SLi2f�!Lg mtypep(f; Li) = fJ����!� / MK �!� 0 ! � 00g
implies�!N = [��!�=�℄�!M �!� = [��!�=�℄�!� 0 p;�����!� <: N ` �0 <: [��!�=�℄� 00

overridep(f; f�!L g; J����!� / NK �!� ! �0)
Figure A.3: Static Semantics (I)

A.1. A FORTRESS BASIC CORE CALCULUS 107

Expression typing:p; �; � ` e : �
[T-VAR] p; �; � ` x : �(x)
[T-SELF] p; �; � ` self : �(self)
[T-OBJECT]

object O (
���!

: � 0) 2 p p; � ` OJ�!� K ok p; �; � ` �!e : �!� 00 p; � ` �!� 00 <: �!� 0p; �; � ` OJ�!� K(�!e) : OJ�!� K
[T-FIELD]

p; �; � ` e0 : �0 bound�(�0) = OJ�!� K object OJ����!� / K �����!x: � 0 = e 2 pp; �; � ` e0. xi : [��!�=�℄� 0i
[T-M ETHOD]

p; �; � ` e0 : �0 mtypep(f; bound�(�0)) = fJ����!� / NK �!� 0 ! � 00gp; � ` �!� ok p; � ` �!� <: [��!�=�℄�!Np; �; � ` �!e : �!� 00 p; � ` �!� 00 <: [��!�=�℄�!� 0p; �; � ` e0. fJ�!� K(�!e) : [��!�=�℄� 00
Subtyping: p; � ` � <: �

[S-REFL] p; � ` � <: �
[S-TRANS]

p; � ` �1 <: �2 p; � ` �2 <: �3p; � ` �1 <: �3
[S-VAR] p; � ` � <: �(�)
[S-BOTH]

CJ����!� / K / f�!N g 2 pp; � ` CJ�!� K <: [��!�=�℄Ni
Well-formed types:p; � ` � ok

[W-OBJ] p; � ` Object ok

[W-VAR]
� 2 dom(�)p; � ` � ok

[W-BOTH]
CJ����!� / NK 2 p p; � ` �!� ok p; � ` �!� <: [��!�=�℄�!Np; � ` CJ�!� K ok

Figure A.4: Static Semantics (II)

108 APPENDIX A. FORTRESS CALCULI

Method type lookup:mtypep(f; �) = fJ����!� / NK �!� ! �g
[M T-BOTH]

CJ����!� / K �!
fd 2 p fJ����!� / MK(���!: � 0): � 00 = e 2 f�!fdg

mtypep(f; CJ�!� K) = f[��!�=�℄J����!� / MK �!� 0 ! � 00g
[M T-SUPER]

CJ����!� / K / f�!N g �!
fd 2 p f 62 f�������!Fname(fd)g

mtypep(f; CJ�!� K) = [Ni2[���!�=�℄f�!Ngmtypep(f;Ni)
[M T-OBJ] mtypep(f;Object) = ;

Owner lookup: ownerp(f; C) = fCg
[O-BOTH]

CJ����!� / K �!
fd 2 p f 2 f�������!Fname(fd)g

ownerp(f; C) = fCg
[O-SUPER]

CJ����!� / K / f�!N g �!
fd 2 p f 62 f�������!Fname(fd)g

ownerp(f; C) = [T J�!� K2f�!Ng ownerp(f; T)
Bound of type: bound�(�) = �
bound�(�) = �(�)
bound�(N) = N
bound�(OJ�!� K) = OJ�!� K

Figure A.5: Static Semantics (III)

A.1. A FORTRESS BASIC CORE CALCULUS 109

mbodyp(fJ�!� 00K; OJ�!� K) = f(�!x)! eg.
Proof. Trivial induction over the derivation ofmtypep(f;OJ�!� K) = fJ����!� / NK �!� 0 ! � 00g.
Theorem 1 (Progress).If p; �; � ` e : � then eithere is a value orp ` e �! e0.
Proof. The proof is by case analysis on the current redex ine (in the case thate is not a value).

CaseOJ�!� K(�!v). xi: By the well-typedness ofe, we knowp; �; � ` OJ�!� K(�!v). xi : � 00i for some� 00i . By the typing

rule [T-FIELD], we knowobject OJ����!� / K �����!x: � 0 = e 2 p. Therefore the evaluation rule [R-FIELD] can be
applied.

CaseOJ�!� K(�!v). fJ�!� 0 K(�!v0) : By the well-typedness ofe, we knowp; �; � ` OJ�!� K(�!v). fJ�!� 0 K(�!v0) : [��!� 0=�℄� for

some� . By the typing rule [T-METHOD], we know mtypep(f;OJ�!� K) = J����!� / NK�!� 00 ! � for some
�!N ,
�!� 00. By

Lemma A.1.1, we havembodyp(fJ�!� 0 K; OJ�!� K) = (�!x) ! e for somee. The size of
�!v0 and�!x are equal because both

equal the size of
�!� 00 by [T-METHOD]. A similar argument holds for�!v . So the evaluation rule [R-METHOD] can be

applied.

Lemma A.1.2 (Replacement). If p; �; � ` E[e] : �0 and p; �; � ` e : �1 and p; �; � ` e0 : � 01 wherep; � ` � 01 <: �1 thenp; �; � ` E[e0] : � 00 wherep; � ` � 00 <: �0.
Proof. This proof is a replacement argument in the typing derivation.

Lemma A.1.3 (Weakening). Supposep; � �����!� <: N ` �!N ok andp; � ` �0 ok.

1. If p; � ` � <: � 0 thenp; � �����!� <: N ` � <: � 0.
2. If p; � ` � ok thenp; � �����!� <: N ` � ok.

3. If p; �; � ` e : � thenp; �; � x : �0 ` e : � andp; � �����!� <: N ; � ` e : � .

Proof. Each of them is proved by straightforward induction on the derivation ofp; � ` � <: � 0 andp; � ` � ok andp; �; � ` e : � .

Lemma A.1.4 (Type Substitution Preserves Subtyping).If p; �1 �����!� <: N �2 ` � <: � 0 andp; �1 ` �!� <: [��!�=�℄�!N
with p; �1 ` �!� ok and none of�!� appear in�1 thenp; �1 [��!�=�℄�2 ` [��!�=�℄� <: [��!�=�℄� 0.
Proof. By induction on the derivation ofp; �1 �����!� <: N �2 ` � <: � 0.

Case [S-REFL]: Trivial.

Case [S-TRANS], [S-BOTH]: Easy.

Case [S-VAR]: � = � � 0 = (�1 �����!� <: N �2)(�)
If � 2 dom(�1) [dom(�2) , then the conclusion is immediate. Otherwise, if� = �i, then, by assumption, we havep; �1 ` �i <: [��!�=�℄Ni. Lastly, Lemma A.1.3 gives us the desired result.

110 APPENDIX A. FORTRESS CALCULI

Lemma A.1.5 (Type Substitution Preserves Well-Formedness). If p; �1 �����!� <: N �2 ` � ok andp; �1 ` �!� <: [��!�=�℄�!N
with p; �1 ` �!� ok and none of�!� appearing in�1, thenp; �1 [��!�=�℄�2 ` [��!�=�℄� ok.

Proof. By straightforward induction on the derivation ofp; �1 �����!� <: N �2 ` � ok.

Lemma A.1.6. Supposep; �1 �����!� <: N �2 ` � ok andp; �1 ` �!� 0 <: [��!� 0=�℄�!N with p; �1 ` �!� 0 ok and none of�!�
appear in�1. Then,p; �1 [��!� 0=�℄�2 ` bound�1 [���!� 0=�℄�2([��!� 0=�℄�) <: [��!� 0=�℄bound�1 �������!� <: N �2(�).
Proof. The case where� is a nonvariable type is trivial. If� = � 2 dom(�1) [dom(�2) then the proof is easy.

If � = �i thenbound�1 [���!� 0=�℄�2([��!� 0=�℄�) = � 0i and [��!� 0=�℄bound�1 �������!� <: N �2(�) = [��!� 0=�℄Ni. Lemma A.1.3

finishes the proof.

Lemma A.1.7. If p is well-typed andp; � ` � ok and mtypep(f; bound�(�)) = J����!� / NK�!� 0 ! �0, then for

some� 0 such thatp; � ` � 0 <: � and p; � ` � 0 ok, we havemtypep(f; bound�(� 0)) = J����!� / NK�!� 0 ! � 00 andp; � �����!� <: N ` � 00 <: �0.
Proof. By induction on the derivation ofp; � ` � 0 <: � .

Case [S-REFL]: Trivial.

Case [S-VAR]: Trivial becausebound�(�) = bound�(� 0).
Case [S-TRANS]: Easy.

Case [S-BOTH]: � 0= CJ�!� K �= [��!�=�℄Mi where CJ����!� / K / f�!Mg 2 p.
Subcasef 62 f�������!Fname(fd)g: Thenmtypep(f; CJ�!� K)= mtypep(f; [��!�=�℄f�!Mg) = mtypep(f; [��!�=�℄Mi) = J����!� / NK�!� 0 !�0.
SubcasefJ����!� / LK(���!x: � 00): � 00 = e2 f�!fdg: By induction on the derivation ofmtypep(f; �), we knowmtypep(f; �) =[��!�=�℄(J����!� / L0K �!� 000 ! � 000) wheremtypep(f;Mi) = J����!� / L0K �!� 000 ! � 000 and[��!�=�℄ � 000 = �0. By [T-M ETHODDEF]

and [OVERRIDE], we havep;�����!� <: N �����!� <: L; ` � 00 <: � 000 . By Lemmas A.1.4 and A.1.3, we havep; � �����!� <: L; ` [��!�=�℄�!� 00 <: [��!�=�℄� 000 :
Sincemtypep(f; bound�(� 0)) = mtypep(f; � 0) = [��!�=�℄(J����!� / LK �!� 00 ! � 00), we are done.

Lemma A.1.8 (Term Substitution Preserves Typing).If p is well-typed andp; �; � ���!x : � ` e : � andp; �; � ` �!e0 :�!� 0 andp; � ` �!� 0 <: �!� , thenp; �; � ` [��!e0=x℄e : � 0 for some� 0 such thatp; � ` � 0 <: � .

Proof. By induction on the derivation ofp; �; � ���!x : � ` e : � .

Case [T-SELF]: Trivial.

Case [T-OBJECT]: Easy.

A.1. A FORTRESS BASIC CORE CALCULUS 111

Case [T-VAR] p; �; � ��!x : � ` x : �(x) :
If x 2 dom(�) then the result is immediate. Otherwisex = xi and� = �i. Then� 0 = � 0i .

Case [T-FIELD]
p; �; � ` e0 : � 00 bound�(� 00) = OJ�!� 000K object OJ����!� / K �������!x0: � 0 = e; 2 pp; �; � ��!x : � ` e0. x0i : [���!� 000=�℄� 0i :

By the induction hypothesis we havep; �; � ` [��!e0=x℄e0 : � 000 andp; � ` � 000 <: � 00. By inspection of the definition of

bound, notice that� 00=OJ�!� 000K. Then by inspection of the subtyping rules,� 000 =OJ�!� 000K and the result is immediate.

Case
[T-M ETHOD]

p; �; � ��!x : � ` e0 : � 00 mtypep(f;bound�(� 00)) = f�!� 00 ! �0gp;� ` �!� 000 ok p;� ` �!� 000 <: [���!� 000=�℄�!Np; �; � ��!x : � ` �!e : �!� 0000 p; � ` �!� 0000 <: [���!� 000=�℄�!� 00p;�; � ��!x : � ` e0. fJ�!� 000K(�!e) : [���!� 000=�℄�0 :

By the induction hypothesis we havep; �; � ` [��!e0=x℄e0 : � 000 p; �; � ` [��!e0=x℄�!e : ��!� 00000p; � ` � 000 <: � 00 p; � ` ��!� 00000 <: �!� 0000
By Lemma A.1.7, we havemtypep(f; bound�(� 000)) = J����!� / NK�!� 00 ! � 0000 wherep; � �����!� <: N ` � 0000 <: �0. By Lemma A.1.4, we havep; � ` [���!� 000=�℄� 0000 <: [���!� 000=�℄�0. By [T-M ETHOD], we havep; �; � ` [��!e0=x℄(e0. fJ��!� 000;K(�!e)) : [���!� 000=�℄� 0000 .

Lemma A.1.9 (Type Substitution Preserves Typing).If p is well-typed andp; �1 �����!� <: N �2; � ` e : � andp; �1 ` �!� <: [��!�=�℄�!N wherep; �1 ` �!� ok and none of�!� appear in�1, thenp; �1 [��!�=�℄�2; [��!�=�℄� ` [��!�=�℄e : � 0
for some� 0such thatp; �1 [��!�=�℄�2 ` � 0 <: [��!�=�℄� .

