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Chapter 1

Introduction

The FortresB! Programming Language is a general-purpose, staticallgdtypomponent-based programming lan-
guage designed for producing robust high-performancevaodt with high programmer productivity.

In many ways, Fortress is intended to be a “growable landguage, a language that can be gracefully extended
and applied in new and unanticipated contexts. Fortresgostgstate-of-the-art compiler optimization techniques
scaling to unprecedented levels of parallelism and of addtde memory. Fortress has an extensible component
system, allowing separate program components to be indepég developed, deployed, and linked in a modular and
robust fashion. Fortress also supports modular and ekiensarsing, allowing new notations and static analyses to
be added to the language.

The name “Fortress” is derived from the intent to produceextise Fortran”, i.e., a language for high-performance
computation that provides abstraction and type safety omvjth modern programming language principles. Despite
this etymology, the language is a new language with littlatien to Fortran other than its intended domain of ap-
plication. No attempt has been made to support backward atinilty with existing versions of Fortran; indeed,
many new language features were invented during the de$igortoess. Many aspects of Fortress were inspired
by other object-oriented and functional programming laaggs, including The Jald Programming Language [5],
NextGen [6], Scala [20], Eiffel [16], Self [1], Standard MLT], Objective Caml [14], Haskell [22], and Scheme [13].
The result is a language that employs cutting-edge feaftmesthe programming-language research community to
achieve an unprecedented combination of performance aaigtivity.

1.1 Overview of Fortress

Two basic concepts in Fortress are thabbfectand oftrait. An object consists diieldsandmethods The fields of
an object are specified in its definition. An object definitioay also include method definitions.

Traits are named program constructs that declare sets dfoaieet They were introduced in the Self programming
language, and their semantic properties (and advantagesaonventional class inheritance) were analyzed byasich
Ducasse, Nierstrasz, and Black [23]. In Fortress, a metleathoed by a trait may be eithabstractor concrete
abstract methods have orfigadersconcrete methods also hagefinitions A trait mayextendother traits: itinherits
the methods declared by the traits it extends (except thas@bverrideg. A trait declares the methods that it inherits
as well as those explicitly declared in its definition.

Every object has a set of traits; an object includes everhatetieclared by any of its traits. An object inherits the
concrete methods of its traits and must include a definittoe¥ery method declared but not defined by its traits. It is

9



10 CHAPTER 1. INTRODUCTION

also allowed to override the definition of a concrete metimb@rited from a trait.

object traits {StarSystem, OrbitingObject }
sun = Sol
planets =
{ Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune, Pluto }

position = Polar (25000 lightYear, O radian)

w:radian/s = 2 m radian / 226 million year in s
accelerate( 0) = w = w + 0
end
In this example, the obje&olarSystem is defined with the traitStarSystem andOrbitingObject . The

fieldsw andposition  are defined with appropriate quantities. The figloh is defined to be another object named
Sol , and the fieldblanets is defined to be a set of objects. The methodelerate  is defined to take a single
paramete, and update the field of the object. As this example illustrates, Fortressvjates static checking of
physical units and dimensions on quantities.

Note that the identifiers used in this example are not reésttito ASCII character sequences. Fortress allows the use
of Unicode characters in program identifiers, as well as&ifits and superscripts. (See Appendix C for a discussion
of Unicode and suggested input methods for Fortress pro@eitors). Fortress also allows multiplication to be
expressed by simple juxtaposition, as can be seen in theteftof w andposition . Fortress also allows for
operator overloading, as well as a facility for extending $lgntax with domain-specific languages.

Although Fortress is statically and nominally typed, typesnot specified for all fields, nor for all method parameters
and return values. Instead, wherever possiiylae inferencés used to reconstruct types. In the examples throughout
this specification, we often omit the types when they arerdieen context. Additionally, types can be parametric
with respect to other types and values (most notably natunabers).

These design decisions are motivated in part by our goal &fmgdhe scientist/programmer’s life as easy as possible
without compromising good software engineering. In paitig they allow us to write Fortress programs that preserve
the look of standard mathematical notation.

In addition to objects and traits, Fortress allows the pogner to define top-level functions. Functions are firs¢sla
values: They can be passed to and returned from functiodsassigned as values to fields and variables. Functions
and methods can be overloaded, with calls to overloadingadstresolved by multiple dynamic dispatch. Keyword
parameters, variable size argument lists, and multiplemetalues are also supported.

Fortress programs are organized ictamponentswhich export and imporapis and can be linked together. Apis
describe the “shape” of a component, specifying the typégaits, objects and functions provided by a component.
All external references within a component (i.e., refeemnto traits, objects and functions implemented by other
components) are to apis imported by the component. We dismmponents and apis in detail in Chapter 4.