Proof. By induction on the typing derivation,p; �1 �����!� <: N �2; � ` e : � with case analysis on the last rule applied.

Case [T-VAR], [T-SELF]: Trivial.

Case
[T-FIELD]

p; �1 �����!� <: N �2; � ` e0 : � 00 bound�1 �������!� <: N �2(� 00) = OJ�!� 00K
object OJ����!� / MK(���!x0: � 0) / f�!L g �������!x : � 000 = e 2 pp; �1 �����!� <: N �2; � ` e0. xi : [���!� 00=�℄� 000i :

By the induction hypothesis, we havep; �1 [��!�=�℄�2; [��!�=�℄� ` [��!�=�℄e0 : � 000 wherep; �1 [��!�=�℄�2 ` � 000 <: [��!�=�℄� 00.
By inspection of the definition ofbound, notice that� 00= OJ�!� 00K. Then by inspection of the subtyping rules, we know

the last rule applied in the derivation ofp; �1 [��!�=�℄�2 ` � 000 <: [��!�=�℄� 00 is [S-REFL] and� 000 = [��!�=�℄OJ�!� 00K. The
rest of this case is immediate.

Case
[T-OBJECT]

object OJ����!� / MK(���!x0: � 0) / f�!Lg 2 pp;�1 �����!� <: N �2 ` OJ�!� K okp; �1 �����!� <: N �2; � ` �!e : �!� 00 p;�1 �����!� <: N �2 ` �!� 00 <: �!� 0p;�1 �����!� <: N �2; � ` OJ�!� K(�!e) : OJ�!� K :

By Lemma A.1.5, the induction hypothesis, and Lemma A.1.4, we havep; �1 [��!�=�℄�2 ` [��!�=�℄OJ�!� K okp; �1 [��!�=�℄�2; [��!�=�℄� ` [��!�=�℄�!e : �!� 000 wherep; �1 [��!�=�℄�2 ` �!� 000 <: [��!�=�℄�!� 00p; �1 [��!�=�℄�2; � ` [��!�=�℄�!� 00 <: [��!�=�℄�!� 0

112 APPENDIX A. FORTRESS CALCULI

Rules [S-TRANS] and [S-BOTH] finish the case.

Case
[T-M ETHOD]

p; �1 �����!� <: N �2; � ` e0 : � 00 mtypep(f;bound�1 �������!� <: N �2(� 00)) = fJ����!� / MK�!� 0 ! �0gp; �1 �����!� <: N �2 ` �!� 000 ok p;�1 �����!� <: N �2 ` �!� 000 <: [���!� 000=�℄�!Mp;�1 �����!� <: N �2; � ` �!e : �!� 00 p;�1 �����!� <: N �2 ` �!� 00 <: [���!� 000=�℄�!� 0p; �1 �����!� <: N �2; � ` e0. fJ�!� 000K(�!e) : [���!� 000=�℄�0 :

By the induction hypothesis, we have

p; �1 [��!�=�℄�2; [��!�=�℄� ` [��!�=�℄e0 : � 000 p; �1 [��!�=�℄�2; [��!�=�℄� ` [��!�=�℄�!e : �!� 0000p; �1 [��!�=�℄�2 ` � 000 <: [��!�=�℄� 00 p; �1 [��!�=�℄�2 ` �!� 0000 <: [��!�=�℄�!� 00:
By Lemma A.1.6, we havep; �1 [��!�=�℄�2 ` bound�1 [���!�=�℄�2(� 000) <: [��!�=�℄bound�1 �������!� <: N �2(� 00).
By Lemma A.1.7, we havemtypep(f; bound�1 [���!�=�℄�2(� 000)) = J��������!� / [��!�=�℄MK [��!�=�℄�!� 0 ! � 0000 wherep; �1 [��!�=�℄�2 ����������!� <: [��!�=�℄M; ` � 0000 <: [��!�=�℄�0. By Lemma A.1.5, we havep; �1 [��!�=�℄�2 ` [��!�=�℄�!� 000 ok. By
Lemma A.1.4, we have p; �1 [��!�=�℄�2 ` [��!�=�℄�!� 000 <: [��!�=�℄[���!� 000=�℄�!Mp; �1 [��!�=�℄�2 ` [��!�=�℄�!� 00 <: [��!�=�℄[���!� 000=�℄�!� 0 :
By [S-TRANS]and without a loss of generality, we havep; �1 [��!�=�℄�2 ` �!� 0000 <: [��!� 0=�℄[��!�=�℄�!� 0 00 (= [�������![��!�=�℄� 000=�℄[��!�=�℄�!� 0).
By Lemma A.1.4, we have

p; �1 [��!�=�℄�2 ` [���!� 000=�℄� 0000 <: [��!�=�℄[���!� 000=�℄�0 (= [�������![��!�=�℄� 000=�℄[��!�=�℄�0):
Finally, [T-METHOD] gives usp; �1 [��!�=�℄�2; [��!�=�℄� ` [��!�=�℄(e0. fJ��!� 000;K(�!e)) : [���!� 000=�℄� 0000 .

Theorem 2 (Subject Reduction).If p is well-typed andp; �; � ` e : � andp ` e �! e0 thenp; �; � ` e0 : � 0 wherep; � ` � 0 <: � .

Proof. The proof is by case analysis on the evaluation rule applied.

Case [R-FIELD]: e= E[OJ�!� K(�!v0). xi] e0= E[[��!�=�℄[���!v0=x0℄ei]
By the well-typedness ofe, we havep; �; � ` OJ�!� K(�!v0). xi : [��!�=�℄� 00i where

object OJ����!� / NK(���!x0: � 0) / f�!Mg �����!x: � 00 = e �!fd end2 p.

A.1. A FORTRESS BASIC CORE CALCULUS 113

By typing rules [T-OBJECT], [T-OBJECTDEF], [T-F IELDDEF], and [W-BOTH], we have:(1a) p; �; � ` �!v0 : �!�v (1b) p; � ` �!�v <: �!� 0(2a) p;�����!� <: N ;���!x0 : � 0 ` ei : � 000i (2b) p;�����!� <: N ` � 000i <: � 00i(3b) p; � ` �!� <: [��!�=�℄�!N(4a) p; �; � ` OJ�!� K(�!v0) : OJ�!� K
By Lemmas A.1.3 and A.1.8 applied to(2a), (1a), and(1b) we have:(5a) p; � �����!� <: N ; � ` [���!v0=x0℄ei : � 0000i (5b) p; � �����!� <: N ` � 0000i <: � 000i
By Lemma A.1.9 applied to(5a) and(3b) we have:(6a) p; �; [��!�=�℄� ` [��!�=�℄[���!v0=x0℄ei : � 00000i (6b) p; � ` � 00000i <: [��!�=�℄� 0000i
By Lemmas A.1.3, A.1.4, and [S-TRANS] we have:(7b) p; � ` � 00000i <: [��!�=�℄� 00i

Applying Lemma A.1.2 to judgements(6a) and(7b) we finish the case.

Case [R-METHOD]: e= E[OJ�!� K(�!v). fJ�!� 0;K(�!v0;)] e0= E[[��!v=x℄[���!v0=x0℄[OJ�!� K(�!v) =self ℄e00]
wherembodyp(fJ�!� 0 K; OJ�!� K) = (

�!x0) ! e00
andmtypep(f;OJ�!� K) = J����!� / MK �!� 000 ! �0
and (object OJ����!� / NK(��!x: �) / f�!Mg �!vd

�!
fd end) 2 p.

By the well-typedness ofe we havep; �; � ` OJ�!� K(�!v). fJ�!� 0;K(�!v0;) : [��!� 0=�℄[��!�=�℄�0.

By typing rules [T-OBJECT], [T-OBJECTDEF], [T-M ETHODDEF], [T-M ETHOD], and [W-BOTH] we have:
(1a)p; �; � ` �!v : �!�v
(1b)p; � ` �!�v <: �!� 00
(2b)p; � ` �!� <: [��!�=�℄�!N
(3a)p; �; � ` �!v0 : �!� 0v
(3b)p; � ` �!� 0v <: [��!� 0=�℄�!� 000
(4b)p; � ` �!� 0 <: [��!� 0=�℄�!M
(5a)p;������!� <: N;������!� <: M;;����!x0 : � 000 self : OJ�!� K ���!x : � 00 ` e000 : � 00 wheree00 = [��!� 0=�℄[��!�=�℄e000
(5b)p;������!� <: N;������!� <: M; ` � 00 <: �0
(6a) p; �; � ` OJ�!� K(�!v) : OJ�!� K
By Lemma A.1.9, applied to(5a) and(4b) we have:

(7a)p; � ������!� <: M;; [��!�=�℄� ����!x0 : � 000 self : OJ�!� K ���!x : � 00 ` [��!�=�℄e000 : � 000
(7b)p; � ������!� <: M; ` � 000 <: [��!�=�℄� 00
By Lemma A.1.9, applied to(7a) and(2b) we have:

(8a)p; �; [��!� 0=�℄[��!�=�℄� ����!x0 : � 000 self : OJ�!� K ���!x : � 00 ` [��!� 0=�℄[��!�=�℄e000 : � 0000
(8b)p; � ` � 0000 <: [��!� 0=�℄� 000
By Lemmas A.1.3 and A.1.8, applied to(6a) and(7a) we have:

(9a)p; �; [��!� 0=�℄[��!�=�℄� ����!x0 : � 000 ���!x : � 00 ` [OJ�!� K(�!v) =self ℄[��!� 0=�℄[��!�=�℄e000 : � 00000
(9b)p; � ` � 00000 <: � 0000

114 APPENDIX A. FORTRESS CALCULI

By Lemma A.1.3 and A.1.8, applied to(8a), (3a) and(3b) we have:

(10a)p; �; [��!� 0=�℄[��!�=�℄� ���!x : � 00 ` [���!v0=x0℄[OJ�!� K(�!v) =self ℄[��!� 0=�℄[��!�=�℄e000 : � 000000
(10b)p; � ` � 000000 <: � 00000
By Lemma A.1.3 and A.1.8, applied to(9a), (1a) and(1b) we have:

(11a)p; �; [��!� 0=�℄[��!�=�℄� ` [��!v=x℄[���!v0=x0℄[OJ�!� K(�!v) =self ℄[��!� 0=�℄[��!�=�℄e000 : � 0000000
(11b)p; � ` � 0000000 <: � 000000
By Lemmas A.1.3, A.1.4, and [S-TRANS], we have:

(12b)p; � ` � 0000000 <: [��!� 0=�℄[��!�=�℄�0
Applying Lemma A.1.2 to judgements(10a) and(12b) we finish the case.

Appendix B

Api components

We define a specialcomponents api that provides handles on components and apis, and operations on them, for
use by components themselves (e.g., development environments), allowing components to build and maintain other
components, manipulate projects and components as objects, compile projects into components, link components
together, deploy components on specific sites over the internet, etc. This api is also used by theupgradable and
installable apis. A component implementing this api is installed along with the core library components on every
fortress.

Note thatComponent s andApi s have no public constructors. They can be constructed only from the factory methods
provided by a fortress. The components returned from aFortress are also installed in thatFortress . Also note the
Fortress is a singleton class; it has no public constructor, but thereis a single instance provided in a static field.

The operations on a fortress provided in this api take components and apis as arguments directly, rather than names
of components and apis as the corresponding shell operations are described. This decision is done for the sake of
convenience. Note, however, that a component name may be rebound on a fortress, or even uninstalled, while some
processp keeps a reference to a correspondingComponent object. This possibility is not problematic because the
component corresponding to this object may be simply kept bythe fortress until the object is freed inp. Also, note that
upgrade operations on a compound are purely functional: they produce new compound components as a result. Thus,
the structure of a component as viewed through aComponent object does not became stale in the face of upgrades.

We include a methodgetSourceFile on components that returns the source file the component was compiled from.
Source files could be included with simple components duringcompilation as a compiler option. Doing so would
allow development tools such as graphical debuggers to easily display the locations of errors without the possibility
that source code would not be synchronized with compiled code, as can happen in conventional programming models
where compiled code is stored in unencapsulated object files.

api components.1.0

import File from fortress.io.1.0
import {List, Set, Date} from fortress.util.1.0

object Fortress
getComponent(name:Name):Component
getApi(name:Name): Api
preferences(api: Api):List[Component]

compile(source:File):SimpleComponent

115

116 APPENDIX B. APICOMPONENTS

install(serialized:File):Component
upgradeAll(name:Name, other:Component):()

link(name:Name, constituents:List[Component],
export:{Api}, hide:{Api}):Component

throws LinkException
end

trait FortressElement
name():Name
vendor():String
owner():Fortress
timestamp():Date
getVersion():Version
uninstall():()

end

object Component
(imports :{Api},

exports :{Api},
provides:{Api},
visibles:{Api},
constituents:{Component})

traits FortressElement
execute(args:String[]):()
constrain(name:Name, apis:{Api}):Component
hide (name:Name, apis:{Api}):Component
extract(prereqs:{Api}):File
isValidUpgrade(that:Component):Boolean
abstract upgrade(name:Name, that:Component):Component

throws UpgradeException
getSourceFile():File throws SourceNotAvailableExcepti on

end

object SimpleComponent traits Component
upgrade(name:Name, that:Component):Component

end

object CompoundComponent traits Component
upgrade(name:Name, other:Component):Component

end

object Api
(uses:{Api},

extract:File)
traits FortressElement

end

object Name
toString():String

end

object Version

117

major: Int
minor: Int

end

object UpgradeException(msg:String) traits Exception en d
object LinkException(msg:String) traits Exception end
object SourceNotAvailableException(msg:String) traits Exception end

118 APPENDIX B. APICOMPONENTS

Appendix C

Support for Unicode Input in ASCII

ASCII encoding of Unicode in Fortress programs is supportedas follows:

1. Names for all Unicode characters except control characters can be written in all caps. Spaces in a name are writ-
ten as ‘_’ . Additionally, all Unicode character names are aliased with names in which the following substrings
are elided:

"LETTER "
"DIGIT "
"RADICAL "
"NUMERAL "
" OPERATOR"

2. All ASCII-encoded Unicode characters are converted to Unicode before parsing or scanning.

3. If two Unicode names are separated by an ampersand, the ampersand is removed as the two names are converted
to Unicode characters.

4. If a line is continued using a final ampersand, and the continuation line begins with an ampersand, and the first
ampersand is immediately preceded by an identifier with no intervening space, and the second ampersand is
immediately followed by an identifier with no intervening space, then the two identifiers are logically glued
together to make one identifier.

Here is a simple example. The expression:

(GREEK_SMALL_LETTER_PHI GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA GREEK_SMALL_LETTER_LAMBDA)

is converted to:

(� + ! �)

where there are four identifiers in all. To get two identifiers, one writes

119

120 APPENDIX C. SUPPORT FOR UNICODE INPUT IN ASCII

(GREEK_SMALL_LETTER_PHI&GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA&GREEK_SMALL_LETTER_LAMBDA)

which is converted to:

(� + !�)

We include shorter names for common characters. In particular, the following tokens are converted as follows:

BY becomes � * becomes �
-> becomes ! => becomes)

--> becomes �! ==> becomes =)�> becomes :-> becomes 7!
>= becomes � <= becomes �
:= becomes j= :- becomes `

CUP becomes [CAP becomes \
BOTTOM becomes ? TOP becomes >

SUM becomes
P

PRODUCT becomes
Q

INTEGRAL becomes
R

EMPTYSET becomes ;
SUBSET becomes � NOTSUBSET becomes 6�

SUBSETEQ becomes � NOTSUBSETEQ becomes 6�
EQUALS becomes �= NOTEQUALS becomes 6�=

EQUIV becomes � /= becomes 6=
IN becomes 2 NOTIN becomes 62

The following tokens and there lowercase counterparts are converted as follows:

AND becomes ^
OR becomes _

NOT becomes :
XOR becomes �
INF becomes 1

SQRT becomes
p

As a special feature, twenty-four names, in both uppercase and lowercase form, are converted to Greek letters:

alpha beta gamma delta epsilon zeta eta theta iota kappa lamb da
mu nu xi omicron pi rho sigma tau upsilon phi chi psi omega

become:

� �
 Æ � � � � � � � � � � o � � � � � � � !
C.1 Distributed Pasting

There are many sets of Unicode character names for which all characters in the set share the same prefix. For example,
consider the prefixes

C.2. STRING LITERALS 121

’GREEK_SMALL_LETTER’, ’KATAKANA_LETTER’, ’CYRILLIC_CA PITAL_LETTER’

etc. Furthermore, characters with the same prefix are often typed together.

To facilitate entering characters with a common prefix, Fortress supports distribution of a Unicode prefix over a
sequence of character names. If an identifier-pasting ampersand is followed by a left parenthesis, there is distributed
meta-pasting over the characters enclosed in parentheses,followed by Unicode conversion followed by pasting. For
example,

foo&(a&b&c&d&e)

becomes

fooa&foob&fooc&food&fooe

which becomes

fooafoobfoocfoodfooe

To keep error messages sane, unbalanced parentheses shoulddetected as errorsbeforemeta-pasting.

Program text is allowed to include Unicode directly. A Fortress program editor is expected to convert ASCII-encoded
Unicode to straight Unicode as the characters are typed.

C.2 String Literals

By default, the preprocessing described above is not performed within string literals. Therefore, the string literal
“alpha ” contains five characters.

To enable the unicode transformations, a backslash (\) must be prepended. Therefore, the string literal “\alpha ”
contains only one character, corresponding to the Unicode character for�. In order to embed a literal backslash
character, it must also be escaped with a backslash. Therefore, “\\beta ” contains five characters, the first of which
is \.

The preprocessing described below, which is for identifiersand numeric literals, is never performed within string
literals.

C.3 Identifiers and Numeric Literals

An alphanumeric token consists of a sequence of letters, digits, and underscore characters; if it begins with a digit, or
ends with a radix specifier and contains no other underscores, then it may also contain a period (to serve as a decimal
point or other radix point). The interpretation and displayappearance of the token depends on which of a number of
categories it falls into.

122 APPENDIX C. SUPPORT FOR UNICODE INPUT IN ASCII

First, a preprocessing step: if the token is the (all-uppercase or all-lowercase) name of a Greek letter, or begins with
the name of a Greek letter followed by an underscore or a digit, or ends with the name of a Greek letter that is preceded
by an underscore, or contains the name of a Greek letter with an underscore on each side of it, then the name of the
Greek letter is replaced by the Greek letter itself. A special ad-hoc rule is that if the identifier begins with “mu_” and
ends with “_”, then the first underscore is deleted as the “mu” is converted to the Greek letter lowercase mu.

Examples: alpha OMEGA3alpha_hat theta_elephant OMEGA_ _XI�
3 �_hat �_elephant
_ _�
Now, if the token begins with a digit, it is a numeric token. Itis displayed in roman type, with the optional radix as a
subscript.

Examples: 27 7fff_16 10101101_TWO 3.14159265 3.11037552_8

27 7fff16 101011012 3.14159265 3.110375528
Note: the elegant way to write Avogadro’s number is6.02 TIMES 10ˆ23 .

Otherwise, if the token contains no underscores, it is an identifier. If it consists of one or more letters and then one or
more digits, it is displayed by displaying the letters in italic type and the digits as italic subscripts (to distinguishthem
from true numeric indexing subscripts indicated by brackets, which would be shown in roman type); otherwise, it is
simply displayed in italic type.

Examples: Fred foobar a1 a23 alpha1 l33tsp33kFred foobar a1 a23 �1 l33tsp33k
If the token contains one underscore and what follows the underscore is either a decimal integer from 2 to 16 or the
English name (in all capital letters) of an integer from 2 to 16, it is a numeric token. The part before the underscore is
displayed in roman type and the part after the underscore is displayed as a decimal subscript.

Examples:deadbeef_SIXTEEN dead.beef_16 37X8E2_12 3.243f6b_16

deadbeef16 dead.beef16 37X8E212 3.243f6b16
Otherwise, it is an identifier, and the rules for display are complicated:

If a token ends with an underscore and has no other underscores, it is displayed without the trailing underscore but in
roman type rather than italic. (This is typically used for names of SI dimensional units. Here we see the reason for the
ad-hoc rule about the treatment of “mu” at the beginning of anidentifier ending with an underscore.)

Examples:m_ s_ km_ V_ OMEGA_ mu_s_ mu_OMEGA_

m s km V
 �s �

Otherwise, the token is divided into components by its underscores. If any component is empty except the first, then
the entire identifier is displayed in italics, underscores and all. Otherwise, the components are displayed as follows.
If the first component is empty (that is, the identifier beginswith a leading underscore), then the second component
is displayed in boldface and then any remaining components are processed from left to right beginning with the third
component (this is typically used for vectors and matrices,and for the square root of minus one); otherwise, if the first
component isscript , then the second component is displayed in a script face and then any remaining components
are processed from left to right beginning with the third component; otherwise the first component is displayed in
italics and remaining components are processed from left toright beginning with the second component. (However, as
the second or first component is displayed according to the previous sentence, if the component consists of a sequence

C.3. IDENTIFIERS AND NUMERIC LITERALS 123

of letters followed by a sequence of digits, then the digits are displayed as a subscript in italics.) The remaining
components are then processed according to the following rules:

� If a component isbar , then a bar is displayed above what has already been displayed.� If a component isvec , then a right-pointing arrow is displayed above what has already been displayed.� If a component ishat , then a hat is displayed above what has already been displayed.� If a component isdot , then a dot is displayed above what has already been displayed; but if the preceding
component was alsodot , then the new dot is displayed appropriately relative to theprevious dot(s).� If a component isprime , then a prime mark is displayed after what has already been displayed as a superscript.� If a component issuper and another component follows, then that component is displayed as a superscript in
roman type, and enclosed in parentheses if it is all digits.� If the component is the last component, it is displayed as a subscript, in italics if it is all digits, and otherwise in
roman type.� Otherwise, this component and all succeeding components are displayed in italics, each with a preceding under-
score.

Examples:v_vec _v _M _v1 a_dot p_prime p13_prime T_max foo_bar~v v M v1 _a p0 p013 Tmax foo_bar

124 APPENDIX C. SUPPORT FOR UNICODE INPUT IN ASCII

Appendix D

Detailed Rules for Operator Precedence

In each of the character lists below, each line gives the Unicode codepoint, the full Unicode name, an indication of
what the character looks like in TEX (if possible), then any alternate names or ASCII renderings for the character.

D.1 Bracket Pairs for Enclosing Operators

Here are the bracket pairs that may be used as enclosing operators. Note that there are two groups of four brackets;
within such a group, either left bracket may be paired with either right bracket to form an enclosing operator.

U+005B LEFT SQUARE BRACKET [

U+005D RIGHT SQUARE BRACKET]

U+007B LEFT CURLY BRACKET {

U+007D RIGHT CURLY BRACKET }

U+00AB LEFT-POINTING DOUBLE ANGLE QUOTATION MARK

U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

U+2045 LEFT SQUARE BRACKET WITH QUILL

U+2046 RIGHT SQUARE BRACKET WITH QUILL

U+2308 LEFT CEILING d LC
U+2309 RIGHT CEILING e RC

U+230A LEFT FLOOR b LF
U+230B RIGHT FLOOR
 RF

U+27E6 MATHEMATICAL LEFT WHITE SQUARE BRACKET [[[|
U+2985 LEFT WHITE PARENTHESIS (|
U+2986 RIGHT WHITE PARENTHESIS |)
U+27E7 MATHEMATICAL RIGHT WHITE SQUARE BRACKET ℄℄ |]

U+27E8 MATHEMATICAL LEFT ANGLE BRACKET h <|
U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET i |>

U+27EA MATHEMATICAL LEFT DOUBLE ANGLE BRACKET hh <<|
U+27EB MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET ii |>>

U+2983 LEFT WHITE CURLY BRACKET fj {|
U+2984 RIGHT WHITE CURLY BRACKET jg |}

125

126 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+2987 Z NOTATION LEFT IMAGE BRACKET

U+2988 Z NOTATION RIGHT IMAGE BRACKET

U+2989 Z NOTATION LEFT BINDING BRACKET

U+298A Z NOTATION RIGHT BINDING BRACKET

U+298B LEFT SQUARE BRACKET WITH UNDERBAR

U+298C RIGHT SQUARE BRACKET WITH UNDERBAR

U+298D LEFT SQUARE BRACKET WITH TICK IN TOP CORNER

U+298E RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER

U+298F LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER

U+2990 RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER

U+2991 LEFT ANGLE BRACKET WITH DOT

U+2992 RIGHT ANGLE BRACKET WITH DOT

U+2993 LEFT ARC LESS-THAN BRACKET

U+2994 RIGHT ARC GREATER-THAN BRACKET

U+2995 DOUBLE LEFT ARC GREATER-THAN BRACKET

U+2996 DOUBLE RIGHT ARC LESS-THAN BRACKET

U+2997 LEFT BLACK TORTOISE SHELL BRACKET [*
U+2998 RIGHT BLACK TORTOISE SHELL BRACKET *]

U+29D8 LEFT WIGGLY FENCE

U+29D9 RIGHT WIGGLY FENCE

U+29DA LEFT DOUBLE WIGGLY FENCE

U+29DB RIGHT DOUBLE WIGGLY FENCE

U+29FC LEFT-POINTING CURVED ANGLE BRACKET

U+29FD RIGHT-POINTING CURVED ANGLE BRACKET

U+300C LEFT CORNER BRACKET p </
U+300D RIGHT CORNER BRACKET q />

U+300E LEFT WHITE CORNER BRACKET <</
U+300F RIGHT WHITE CORNER BRACKET />>

U+3010 LEFT BLACK LENTICULAR BRACKET {*
U+3011 RIGHT BLACK LENTICULAR BRACKET *}

U+3018 LEFT WHITE TORTOISE SHELL BRACKET [/
U+3014 LEFT TORTOISE SHELL BRACKET (/
U+3015 RIGHT TORTOISE SHELL BRACKET /)
U+3019 RIGHT WHITE TORTOISE SHELL BRACKET /]

U+3016 LEFT WHITE LENTICULAR BRACKET {/
U+3017 RIGHT WHITE LENTICULAR BRACKET /}

In addition, each of these operators may be paired with itself to form an enclosing operator pair (see Section 2.8):

| || ||| / // /// ˜

D.2. ARITHMETIC OPERATORS 127

D.2 Arithmetic Operators

D.2.1 Multiplication and Division

The following four operators have the same precedence and may be mixed. Note thatSOLIDUSandDIVISION SLASH

must be used loose for this purpose, because when used tight they form tight fractions; therefore, when multiplication
and division operators in this group are to be mixed, they must all be loose.