To address the needs of modern high-performance computdiatress also supports a rich set of operations for
defining parallel execution and distribution of large ddtactures. This support is built into the core of the langriag
For examplefor loops in Fortress are parallel by default.
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1.2 Organization

This language specification is organized as follows. In @vap, the basic concepts of the Fortress programming
model are explained, including objects, types, and funstioMany examples illustrating the concrete syntax are
provided. In Chapter 3, advanced language constructs awzided. In particular, the Fortress model of parallelism
and support for domain-specific languages are discusse@hépter 4, the compilation and deployment model is
described, including a discussion of Fortress componamdsagis. In Chapter 5, the abstract syntax is explained.
Finally, in Chapter 6, the Fortress concrete syntax is défin@NF notation.
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Chapter 2

Basic Concepts

2.1 Expressions, Values, and Types

Expressionare program constructs that reducevédues Every value has &ocation Every location holds a single
value. Two values are identical iff they have the same locatEvery expression hasstatic type Every value has a
runtime type Some types have names; two types with the same name are@e@eneric typesre parametric with
respect to types and values. Two instantiations of a getygrecare identical iff their arguments are identical.

Types are related by a subtyping relation, which is reflexik@nsitive, and antisymmetric. Fortress programs are
checked before they are executed to ensure that if an exgmesseduces to a value, the runtime type ob is a
subtype of the static type ef

Some types are defined by programs; others are built intcatigubge. The built-in typany is a supertype of all
types. Every finite set of typelly, ..., T, } is itself a type, referred to as thetersectionof T+, ..., T,,. {Th,...,T»}

is a subtype of all of its subsets. An intersection type isanfitst-class type; intersection types are used for bounds
on trait parameters, trait variablesvithere clauses as described in Section 2.5.2, and for type inferéfteey cannot
appear in programs as explicit expression types and theyotée nested.

For every finite set of types, there is also a type denotingiguateast upper bounaf those types. The least upper
bound of a set of typeS is a supertype of every tyge € S and of the least upper bound of every proper subsst of
Least upper bound types are not first-class types; they arkaddely for type inference and they cannot be expressed
directly in programs. In some circumstances, a hamed tyjeiified with a least upper bound type, as discussed in
Section 2.2.

There are built-in types fdool , Char, String , the special typ€ (pronounced “void”), and several numeric types.
These types are mutually exclusive; no value has more thambiinem. Values of these types are immutable. Many
of them are identified with special expressions caliedals.

The two values of typ@ool are the literalsTrue andFalse . Two expressiong ande’ can be compared via an
expression of the form = ¢’ (where the types of ande’ are not mutually exclusive). An expression of this form
evaluates tdrue iff e ande’ reduce to identical values.

Values of typeChar are arbitrary characters in Unicode 4.0.0 [8], enclosedrigls quotes (e.g.a’ ,'A’ , ' a’).

Values of typeString  are sequences of characters enclosed in quotation magks'¢er>"). Escape sequences in
strings abide by the conventions of the Java Programminglage.

13



14 CHAPTER 2. BASIC CONCEPTS

The only value with typ€) is the literal() . References to the valig as opposed to the tyfe are determined by
context.

The numeric types share the common supertyypp@ Fortress includes types for arbitrary-precision intedef type
7)), rational numbers (of typ®), fixed-size representations for integers including thpes78, 716, 7.32, 764, 7128,
their unsigned equivalenki8, N16,N32, N64, N128, floating-point numbers of various precisions (somerteglard-
ware support), intervals (of tygeterval  [X], abbreviated &), whereX can be instantiated with any number type),
and imaginary and complex numbers of fixed size (in rectardalm with typesCn for n = 16, 32, 64, 128, 256 and
polar form with typePolar [X] whereX can be instantiated with any complex number type).

For floating-point numbers, Fortress supports typ&sandR64 to be 32 and 64-bit IEEE 754 floating-point numbers
respectively, and defines two functions on typBsuble [F] is a floating-point type twice the size of the floating-
point typeF, andExtended [F] is a floating-point type sufficiently larger than the floatipgint typeF to perform
summations of “reasonable” sizeDther built-in types are introduced in this specificatiorntes are needed.

2.1.1 Numerals

Every numeral is a non-empty sequence of digits and lettéis an optional decimal point, starting with a digit
(possibly zero), and an optional radix as a subscript.

Examples: 27 T7fffg Offf¢ 10101101, 3.14159265 3.11037552

Numerals are not directly converted to any of the numbergygrause, in common mathematical usage, we expect
them to be polymorphic. As a simple example, consider tleedit3.1415926535897932384 ; it is a bad idea to
immediately convert it to a floating-point number because thay introduce a rounding error. If that literal is used
in an expression involving floating-point intervals, it istter to convert it directly to an interval. Therefore lakr

that would be considere®EALIn Fortran have their own types in Fortresgmeral [X] (whereX is the radix). This
approach allows library designers to decide how literataihinteract with other types of objects.

2.1.2 Aggregate expressions

Aggregate expressiomsduce to values that are themselves homogeneous caliectiealues. Aggregate expressions
in Fortress are provided for sets, maps, lists, tuples,icestrand arrays.

Set expressions: Elements are enclosed in braces and separated by commas, e.g
{0, 1, 2, 3, 4, 5} (* This set has six elements. *)

This expression evaluates to a set containing six elemastexplained in the comment immediately proceeding it.
Comments in Fortress are delimited by tokénsand*) and can be nested.