The following are multiplication operators. Note thatASTERISK OPERATORis always a multiplication operator;
ASTERISK is treated as a synonym forASTERISK OPERATORwhere appropriate, butASTERISKalso has other uses,
for example in the ASCII bracket encodings[* and*] and{* and*} .

U+002A ASTERISK *
U+00B7 MIDDLE DOT � DOT
U+00D7 MULTIPLICATION SIGN � TIMES BY
U+2217 ASTERISK OPERATOR �
U+228D MULTISET MULTIPLICATION

U+2297 CIRCLED TIMES
 OTIMES
U+2299 CIRCLED DOT OPERATOR � ODOT
U+229B CIRCLED ASTERISK OPERATOR ~ CIRCLEDAST
U+22A0 SQUARED TIMES � BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+22C5 DOT OPERATOR �
U+29C6 SQUARED ASTERISK BOXAST
U+29D4 TIMES WITH LEFT HALF BLACK

U+29D5 TIMES WITH RIGHT HALF BLACK

U+2A2F VECTOR OR CROSS PRODUCT � CROSS
U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE

U+2A31 MULTIPLICATION SIGN WITH UNDERBAR

U+2A34 MULTIPLICATION SIGN IN LEFT HALF CIRCLE

U+2A35 MULTIPLICATION SIGN IN RIGHT HALF CIRCLE

U+2A36 CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT

U+2A37 MULTIPLICATION SIGN IN DOUBLE CIRCLE

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following are division operators. Note thatDIVISION SLASH is always a multiplication operator;SOLIDUS is
treated as a synonym forDIVISION SLASH where appropriate, butSOLIDUSalso has other uses, for example in the
ASCII bracket encodings(/ and/) and[/ and/] and{/ and/} .

U+002F SOLIDUS /
U+00F7 DIVISION SIGN � DIV
U+2215 DIVISION SLASH =
U+2298 CIRCLED DIVISION SLASH � OSLASH
U+29B8 CIRCLED REVERSE SOLIDUS

U+29BC CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN

U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29F5 REVERSE SOLIDUS OPERATOR n
U+29F8 BIG SOLIDUS

Æ

128 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+29F9 BIG REVERSE SOLIDUS
�

U+2A38 CIRCLED DIVISION SIGN ODIV
U+2AFD DOUBLE SOLIDUS OPERATOR ==

D.2.2 Addition and Subtraction

The following three operators have the same precedence and may be mixed.

U+002B PLUS SIGN + +
U+002D HYPHEN-MINUS � -
U+2212 MINUS SIGN �

They each have lower precedence than any of the following multiplication and division operators:

U+002A ASTERISK *
U+002F SOLIDUS /
U+00B7 MIDDLE DOT � DOT
U+00D7 MULTIPLICATION SIGN � TIMES
U+00F7 DIVISION SIGN � DIV
U+2215 DIVISION SLASH =
U+2217 ASTERISK OPERATOR �
U+22C5 DOT OPERATOR �
U+2A2F VECTOR OR CROSS PRODUCT � CROSS

The following two operators have the same precedence and maybe mixed.

U+2214 DOT PLUS u
U+2238 DOT MINUS _�

The following two operators have the same precedence and maybe mixed.

U+2A25 PLUS SIGN WITH DOT BELOW

U+2A2A MINUS SIGN WITH DOT BELOW

The following two operators have the same precedence and maybe mixed.

U+2A39 PLUS SIGN IN TRIANGLE

U+2A3A MINUS SIGN IN TRIANGLE

They each have lower precedence than this multiplication operator:

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following two operators have the same precedence and maybe mixed.

D.2. ARITHMETIC OPERATORS 129

U+2295 CIRCLED PLUS � OPLUS
U+2296 CIRCLED MINUS 	 OMINUS

They each have lower precedence than any of the following multiplication and division operators:

U+2297 CIRCLED TIMES
 OTIMES
U+2298 CIRCLED DIVISION SLASH � OSLASH
U+2299 CIRCLED DOT OPERATOR � ODOT
U+229B CIRCLED ASTERISK OPERATOR ~ CIRCLEDAST
U+2A38 CIRCLED DIVISION SIGN ODIV

The following two operators have the same precedence and maybe mixed.

U+229E SQUARED PLUS � BOXPLUS
U+229F SQUARED MINUS � BOXMINUS

They each have lower precedence than any of these multiplication or division operators:

U+22A0 SQUARED TIMES � BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29C6 SQUARED ASTERISK BOXAST

These are other miscellaneous addition and subtraction operators:

U+00B1 PLUS-MINUS SIGN �
U+2213 MINUS-OR-PLUS SIGN �
U+2242 MINUS TILDE

U+2A22 PLUS SIGN WITH SMALL CIRCLE ABOVE
Æ+

U+2A23 PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE +̂
U+2A24 PLUS SIGN WITH TILDE ABOVE

�+
U+2A26 PLUS SIGN WITH TILDE BELOW +�
U+2A27 PLUS SIGN WITH SUBSCRIPT TWO +2
U+2A28 PLUS SIGN WITH BLACK TRIANGLE

U+2A29 MINUS SIGN WITH COMMA ABOVE
;�

U+2A2B MINUS SIGN WITH FALLING DOTS

U+2A2C MINUS SIGN WITH RISING DOTS

U+2A2D PLUS SIGN IN LEFT HALF CIRCLE

U+2A2E PLUS SIGN IN RIGHT HALF CIRCLE

D.2.3 Miscellaneous Arithmetic Operators

The operatorsMAX, MIN, REM, MOD, GCD, LCM, andCHOOSE, none of which corresponds to a single Unicode charac-
ter, are considered to be arithmetic operators, having higher precedence than certain relational operators, as described
in a later section.

130 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

D.2.4 Set Intersection, Union, and Difference

The following are the set intersection operators:

U+2229 INTERSECTION \ CAP INTERSECT
U+22D2 DOUBLE INTERSECTION e CAPCAP
U+2A40 INTERSECTION WITH DOT

U+2A43 INTERSECTION WITH OVERBAR \
U+2A44 INTERSECTION WITH LOGICAL AND

U+2A4B INTERSECTION BESIDE AND JOINED WITH INTERSECTION

U+2A4D CLOSED INTERSECTION WITH SERIFS

U+2ADB TRANSVERSAL INTERSECTION

The following are the set union operators:

U+222A UNION [CUP UNION
U+228E MULTISET UNION ℄ UPLUS
U+22D3 DOUBLE UNION d CUPCUP
U+2A41 UNION WITH MINUS SIGN

U+2A42 UNION WITH OVERBAR [
U+2A45 UNION WITH LOGICAL OR

U+2A4A UNION BESIDE AND JOINED WITH UNION

U+2A4C CLOSED UNION WITH SERIFS

U+2A50 CLOSED UNION WITH SERIFS AND SMASH PRODUCT

They each have lower precedence than any of the set intersection operators.

This is a miscellaneous set operator:

U+2216 SET MINUS n SETMINUS

D.2.5 Square Arithmetic Operators

The following are the square intersection operators:

U+2293 SQUARE CAP u SQCAP
U+2A4E DOUBLE SQUARE INTERSECTION SQCAPCAP

The following are the square union operators:

U+2294 SQUARE CUP t SQCUP
U+2A4F DOUBLE SQUARE UNION SQCUPCUP

They each have lower precedence than either of the square intersection operators.

D.3. RELATIONAL OPERATORS 131

D.2.6 Curly Arithmetic Operators

The following is the curly intersection operator:

U+22CF CURLY LOGICAL AND f CURLYAND

The following is the curly union operator:

U+22CE CURLY LOGICAL OR g CURLYOR

It has lower precedence than the curly intersection operator.

D.3 Relational Operators

D.3.1 Equivalence and Inequivalence Operators

Every operator listed in this section has lower precedence than any operator listed in Section D.2.

The following are equivalence operators. They may be chained. Moreover, they may be chained with any oher single
group of chainable relational operators, as described in later sections.

U+003D EQUALS SIGN = EQ
U+2243 ASYMPTOTICALLY EQUAL TO ' SIMEQ
U+2245 APPROXIMATELY EQUAL TO �=
U+2246 APPROXIMATELY BUT NOT ACTUALLY EQUAL TO

U+2247 NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO �
U+2248 ALMOST EQUAL TO � APPROX
U+224A ALMOST EQUAL OR EQUAL TO u APPROXEQ
U+224C ALL EQUAL TO

U+224D EQUIVALENT TO �
U+224E GEOMETRICALLY EQUIVALENT TO m BUMPEQV
U+2251 GEOMETRICALLY EQUAL TO + DOTEQDOT
U+2252 APPROXIMATELY EQUAL TO OR THE IMAGE OF ;
U+2253 IMAGE OF OR APPROXIMATELY EQUAL TO :
U+2256 RING IN EQUAL TO P EQRING
U+2257 RING EQUAL TO $ RINGEQ
U+225B STAR EQUALS

U+225C DELTA EQUAL TO , EQDEL
U+225D EQUAL TO BY DEFINITION EQDEF
U+225F QUESTIONED EQUAL TO

U+2261 IDENTICAL TO � EQV
U+2263 STRICTLY EQUIVALENT TO

U+229C CIRCLED EQUALS

U+22CD REVERSED TILDE EQUALS w
U+22D5 EQUAL AND PARALLEL TO

U+29E3 EQUALS SIGN AND SLANTED PARALLEL

U+29E4 EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE

132 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+29E5 IDENTICAL TO AND SLANTED PARALLEL

U+2A66 EQUALS SIGN WITH DOT BELOW

U+2A67 IDENTICAL WITH DOT ABOVE

U+2A6C SIMILAR MINUS SIMILAR

U+2A6E EQUALS WITH ASTERISK

U+2A6F ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT

U+2A70 APPROXIMATELY EQUAL OR EQUAL TO

U+2A71 EQUALS SIGN ABOVE PLUS SIGN

U+2A72 PLUS SIGN ABOVE EQUALS SIGN

U+2A73 EQUALS SIGN ABOVE TILDE OPERATOR

U+2A75 TWO CONSECUTIVE EQUALS SIGNS

U+2A76 THREE CONSECUTIVE EQUALS SIGNS

U+2A77 EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW

U+2A78 EQUIVALENT WITH FOUR DOTS ABOVE

U+2AAE EQUALS SIGN WITH BUMPY ABOVE

U+FE66 SMALL EQUALS SIGN

U+FF1D FULLWIDTH EQUALS SIGN

The following are inequivalence operators. They may not be chained.

U+2244 NOT ASYMPTOTICALLY EQUAL TO 6' NSIMEQ
U+2249 NOT ALMOST EQUAL TO 6� NAPPROX
U+2260 NOT EQUAL TO 6= /= NE
U+2262 NOT IDENTICAL TO 6� NEQV
U+226D NOT EQUIVALENT TO 6�

D.3.2 Plain Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Sections D.2.1, D.2.2, and D.2.3.

The following are less-than operators. They may be mixed andchained with each other and with equivalence operators
(see Section D.3.1).

U+003C LESS-THAN SIGN < LT
U+2264 LESS-THAN OR EQUAL TO � <= LE
U+2266 LESS-THAN OVER EQUAL TO 5
U+2268 LESS-THAN BUT NOT EQUAL TO �
U+226A MUCH LESS-THAN � <<
U+2272 LESS-THAN OR EQUIVALENT TO .
U+22D6 LESS-THAN WITH DOT l DOTLT
U+22D8 VERY MUCH LESS-THAN n <<<
U+22DC EQUAL TO OR LESS-THAN

U+22E6 LESS-THAN BUT NOT EQUIVALENT TO �
U+29C0 CIRCLED LESS-THAN

U+2A79 LESS-THAN WITH CIRCLE INSIDE

U+2A7B LESS-THAN WITH QUESTION MARK ABOVE

U+2A7D LESS-THAN OR SLANTED EQUAL TO

U+2A7F LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A81 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A83 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT

D.3. RELATIONAL OPERATORS 133

U+2A85 LESS-THAN OR APPROXIMATE

U+2A87 LESS-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A89 LESS-THAN AND NOT APPROXIMATE

U+2A8D LESS-THAN ABOVE SIMILAR OR EQUAL

U+2A95 SLANTED EQUAL TO OR LESS-THAN

U+2A97 SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE

U+2A99 DOUBLE-LINE EQUAL TO OR LESS-THAN

U+2A9B DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN

U+2A9D SIMILAR OR LESS-THAN

U+2A9F SIMILAR ABOVE LESS-THAN ABOVE EQUALS SIGN

U+2AA1 DOUBLE NESTED LESS-THAN

U+2AA3 DOUBLE NESTED LESS-THAN WITH UNDERBAR

U+2AA6 LESS-THAN CLOSED BY CURVE

U+2AA8 LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF7 TRIPLE NESTED LESS-THAN

U+2AF9 DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO

U+FE64 SMALL LESS-THAN SIGN

U+FF1C FULLWIDTH LESS-THAN SIGN

The following are greater-than operators. They may be mixedand chained with each other and with equivalence
operators (see Section D.3.1).

U+003E GREATER-THAN SIGN > GT
U+2265 GREATER-THAN OR EQUAL TO � >= GE
U+2267 GREATER-THAN OVER EQUAL TO =
U+2269 GREATER-THAN BUT NOT EQUAL TO 	
U+226B MUCH GREATER-THAN � >>
U+2273 GREATER-THAN OR EQUIVALENT TO &
U+22D7 GREATER-THAN WITH DOT m DOTGT
U+22D9 VERY MUCH GREATER-THAN o >>>
U+22DD EQUAL TO OR GREATER-THAN

U+22E7 GREATER-THAN BUT NOT EQUIVALENT TO �
U+29C1 CIRCLED GREATER-THAN

U+2A7A GREATER-THAN WITH CIRCLE INSIDE

U+2A7C GREATER-THAN WITH QUESTION MARK ABOVE

U+2A7E GREATER-THAN OR SLANTED EQUAL TO

U+2A80 GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A82 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A84 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT

U+2A86 GREATER-THAN OR APPROXIMATE

U+2A88 GREATER-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A8A GREATER-THAN AND NOT APPROXIMATE

U+2A8E GREATER-THAN ABOVE SIMILAR OR EQUAL

U+2A96 SLANTED EQUAL TO OR GREATER-THAN

U+2A98 SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE

U+2A9A DOUBLE-LINE EQUAL TO OR GREATER-THAN

U+2A9C DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN

U+2A9E SIMILAR OR GREATER-THAN

U+2AA0 SIMILAR ABOVE GREATER-THAN ABOVE EQUALS SIGN

U+2AA2 DOUBLE NESTED GREATER-THAN

U+2AA7 GREATER-THAN CLOSED BY CURVE

U+2AA9 GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF8 TRIPLE NESTED GREATER-THAN

134 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+2AFA DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO

U+FE65 SMALL GREATER-THAN SIGN

U+FF1E FULLWIDTH GREATER-THAN SIGN

The following are miscellaneous plain comparison operators. They may not be mixed or chained.

U+226E NOT LESS-THAN � NLT
U+226F NOT GREATER-THAN � NGT
U+2270 NEITHER LESS-THAN NOR EQUAL TO � NLE
U+2271 NEITHER GREATER-THAN NOR EQUAL TO � NGE
U+2274 NEITHER LESS-THAN NOR EQUIVALENT TO 6.
U+2275 NEITHER GREATER-THAN NOR EQUIVALENT TO 6&
U+2276 LESS-THAN OR GREATER-THAN 7
U+2277 GREATER-THAN OR LESS-THAN ?
U+2278 NEITHER LESS-THAN NOR GREATER-THAN

U+2279 NEITHER GREATER-THAN NOR LESS-THAN

U+22DA LESS-THAN EQUAL TO OR GREATER-THAN Q
U+22DB GREATER-THAN EQUAL TO OR LESS-THAN R
U+2A8B LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN

U+2A8C GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN

U+2A8F LESS-THAN ABOVE SIMILAR ABOVE GREATER-THAN

U+2A90 GREATER-THAN ABOVE SIMILAR ABOVE LESS-THAN

U+2A91 LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL

U+2A92 GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL

U+2A93 LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVE SLANTED EQUAL

U+2A94 GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVE SLANTED EQUAL

U+2AA4 GREATER-THAN OVERLAPPING LESS-THAN

U+2AA5 GREATER-THAN BESIDE LESS-THAN

The following is not really a comparison operator, but it is convenient to list it here because it also has lower precedence
than any operator listed in Sections D.2.1, D.2.2, and D.2.3:

U+003A COLON :

D.3.3 Set Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section D.2.4.

The following are subset comparison operators. They may be mixed and chained with each other and with equivalence
operators (see Section D.3.1).

U+2282 SUBSET OF � SUBSET
U+2286 SUBSET OF OR EQUAL TO � SUBSETEQ
U+228A SUBSET OF WITH NOT EQUAL TO (SUBSETNEQ
U+22D0 DOUBLE SUBSET b SUBSUB
U+27C3 OPEN SUBSET

U+2ABD SUBSET WITH DOT

U+2ABF SUBSET WITH PLUS SIGN BELOW

U+2AC1 SUBSET WITH MULTIPLICATION SIGN BELOW

D.3. RELATIONAL OPERATORS 135

U+2AC3 SUBSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC5 SUBSET OF ABOVE EQUALS SIGN

U+2AC7 SUBSET OF ABOVE TILDE OPERATOR

U+2AC9 SUBSET OF ABOVE ALMOST EQUAL TO

U+2ACB SUBSET OF ABOVE NOT EQUAL TO

U+2ACF CLOSED SUBSET

U+2AD1 CLOSED SUBSET OR EQUAL TO

U+2AD5 SUBSET ABOVE SUBSET

The following are superset comparison operators. They may be mixed and chained with each other and with equiva-
lence operators (see Section D.3.1).

U+2283 SUPERSET OF � SUPSET
U+2287 SUPERSET OF OR EQUAL TO � SUPSETEQ
U+228B SUPERSET OF WITH NOT EQUAL TO) SUPSETNEQ
U+22D1 DOUBLE SUPERSET
 SUPSUP
U+27C4 OPEN SUPERSET

U+2ABE SUPERSET WITH DOT

U+2AC0 SUPERSET WITH PLUS SIGN BELOW

U+2AC2 SUPERSET WITH MULTIPLICATION SIGN BELOW

U+2AC4 SUPERSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC6 SUPERSET OF ABOVE EQUALS SIGN

U+2AC8 SUPERSET OF ABOVE TILDE OPERATOR

U+2ACA SUPERSET OF ABOVE ALMOST EQUAL TO

U+2ACCSUPERSET OF ABOVE NOT EQUAL TO

U+2AD0 CLOSED SUPERSET

U+2AD2 CLOSED SUPERSET OR EQUAL TO

U+2AD6 SUPERSET ABOVE SUPERSET

The following are miscellaneous set comparison operators.They may not be mixed or chained.

U+2284 NOT A SUBSET OF 6� NSUBSET
U+2285 NOT A SUPERSET OF 6� NSUPSET
U+2288 NEITHER A SUBSET OF NOR EQUAL TO * NSUBSETEQ
U+2289 NEITHER A SUPERSET OF NOR EQUAL TO + NSUPSETEQ
U+2AD3 SUBSET ABOVE SUPERSET

U+2AD4 SUPERSET ABOVE SUBSET

U+2AD7 SUPERSET BESIDE SUBSET

U+2AD8 SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET

D.3.4 Square Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section D.2.5.

The following are square “image of” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section D.3.1).

U+228F SQUARE IMAGE OF � SQSUBSET
U+2291 SQUARE IMAGE OF OR EQUAL TO v SQSUBSETEQ
U+22E4 SQUARE IMAGE OF OR NOT EQUAL TO

136 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

The following are square “original of” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section D.3.1).

U+2290 SQUARE ORIGINAL OF A SQSUPSET
U+2292 SQUARE ORIGINAL OF OR EQUAL TO w SQSUPSETEQ
U+22E5 SQUARE ORIGINAL OF OR NOT EQUAL TO

The following are miscellaneous square comparison operators. They may not be mixed or chained.

U+22E2 NOT SQUARE IMAGE OF OR EQUAL TO 6v
U+22E3 NOT SQUARE ORIGINAL OF OR EQUAL TO 6w

D.3.5 Curly Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section D.2.6.

The following are curly “precedes” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section D.3.1).

U+227A PRECEDES � PREC
U+227C PRECEDES OR EQUAL TO 4 PRECEQ
U+227E PRECEDES OR EQUIVALENT TO - PRECSIM
U+22B0 PRECEDES UNDER RELATION

U+22DE EQUAL TO OR PRECEDES 2 EQPREC
U+22E8 PRECEDES BUT NOT EQUIVALENT TO � PRECNSIM
U+2AAF PRECEDES ABOVE SINGLE-LINE EQUALS SIGN

U+2AB1 PRECEDES ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB3 PRECEDES ABOVE EQUALS SIGN

U+2AB5 PRECEDES ABOVE NOT EQUAL TO

U+2AB7 PRECEDES ABOVE ALMOST EQUAL TO

U+2AB9 PRECEDES ABOVE NOT ALMOST EQUAL TO

U+2ABB DOUBLE PRECEDES

The following are curly “succeeds” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section D.3.1).

U+227B SUCCEEDS � SUCC
U+227D SUCCEEDS OR EQUAL TO < SUCCEQ
U+227F SUCCEEDS OR EQUIVALENT TO % SUCCSIM
U+22B1 SUCCEEDS UNDER RELATION

U+22DF EQUAL TO OR SUCCEEDS 3 EQSUCC
U+22E9 SUCCEEDS BUT NOT EQUIVALENT TO � SUCCNSIM
U+2AB0 SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN

U+2AB2 SUCCEEDS ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB4 SUCCEEDS ABOVE EQUALS SIGN

U+2AB6 SUCCEEDS ABOVE NOT EQUAL TO

U+2AB8 SUCCEEDS ABOVE ALMOST EQUAL TO

U+2ABA SUCCEEDS ABOVE NOT ALMOST EQUAL TO

U+2ABC DOUBLE SUCCEEDS

D.3. RELATIONAL OPERATORS 137

The following are miscellaneous curly comparison operators. They may not be mixed or chained.

U+2280 DOES NOT PRECEDE � NPREC
U+2281 DOES NOT SUCCEED � NSUCC
U+22E0 DOES NOT PRECEDE OR EQUAL 64
U+22E1 DOES NOT SUCCEED OR EQUAL 6<

D.3.6 Triangular Comparison Operators

The following are triangular “subgroup” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section D.3.1).

U+22B2 NORMAL SUBGROUP OF C
U+22B4 NORMAL SUBGROUP OF OR EQUAL TO E

The following are triangular “contains as subgroup” comparison operators. They may be mixed and chained with each
other and with equivalence operators (see Section D.3.1).

U+22B3 CONTAINS AS NORMAL SUBGROUP B
U+22B5 CONTAINS AS NORMAL SUBGROUP OR EQUAL TO D

The following are miscellaneous triangular comparison operators. They may not be mixed or chained.

U+22EA NOT NORMAL SUBGROUP OF 6
U+22EB DOES NOT CONTAIN AS NORMAL SUBGROUP 7
U+22EC NOT NORMAL SUBGROUP OF OR EQUAL TO 5
U+22ED DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL 4

D.3.7 Chickenfoot Comparison Operators

The following are chickenfoot “smaller than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section D.3.1).

U+2AAA SMALLER THAN <� SMALLER
U+2AAC SMALLER THAN OR EQUAL TO �� SMALLEREQ

The following are chickenfoot “larger than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section D.3.1).

U+2AAB LARGER THAN �> LARGER
U+2AAD LARGER THAN OR EQUAL TO �� LARGEREQ

D.3.8 Miscellaneous Relational Operators

The following operators are considered to be relational operators, having higher precedence than certain boolean
operators, as described in a later section.

138 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+2208 ELEMENT OF 2 IN
U+2209 NOT AN ELEMENT OF =2 NOTIN
U+220A SMALL ELEMENT OF 2
U+220B CONTAINS AS MEMBER 3 CONTAINS
U+220C DOES NOT CONTAIN AS MEMBER 63
U+220D SMALL CONTAINS AS MEMBER 3
U+22F2 ELEMENT OF WITH LONG HORIZONTAL STROKE

U+22F3 ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F4 SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F5 ELEMENT OF WITH DOT ABOVE _2
U+22F6 ELEMENT OF WITH OVERBAR 2
U+22F7 SMALL ELEMENT OF WITH OVERBAR 2
U+22F8 ELEMENT OF WITH UNDERBAR 2
U+22F9 ELEMENT OF WITH TWO HORIZONTAL STROKES

U+22FA CONTAINS WITH LONG HORIZONTAL STROKE

U+22FB CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FC SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FD CONTAINS WITH OVERBAR 3
U+22FE SMALL CONTAINS WITH OVERBAR 3
U+22FF Z NOTATION BAG MEMBERSHIP

D.4 Boolean Operators

Every operator listed in this section has lower precedence than any operator listed in Section D.3.

The following are the Boolean conjunction operators:

U+2227 LOGICAL AND ^ AND
U+27D1 AND WITH DOT

U+2A51 LOGICAL AND WITH DOT ABOVE _̂
U+2A53 DOUBLE LOGICAL AND

U+2A55 TWO INTERSECTING LOGICAL AND ^̂
U+2A5A LOGICAL AND WITH MIDDLE STEM

U+2A5C LOGICAL AND WITH HORIZONTAL DASH

U+2A5E LOGICAL AND WITH DOUBLE OVERBAR

U+2A60 LOGICAL AND WITH DOUBLE UNDERBAR

The following are the Boolean disjunction operators:

U+2228 LOGICAL OR _ OR
U+2A52 LOGICAL OR WITH DOT ABOVE __
U+2A54 DOUBLE LOGICAL OR

U+2A56 TWO INTERSECTING LOGICAL OR __
U+2A5B LOGICAL OR WITH MIDDLE STEM

U+2A5D LOGICAL OR WITH HORIZONTAL DASH

U+2A62 LOGICAL OR WITH DOUBLE OVERBAR

U+2A63 LOGICAL OR WITH DOUBLE UNDERBAR

They each have lower precedence than any of the Booolean conjunction operators.

D.5. OTHER OPERATORS 139

The following are miscellaneous Boolean operators:

U+2192 RIGHTWARDS ARROW ! -> IMPLIES
U+2194 LEFT RIGHT ARROW $ <-> IFF
U+22BB XOR Y
U+22BC NAND Z
U+22BD NOR_

D.5 Other Operators

Each of the following operators has no defined precedence relationships to any of the other operators listed in this
appendix.

U+0021 EXCLAMATION MARK !
U+0023 NUMBER SIGN #
U+0024 DOLLAR SIGN $
U+0025 PERCENT SIGN %
U+003F QUESTION MARK ?

U+0040 COMMERCIAL AT @
U+005E CIRCUMFLEX ˆ
U+007C VERTICAL LINE |
U+007E TILDE ˜
U+00A1 INVERTED EXCLAMATION MARK ¡
U+00A2 CENT SIGN CENTS
U+00A3 POUND SIGN

U+00A4 CURRENCY SIGN

U+00A5 YEN SIGN

U+00A6 BROKEN BAR

U+00AC NOT SIGN : NOT
U+00B0 DEGREE SIGN Æ DEGREES
U+00BF INVERTED QUESTION MARK ¿
U+2016 DOUBLE VERTICAL LINE k ||
U+203C DOUBLE EXCLAMATION MARK !! !!
U+2190 LEFTWARDS ARROW <-
U+2191 UPWARDS ARROW " UPARROW
U+2193 DOWNWARDS ARROW # DOWNARROW
U+2195 UP DOWN ARROW l UPDOWNARROW
U+2196 NORTH WEST ARROW - NWARROW
U+2197 NORTH EAST ARROW % NEARROW
U+2198 SOUTH EAST ARROW & SEARROW
U+2199 SOUTH WEST ARROW . SWARROW
U+219A LEFTWARDS ARROW WITH STROKE 8 -/->
U+219B RIGHTWARDS ARROW WITH STROKE 9 <-/-
U+219C LEFTWARDS WAVE ARROW

U+219D RIGHTWARDS WAVE ARROW LEADSTO
U+219E LEFTWARDS TWO HEADED ARROW

U+219F UPWARDS TWO HEADED ARROW

U+21A0 RIGHTWARDS TWO HEADED ARROW

U+21A1 DOWNWARDS TWO HEADED ARROW

U+21A2 LEFTWARDS ARROW WITH TAIL

140 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+21A3 RIGHTWARDS ARROW WITH TAIL

U+21A4 LEFTWARDS ARROW FROM BAR

U+21A5 UPWARDS ARROW FROM BAR

U+21A6 RIGHTWARDS ARROW FROM BAR 7! MAPSTO |->
U+21A7 DOWNWARDS ARROW FROM BAR

U+21A8 UP DOWN ARROW WITH BASE

U+21A9 LEFTWARDS ARROW WITH HOOK

U+21AA RIGHTWARDS ARROW WITH HOOK

U+21AB LEFTWARDS ARROW WITH LOOP

U+21AC RIGHTWARDS ARROW WITH LOOP

U+21AD LEFT RIGHT WAVE ARROW

U+21AE LEFT RIGHT ARROW WITH STROKE

U+21AF DOWNWARDS ZIGZAG ARROW

U+21B0 UPWARDS ARROW WITH TIP LEFTWARDS

U+21B1 UPWARDS ARROW WITH TIP RIGHTWARDS

U+21B2 DOWNWARDS ARROW WITH TIP LEFTWARDS

U+21B3 DOWNWARDS ARROW WITH TIP RIGHTWARDS

U+21B4 RIGHTWARDS ARROW WITH CORNER DOWNWARDS

U+21B5 DOWNWARDS ARROW WITH CORNER LEFTWARDS

U+21B6 ANTICLOCKWISE TOP SEMICIRCLE ARROW

U+21B7 CLOCKWISE TOP SEMICIRCLE ARROW

U+21B8 NORTH WEST ARROW TO LONG BAR

U+21B9 LEFTWARDS ARROW TO BAR OVER RIGHTWARDS ARROW TO BAR

U+21BA ANTICLOCKWISE OPEN CIRCLE ARROW

U+21BB CLOCKWISE OPEN CIRCLE ARROW

U+21BC LEFTWARDS HARPOON WITH BARB UPWARDS (LEFTHARPOONUP
U+21BD LEFTWARDS HARPOON WITH BARB DOWNWARDS) LEFTHARPOONDOWN
U+21BE UPWARDS HARPOON WITH BARB RIGHTWARDS � UPHARPOONRIGHT
U+21BF UPWARDS HARPOON WITH BARB LEFTWARDS � UPHARPOONLEFT
U+21C0 RIGHTWARDS HARPOON WITH BARB UPWARDS * RIGHTHARPOONUP
U+21C1 RIGHTWARDS HARPOON WITH BARB DOWNWARDS + RIGHTHARPOONDOWN
U+21C2 DOWNWARDS HARPOON WITH BARB RIGHTWARDS � DOWNHARPOONRIGHT
U+21C3 DOWNWARDS HARPOON WITH BARB LEFTWARDS � DOWNHARPOONLEFT
U+21C4 RIGHTWARDS ARROW OVER LEFTWARDS ARROW � RIGHTLEFTARROWS
U+21C5 UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW

U+21C6 LEFTWARDS ARROW OVER RIGHTWARDS ARROW � LEFTRIGHTARROWS
U+21C7 LEFTWARDS PAIRED ARROWS � LEFTLEFTARROWS
U+21C8 UPWARDS PAIRED ARROWS � UPUPARROWS
U+21C9 RIGHTWARDS PAIRED ARROWS � RIGHTRIGHTARROWS
U+21CA DOWNWARDS PAIRED ARROWS � DOWNDOWNARROWS
U+21CB LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON

U+21CC RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
 RIGHTLEFTHARPOONS
U+21CD LEFTWARDS DOUBLE ARROW WITH STROKE :
U+21CE LEFT RIGHT DOUBLE ARROW WITH STROKE <
U+21CF RIGHTWARDS DOUBLE ARROW WITH STROKE ;
U+21D0 LEFTWARDS DOUBLE ARROW (
U+21D1 UPWARDS DOUBLE ARROW *
U+21D2 RIGHTWARDS DOUBLE ARROW) =>
U+21D3 DOWNWARDS DOUBLE ARROW +
U+21D4 LEFT RIGHT DOUBLE ARROW , <=>
U+21D5 UP DOWN DOUBLE ARROW m
U+21D6 NORTH WEST DOUBLE ARROW

U+21D7 NORTH EAST DOUBLE ARROW

D.5. OTHER OPERATORS 141

U+21D8 SOUTH EAST DOUBLE ARROW

U+21D9 SOUTH WEST DOUBLE ARROW

U+21DA LEFTWARDS TRIPLE ARROW W
U+21DB RIGHTWARDS TRIPLE ARROW V
U+21DC LEFTWARDS SQUIGGLE ARROW

U+21DD RIGHTWARDS SQUIGGLE ARROW
U+21DE UPWARDS ARROW WITH DOUBLE STROKE

U+21DF DOWNWARDS ARROW WITH DOUBLE STROKE

U+21E0 LEFTWARDS DASHED ARROW L99
U+21E1 UPWARDS DASHED ARROW

U+21E2 RIGHTWARDS DASHED ARROW 9 9 K
U+21E3 DOWNWARDS DASHED ARROW

U+21E4 LEFTWARDS ARROW TO BAR

U+21E5 RIGHTWARDS ARROW TO BAR

U+21E6 LEFTWARDS WHITE ARROW

U+21E7 UPWARDS WHITE ARROW

U+21E8 RIGHTWARDS WHITE ARROW

U+21E9 DOWNWARDS WHITE ARROW

U+21EA UPWARDS WHITE ARROW FROM BAR

U+21EB UPWARDS WHITE ARROW ON PEDESTAL

U+21EC UPWARDS WHITE ARROW ON PEDESTAL WITH HORIZONTAL BAR

U+21ED UPWARDS WHITE ARROW ON PEDESTAL WITH VERTICAL BAR

U+21EE UPWARDS WHITE DOUBLE ARROW

U+21EF UPWARDS WHITE DOUBLE ARROW ON PEDESTAL

U+21F0 RIGHTWARDS WHITE ARROW FROM WALL

U+21F1 NORTH WEST ARROW TO CORNER

U+21F2 SOUTH EAST ARROW TO CORNER

U+21F3 UP DOWN WHITE ARROW

U+21F4 RIGHT ARROW WITH SMALL CIRCLE

U+21F5 DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW

U+21F6 THREE RIGHTWARDS ARROWS

U+21F7 LEFTWARDS ARROW WITH VERTICAL STROKE

U+21F8 RIGHTWARDS ARROW WITH VERTICAL STROKE

U+21F9 LEFT RIGHT ARROW WITH VERTICAL STROKE

U+21FA LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FB RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FC LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE

U+21FD LEFTWARDS OPEN-HEADED ARROW

U+21FE RIGHTWARDS OPEN-HEADED ARROW

U+21FF LEFT RIGHT OPEN-HEADED ARROW

U+2201 COMPLEMENT {
U+2202 PARTIAL DIFFERENTIAL � DEL
U+2204 THERE DOES NOT EXIST 6 9
U+2206 INCREMENT �
U+220F N-ARY PRODUCT

Q
PRODUCT

U+2210 N-ARY COPRODUCT
`

COPRODUCT
U+2211 N-ARY SUMMATION

P
SUM

U+2218 RING OPERATOR Æ CIRC RING COMPOSE
U+2219 BULLET OPERATOR � BULLET
U+221A SQUARE ROOT

p
SQRT

U+221B CUBE ROOT CBRT
U+221C FOURTH ROOT FOURTHROOT
U+221D PROPORTIONAL TO / PROPTO

142 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+2223 DIVIDES j DIVIDES
U+2224 DOES NOT DIVIDE -
U+2225 PARALLEL TO k PARALLEL
U+2226 NOT PARALLEL TO , NPARALLEL
U+222B INTEGRAL

R
U+222C DOUBLE INTEGRAL

U+222D TRIPLE INTEGRAL

U+222E CONTOUR INTEGRAL
H

U+222F SURFACE INTEGRAL

U+2230 VOLUME INTEGRAL

U+2231 CLOCKWISE INTEGRAL

U+2232 CLOCKWISE CONTOUR INTEGRAL

U+2233 ANTICLOCKWISE CONTOUR INTEGRAL

U+2234 THEREFORE)
U+2235 BECAUSE *
U+2236 RATIO

U+2237 PROPORTION

U+2239 EXCESS

U+223A GEOMETRIC PROPORTION

U+223B HOMOTHETIC

U+223C TILDE OPERATOR �
U+223D REVERSED TILDE v
U+223E INVERTED LAZY S

U+223F SINE WAVE

U+2240 WREATH PRODUCT o WREATH
U+2241 NOT TILDE �
U+224B TRIPLE TILDE

U+224F DIFFERENCE BETWEEN l BUMPEQ
U+2250 APPROACHES THE LIMIT

:= DOTEQ
U+2254 COLON EQUALS := :=
U+2255 EQUALS COLON =: =:
U+2258 CORRESPONDS TO

U+2259 ESTIMATES

U+225A EQUIANGULAR TO

U+225E MEASURED BY

U+226C BETWEEN G
U+228C MULTISET

U+229A CIRCLED RING OPERATOR } CIRCLEDRING
U+229D CIRCLED DASH �
U+22A2 RIGHT TACK ` VDASH TURNSTILE
U+22A3 LEFT TACK a DASHV
U+22A4 DOWN TACK > TOP
U+22A5 UP TACK ? PERP BOTTOM
U+22A6 ASSERTION `
U+22A7 MODELS �
U+22A8 TRUE j=
U+22A9 FORCES

U+22AA TRIPLE VERTICAL BAR RIGHT TURNSTILE Æ
U+22AB DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE

U+22AC DOES NOT PROVE 0
U+22AD NOT TRUE

U+22AE DOES NOT FORCE 1
U+22AF NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE 3

D.5. OTHER OPERATORS 143

U+22B6 ORIGINAL OF

U+22B7 IMAGE OF

U+22B8 MULTIMAP (
U+22B9 HERMITIAN CONJUGATE MATRIX

U+22BA INTERCALATE |
U+22BE RIGHT ANGLE WITH ARC

U+22BF RIGHT TRIANGLE

U+22C0 N-ARY LOGICAL AND
V

BIGAND ALL
U+22C1 N-ARY LOGICAL OR

W
BIGOR ANY

U+22C2 N-ARY INTERSECTION
T

BIGCAP BIGINTERSECT
U+22C3 N-ARY UNION

S
BIGCUP BIGUNION

U+22C4 DIAMOND OPERATOR � DIAMOND
U+22C6 STAR OPERATOR ? STAR
U+22C7 DIVISION TIMES >
U+22C8 BOWTIE ./
U+22C9 LEFT NORMAL FACTOR SEMIDIRECT PRODUCT n
U+22CA RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT o
U+22CB LEFT SEMIDIRECT PRODUCT h
U+22CC RIGHT SEMIDIRECT PRODUCT i
U+22D4 PITCHFORK t
U+22EE VERTICAL ELLIPSIS

U+22EF MIDLINE HORIZONTAL ELLIPSIS

U+22F0 UP RIGHT DIAGONAL ELLIPSIS

U+22F1 DOWN RIGHT DIAGONAL ELLIPSIS

U+27C0 THREE DIMENSIONAL ANGLE

U+27C1 WHITE TRIANGLE CONTAINING SMALL WHITE TRIANGLE

U+27C2 PERPENDICULAR PERP
U+27D0 WHITE DIAMOND WITH CENTRED DOT

U+27D2 ELEMENT OF OPENING UPWARDS

U+27D3 LOWER RIGHT CORNER WITH DOT

U+27D4 UPPER LEFT CORNER WITH DOT

U+27D5 LEFT OUTER JOIN

U+27D6 RIGHT OUTER JOIN

U+27D7 FULL OUTER JOIN

U+27D8 LARGE UP TACK

U+27D9 LARGE DOWN TACK

U+27DA LEFT AND RIGHT DOUBLE TURNSTILE

U+27DB LEFT AND RIGHT TACK

U+27DC LEFT MULTIMAP

U+27DD LONG RIGHT TACK

U+27DE LONG LEFT TACK

U+27DF UP TACK WITH CIRCLE ABOVE

U+27E0 LOZENGE DIVIDED BY HORIZONTAL RULE

U+27E1 WHITE CONCAVE-SIDED DIAMOND

U+27E2 WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK

U+27E3 WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK

U+27E4 WHITE SQUARE WITH LEFTWARDS TICK

U+27E5 WHITE SQUARE WITH RIGHTWARDS TICK

U+27F0 UPWARDS QUADRUPLE ARROW

U+27F1 DOWNWARDS QUADRUPLE ARROW

U+27F2 ANTICLOCKWISE GAPPED CIRCLE ARROW

U+27F3 CLOCKWISE GAPPED CIRCLE ARROW

U+27F4 RIGHT ARROW WITH CIRCLED PLUS

144 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+27F5 LONG LEFTWARDS ARROW

U+27F6 LONG RIGHTWARDS ARROW

U+27F7 LONG LEFT RIGHT ARROW

U+27F8 LONG LEFTWARDS DOUBLE ARROW

U+27F9 LONG RIGHTWARDS DOUBLE ARROW

U+27FA LONG LEFT RIGHT DOUBLE ARROW

U+27FB LONG LEFTWARDS ARROW FROM BAR

U+27FC LONG RIGHTWARDS ARROW FROM BAR

U+27FD LONG LEFTWARDS DOUBLE ARROW FROM BAR

U+27FE LONG RIGHTWARDS DOUBLE ARROW FROM BAR

U+27FF LONG RIGHTWARDS SQUIGGLE ARROW

U+2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE

U+2901 RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE

U+2902 LEFTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2903 RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2904 LEFT RIGHT DOUBLE ARROW WITH VERTICAL STROKE

U+2905 RIGHTWARDS TWO-HEADED ARROW FROM BAR

U+2906 LEFTWARDS DOUBLE ARROW FROM BAR

U+2907 RIGHTWARDS DOUBLE ARROW FROM BAR

U+2908 DOWNWARDS ARROW WITH HORIZONTAL STROKE

U+2909 UPWARDS ARROW WITH HORIZONTAL STROKE

U+290A UPWARDS TRIPLE ARROW

U+290B DOWNWARDS TRIPLE ARROW

U+290C LEFTWARDS DOUBLE DASH ARROW

U+290D RIGHTWARDS DOUBLE DASH ARROW

U+290E LEFTWARDS TRIPLE DASH ARROW

U+290F RIGHTWARDS TRIPLE DASH ARROW

U+2910 RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW

U+2911 RIGHTWARDS ARROW WITH DOTTED STEM

U+2912 UPWARDS ARROW TO BAR

U+2913 DOWNWARDS ARROW TO BAR

U+2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE

U+2915 RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE

U+2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL

U+2917 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE

U+2918 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTICALSTROKE

U+2919 LEFTWARDS ARROW-TAIL

U+291A RIGHTWARDS ARROW-TAIL

U+291B LEFTWARDS DOUBLE ARROW-TAIL

U+291C RIGHTWARDS DOUBLE ARROW-TAIL

U+291D LEFTWARDS ARROW TO BLACK DIAMOND

U+291E RIGHTWARDS ARROW TO BLACK DIAMOND

U+291F LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2920 RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2921 NORTH WEST AND SOUTH EAST ARROW

U+2922 NORTH EAST AND SOUTH WEST ARROW

U+2923 NORTH WEST ARROW WITH HOOK

U+2924 NORTH EAST ARROW WITH HOOK

U+2925 SOUTH EAST ARROW WITH HOOK

U+2926 SOUTH WEST ARROW WITH HOOK

U+2927 NORTH WEST ARROW AND NORTH EAST ARROW

U+2928 NORTH EAST ARROW AND SOUTH EAST ARROW

U+2929 SOUTH EAST ARROW AND SOUTH WEST ARROW

D.5. OTHER OPERATORS 145

U+292A SOUTH WEST ARROW AND NORTH WEST ARROW

U+292B RISING DIAGONAL CROSSING FALLING DIAGONAL

U+292C FALLING DIAGONAL CROSSING RISING DIAGONAL

U+292D SOUTH EAST ARROW CROSSING NORTH EAST ARROW

U+292E NORTH EAST ARROW CROSSING SOUTH EAST ARROW

U+292F FALLING DIAGONAL CROSSING NORTH EAST ARROW

U+2930 RISING DIAGONAL CROSSING SOUTH EAST ARROW

U+2931 NORTH EAST ARROW CROSSING NORTH WEST ARROW

U+2932 NORTH WEST ARROW CROSSING NORTH EAST ARROW

U+2933 WAVE ARROW POINTING DIRECTLY RIGHT

U+2934 ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS

U+2935 ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS

U+2936 ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS

U+2937 ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS

U+2938 RIGHT-SIDE ARC CLOCKWISE ARROW

U+2939 LEFT-SIDE ARC ANTICLOCKWISE ARROW

U+293A TOP ARC ANTICLOCKWISE ARROW

U+293B BOTTOM ARC ANTICLOCKWISE ARROW

U+293C TOP ARC CLOCKWISE ARROW WITH MINUS

U+293D TOP ARC ANTICLOCKWISE ARROW WITH PLUS

U+293E LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW

U+293F LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW

U+2940 ANTICLOCKWISE CLOSED CIRCLE ARROW

U+2941 CLOCKWISE CLOSED CIRCLE ARROW

U+2942 RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW

U+2943 LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW

U+2944 SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW

U+2945 RIGHTWARDS ARROW WITH PLUS BELOW

U+2946 LEFTWARDS ARROW WITH PLUS BELOW

U+2947 RIGHTWARDS ARROW THROUGH X

U+2948 LEFT RIGHT ARROW THROUGH SMALL CIRCLE

U+2949 UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE

U+294A LEFT BARB UP RIGHT BARB DOWN HARPOON

U+294B LEFT BARB DOWN RIGHT BARB UP HARPOON

U+294C UP BARB RIGHT DOWN BARB LEFT HARPOON

U+294D UP BARB LEFT DOWN BARB RIGHT HARPOON

U+294E LEFT BARB UP RIGHT BARB UP HARPOON

U+294F UP BARB RIGHT DOWN BARB RIGHT HARPOON

U+2950 LEFT BARB DOWN RIGHT BARB DOWN HARPOON

U+2951 UP BARB LEFT DOWN BARB LEFT HARPOON

U+2952 LEFTWARDS HARPOON WITH BARB UP TO BAR

U+2953 RIGHTWARDS HARPOON WITH BARB UP TO BAR

U+2954 UPWARDS HARPOON WITH BARB RIGHT TO BAR

U+2955 DOWNWARDS HARPOON WITH BARB RIGHT TO BAR

U+2956 LEFTWARDS HARPOON WITH BARB DOWN TO BAR

U+2957 RIGHTWARDS HARPOON WITH BARB DOWN TO BAR

U+2958 UPWARDS HARPOON WITH BARB LEFT TO BAR

U+2959 DOWNWARDS HARPOON WITH BARB LEFT TO BAR

U+295A LEFTWARDS HARPOON WITH BARB UP FROM BAR

U+295B RIGHTWARDS HARPOON WITH BARB UP FROM BAR

U+295C UPWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295D DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295E LEFTWARDS HARPOON WITH BARB DOWN FROM BAR

146 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+295F RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR

U+2960 UPWARDS HARPOON WITH BARB LEFT FROM BAR

U+2961 DOWNWARDS HARPOON WITH BARB LEFT FROM BAR

U+2962 LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITHBARB DOWN

U+2963 UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2964 RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2965 DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+2966 LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB UP

U+2967 LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2968 RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB UP

U+2969 RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOON WITH BARB DOWN

U+296A LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296B LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296C RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296D RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296E UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+296F DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2970 RIGHT DOUBLE ARROW WITH ROUNDED HEAD

U+2971 EQUALS SIGN ABOVE RIGHTWARDS ARROW

U+2972 TILDE OPERATOR ABOVE RIGHTWARDS ARROW

U+2973 LEFTWARDS ARROW ABOVE TILDE OPERATOR

U+2974 RIGHTWARDS ARROW ABOVE TILDE OPERATOR

U+2975 RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO

U+2976 LESS-THAN ABOVE LEFTWARDS ARROW

U+2977 LEFTWARDS ARROW THROUGH LESS-THAN

U+2978 GREATER-THAN ABOVE RIGHTWARDS ARROW

U+2979 SUBSET ABOVE RIGHTWARDS ARROW

U+297A LEFTWARDS ARROW THROUGH SUBSET

U+297B SUPERSET ABOVE LEFTWARDS ARROW

U+297C LEFT FISH TAIL

U+297D RIGHT FISH TAIL

U+297E UP FISH TAIL

U+297F DOWN FISH TAIL

U+2980 TRIPLE VERTICAL BAR DELIMITER

U+2981 Z NOTATION SPOT

U+2982 Z NOTATION TYPE COLON

U+2999 DOTTED FENCE

U+299A VERTICAL ZIGZAG LINE

U+299B MEASURED ANGLE OPENING LEFT

U+299C RIGHT ANGLE VARIANT WITH SQUARE

U+299D MEASURED RIGHT ANGLE WITH DOT

U+299E ANGLE WITH S INSIDE

U+299F ACUTE ANGLE

U+29A0 SPHERICAL ANGLE OPENING LEFT

U+29A1 SPHERICAL ANGLE OPENING UP

U+29A2 TURNED ANGLE

U+29A3 REVERSED ANGLE

U+29A4 ANGLE WITH UNDERBAR

U+29A5 REVERSED ANGLE WITH UNDERBAR

U+29A6 OBLIQUE ANGLE OPENING UP

U+29A7 OBLIQUE ANGLE OPENING DOWN

U+29A8 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND RIGHT

U+29A9 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND LEFT

D.5. OTHER OPERATORS 147

U+29AA MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND RIGHT

U+29AB MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND LEFT

U+29AC MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND UP

U+29AD MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND UP

U+29AE MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND DOWN

U+29AF MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND DOWN

U+29B0 REVERSED EMPTY SET

U+29B1 EMPTY SET WITH OVERBAR

U+29B2 EMPTY SET WITH SMALL CIRCLE ABOVE

U+29B3 EMPTY SET WITH RIGHT ARROW ABOVE

U+29B4 EMPTY SET WITH LEFT ARROW ABOVE

U+29B5 CIRCLE WITH HORIZONTAL BAR

U+29B6 CIRCLED VERTICAL BAR

U+29B7 CIRCLED PARALLEL

U+29B9 CIRCLED PERPENDICULAR

U+29BA CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VERTICAL BAR

U+29BB CIRCLE WITH SUPERIMPOSED X

U+29BD UP ARROW THROUGH CIRCLE

U+29BE CIRCLED WHITE BULLET

U+29BF CIRCLED BULLET

U+29C2 CIRCLE WITH SMALL CIRCLE TO THE RIGHT

U+29C3 CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT

U+29C5 SQUARED FALLING DIAGONAL SLASH

U+29C7 SQUARED SMALL CIRCLE

U+29C8 SQUARED SQUARE

U+29C9 TWO JOINED SQUARES

U+29CA TRIANGLE WITH DOT ABOVE

U+29CB TRIANGLE WITH UNDERBAR

U+29CC S IN TRIANGLE

U+29CD TRIANGLE WITH SERIFS AT BOTTOM

U+29CE RIGHT TRIANGLE ABOVE LEFT TRIANGLE

U+29CF LEFT TRIANGLE BESIDE VERTICAL BAR

U+29D0 VERTICAL BAR BESIDE RIGHT TRIANGLE

U+29D1 BOWTIE WITH LEFT HALF BLACK

U+29D2 BOWTIE WITH RIGHT HALF BLACK

U+29D3 BLACK BOWTIE

U+29D6 WHITE HOURGLASS

U+29D7 BLACK HOURGLASS

U+29DC INCOMPLETE INFINITY

U+29DD TIE OVER INFINITY

U+29DE INFINITY NEGATED WITH VERTICAL BAR

U+29DF DOUBLE-ENDED MULTIMAP

U+29E0 SQUARE WITH CONTOURED OUTLINE

U+29E1 INCREASES AS

U+29E2 SHUFFLE PRODUCT

U+29E6 GLEICH STARK

U+29E7 THERMODYNAMIC

U+29E8 DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK

U+29E9 DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK

U+29EA BLACK DIAMOND WITH DOWN ARROW

U+29EB BLACK LOZENGE

U+29EC WHITE CIRCLE WITH DOWN ARROW

U+29ED BLACK CIRCLE WITH DOWN ARROW

148 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+29EE ERROR-BARRED WHITE SQUARE

U+29EF ERROR-BARRED BLACK SQUARE

U+29F0 ERROR-BARRED WHITE DIAMOND

U+29F1 ERROR-BARRED BLACK DIAMOND

U+29F2 ERROR-BARRED WHITE CIRCLE

U+29F3 ERROR-BARRED BLACK CIRCLE

U+29F4 RULE-DELAYED

U+29F6 SOLIDUS WITH OVERBAR

U+29F7 REVERSE SOLIDUS WITH HORIZONTAL STROKE

U+29FA DOUBLE PLUS

U+29FB TRIPLE PLUS

U+29FE TINY

U+29FF MINY

U+2A00 N-ARY CIRCLED DOT OPERATOR
J

BIGODOT
U+2A01 N-ARY CIRCLED PLUS OPERATOR

L
BIGOPLUS

U+2A02 N-ARY CIRCLED TIMES OPERATOR
N

BIGOTIMES
U+2A03 N-ARY UNION OPERATOR WITH DOT BIGUDOT
U+2A04 N-ARY UNION OPERATOR WITH PLUS BIGUPLUS
U+2A05 N-ARY SQUARE INTERSECTION OPERATOR BIGSQCAP
U+2A06 N-ARY SQUARE UNION OPERATOR BIGSQCUP
U+2A07 TWO LOGICAL AND OPERATOR

U+2A08 TWO LOGICAL OR OPERATOR

U+2A09 N-ARY TIMES OPERATOR BIGTIMES
U+2A0A MODULO TWO SUM

U+2A10 CIRCULATION FUNCTION

U+2A11 ANTICLOCKWISE INTEGRATION

U+2A12 LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE

U+2A13 LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE

U+2A14 LINE INTEGRATION NOT INCLUDING THE POLE

U+2A1D JOIN on JOIN
U+2A1E LARGE LEFT TRIANGLE OPERATOR

U+2A1F Z NOTATION SCHEMA COMPOSITION

U+2A20 Z NOTATION SCHEMA PIPING

U+2A21 Z NOTATION SCHEMA PROJECTION

U+2A32 SEMIDIRECT PRODUCT WITH BOTTOM CLOSED

U+2A33 SMASH PRODUCT

U+2A3C INTERIOR PRODUCT

U+2A3D RIGHTHAND INTERIOR PRODUCT

U+2A3E Z NOTATION RELATIONAL COMPOSITION

U+2A3F AMALGAMATION OR COPRODUCT

U+2A57 SLOPING LARGE OR

U+2A58 SLOPING LARGE AND

U+2A61 SMALL VEE WITH UNDERBAR

U+2A64 Z NOTATION DOMAIN ANTIRESTRICTION

U+2A65 Z NOTATION RANGE ANTIRESTRICTION

U+2A68 TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE

U+2A69 TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE

U+2A6A TILDE OPERATOR WITH DOT ABOVE

U+2A6B TILDE OPERATOR WITH RISING DOTS

U+2A6D CONGRUENT WITH DOT ABOVE

U+2ACDSQUARE LEFT OPEN BOX OPERATOR

U+2ACE SQUARE RIGHT OPEN BOX OPERATOR

U+2AD9 ELEMENT OF OPENING DOWNWARDS

D.5. OTHER OPERATORS 149

U+2ADA PITCHFORK WITH TEE TOP

U+2ADCFORKING

U+2ADDNONFORKING

U+2ADE SHORT LEFT TACK

U+2ADF SHORT DOWN TACK

U+2AE0 SHORT UP TACK

U+2AE1 PERPENDICULAR WITH S

U+2AE2 VERTICAL BAR TRIPLE RIGHT TURNSTILE

U+2AE3 DOUBLE VERTICAL BAR LEFT TURNSTILE

U+2AE4 VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE5 DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE6 LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL

U+2AE7 SHORT DOWN TACK WITH OVERBAR

U+2AE8 SHORT UP TACK WITH UNDERBAR

U+2AE9 SHORT UP TACK ABOVE SHORT DOWN TACK

U+2AEA DOUBLE DOWN TACK

U+2AEB DOUBLE UP TACK

U+2AEC DOUBLE STROKE NOT SIGN

U+2AED REVERSED DOUBLE STROKE NOT SIGN

U+2AEE DOES NOT DIVIDE WITH REVERSED NEGATION SLASH

U+2AEF VERTICAL LINE WITH CIRCLE ABOVE

U+2AF0 VERTICAL LINE WITH CIRCLE BELOW

U+2AF1 DOWN TACK WITH CIRCLE BELOW

U+2AF2 PARALLEL WITH HORIZONTAL STROKE

U+2AF3 PARALLEL WITH TILDE OPERATOR

U+2AF4 TRIPLE VERTICAL BAR BINARY RELATION |||
U+2AF5 TRIPLE VERTICAL BAR WITH HORIZONTAL STROKE

U+2AF6 TRIPLE COLON OPERATOR

U+2AFB TRIPLE SOLIDUS BINARY RELATION

U+2AFC LARGE TRIPLE VERTICAL BAR OPERATOR

U+2AFE WHITE VERTICAL BAR

U+2AFF N-ARY WHITE VERTICAL BAR

150 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

Bibliography

[1] O. Agesen, L. Bak, C. Chambers, B.-W. Chang, U. Hlzle, J. Maloney, R. B. Smith, D. Ungar, and M. Wol-
czko. The Self Programmer’s Reference Manual. http://research.sun.com/self/release_4.0/
Self-4.0/manuals/Self-4.1-Pgme\%rs-Ref.pdf , 2000.

[2] E. Allen, V. Luchangco, and S. Tobin-Hochstadt. Encapsulated Upgradable Components, Mar. 2005.

[3] R. Blumofe and C. Leiserson. Scheduling multithreaded computations by work stealing. InProceedings of the
35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico., pages 356–368, Nov.
1994.

[4] R. D. Blumofe, C. F. Joerg, C. E. Leiserson, K. H. Randall,and Y. Zhou. Cilk: An efficient multithreaded run-
time system. InProceedings of the ACM Conference on Programming Language Design and Implementation,
pages 132–141, Montreal, Canada, 17–19 June 1998. ACM, SIGPLAN Notices.

[5] G. Bracha, G. Steele, B. Joy, and J. Gosling.Java(TM) Language Specification, The (3rd Edition) (Java Series).
Addison-Wesley Professional, July 2005.

[6] R. Cartwright and G. Steele. Compatible genericity withrun-time types for the Java Programming Language. In
OOPSLA, 1998.

[7] W. Clinger. Macros that work. InProceedings of the ACM Symposium on Principles of Programming Languages,
pages 155–162. ACM Press, 1991.

[8] T. U. Consortium.The Unicode Standard, Version 4.0. Addison-Wesley, 2003.

[9] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction in scheme.Journal of LISP and Symbolic
Computation, 5(4):295–326, 1992.

[10] R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral contracts and behavioral subtyping. InESEC/FSE-9:
Proceedings of the 8th European software engineering conference held jointly with 9th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 229–236. ACM Press, September 2001.

[11] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy Threads: Implementing a Fast Parallel Call.Journal of
Parallel and Distributed Computing, 37(1), Aug. 1996.

[12] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ. In L. Meiss-
ner, editor,Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

[13] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on the algorithmic language Scheme.ACM SIGPLAN
Notices, 33(9):26–76, 1998.

[14] X. Leroy, D. Doligez, J. Garrigue, D. Rmy, and J. Vouillon. The Objective Caml System, release 3.08. http:
//caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08-refma n.pdf , 2004.

[15] J. Matthews. Operational semantics for scheme via termrewriting. Technical Report TR-2005-02, University of
Chicago, Apr. 2005.

151

152 BIBLIOGRAPHY

[16] B. Meyer.Object-oriented Software Construction. Prentice Hall, 1988.

[17] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard ML (Revised). The MIT Press,
1997.

[18] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy task creation: A technique for increasing the granularity of
parallel programs. Technical Report TM-449, MIT/LCS, 1991.

[19] G. M. Morton. A computer oriented geodetic data base anda new technique in file sequencing. Technical report,
IBM Ltd., Mar. 1966.

[20] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger.
The Scala Language Specification. http://scala.epfl.ch/docu/files/ScalaReference.pdf ,
2004.

[21] OpenMP Architecture Review Board.OpenMP Fortran Application Program Interface Version 2.0. http:
//www.openmp.org/specs/mp-documents/fspec20_bars.pd f , Nov. 2000.

[22] S. Peyton-Jones.Haskell 98 Language and Libraries. Cambridge University Press, 2003.

[23] N. Scḧarli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior.

[24] Java(TM) 2 Platform Standard Edition 6.0 API Specification. http://www.java.net/download/doc/
api/ .