The type of a set expressiongst [T], whereT is the least upper bound of the types of all element expressibthe
set. This type can be abbreviated{a$ in contexts where there is no ambiguity with intersectiqgrety.

Set containment is checked with the operatofFor example:

3€1{0123 45 }

1 This formulation of floating-point types follows a proposaider consideration by the IEEE 754 committee.
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reduces tarue . The subset relationship is checked with the operatafor example:
{0, 1,2 } C {0, 3, 2 }

reduces tdralse .

Map expressions: Elements are enclosed in brackets, separated by commamatnobing pairs are separated by
—, e.0.,

0 — 'a,1 = b, 2 = c]

The type of a map expression Map[S,T] wheresS is the least upper bound of the types of all domain element
expressions, andis the least upper bound of the types of all range elemenessgjns. This type can be abbreviated
as[S — T].

A mapm is indexed by placing an element in the domaimo&nclosed in brackets immediately after an expression
evaluating tan. For example, if:

m=[a ~ 0, P — 1, 'c — 2]

Thenm['b] evaluatestd.

List expressions: Elements are enclosed in angle brackeasd) and are separated by commas, e.g.:

(0,1,2,3 )

The type of a list expression igst [T] whereT is the least upper bound of the types of all elements. This tgn
be abbreviated ag).

Alist I is indexed by placing an index enclosed in angle bracketsadiately after an expression evaluating.té-or
example:

(3,2,1,0 )(2)

evaluates td.

Tuple expressions: Elements are enclosed in parentheses and separated by spengia

(0,1,2)

Unlike other aggregate expressions, tuple expressionstlevaluate to values; they evaluateauplesof values. This
distinction is subtle but important. For example, varigldannot be bound to a tuple of values (as discussed in Section
2.1.6). If an element’ of a tuple expressiomevaluates to a tuple, the elementgcareflattenednto e. For example,

the expression:
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((0,1),(2,(3).4).5)

evaluates to the tuple of values:

(0,1,2,3,4,5)

A tuple of one element is flattened to its element. The expr$8) evaluates to the value

The static type of a tuple expression hawple type (T,, ---, T.). A well-formed tuple type does not contain
tuple types itself. The typ& of a tuple expression is formed by flattening the types of all elements ifito For
example , the type of:

((0,1).(2,(3),4).5)

(Numeral [10], Numeral [10], Numeral [10], Numeral [10], Numeral [10], Numeral [10])

Matrix expressions: Elements are enclosed in brackets. Elements along a rovepaeated only by whitespace, as
in the following example:

[1 0 0]

All matrices have two or more elements. All matrices have owveanore dimensions. Two dimensional matrices of
sizel x n arerow vectors Two dimensional matrices of size x 1 are column vectors Two dimensional matrix
expressions are written by separating rows with newlinesearnicolons. If a semicolon appears, whitespace before
and after the semicolon is ignored, as in the following fotaraples, which are all equivalent:

3 4 34 [3 4

5 6] 56 ] [34:56]

;56 ]

The parts of higher-dimensional matrices are separatedgsated-semicolons, where the dimensionality of thetresul
is equal to one plus the number of repeated semicolons. Bla&x 3 x 3 x 2 matrix:



2.1. EXPRESSIONS, VALUES, AND TYPES 17

[100
010
001 1 010
101
010 ; 101
010
101
100
010
001 1 010
101
010 ; 101
010
101 ]

The elements in a matrix expression may be either scalaratiams themselves. If they are matrices, then they are
“flattened” into the enclosing matrix, as discussed in $&c8i.3. The elements along a row (or column) must have the
same number of columns (or rows), though two elements iedifft rows (columns) need not have the same number
of columns (rows).

The type of & dimensional matrix expressionMatrix [T][ no x ... x nx—1] , WhereT is the least upper bound of the
types of the elements ang x ... x ng_; are the sizes of the matrix in each dimension. This type cabbecviated
aST[ ng X ... X nkfl] .

An n-dimensional matrix\/ is indexed by placing a sequencemindices enclosed in brackets, and separated by
commas, after an expression evaluatingfo For example:

M=[123 456 789

thenM[1,0] evaluates to 4.

Array expressions: Elements are enclosed in brackets. Elements along a rovepagated by commas:

[1, O, O]

Elements of multidimensional arrays are separated by newknd sequences of semicolons, as with matrices. (Note
that there is no conflict with matrix notation because allnmas have at least two elements). The type &fdimen-
sional array expression isray [T][no, ---, mk—1], WhereT is the least upper bound of the types of the elements
andny, ..., n;_1 are the sizes of the array in each dimension. This type camledated ag[ no, -+, nr_1].
(Note that there is no conflict with matrix type notation besmmatrices must have at least two dimensions).

Arrays are indexed in the same manner as matrices.
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2.1.3 If expressions

Anif expression consists of the reserved wibrdollowed by a test expression, followed by the reserved wioed ,

a sequence of expressions, a sequenadifof clauses (each consisting of the reserved waifd followed by a
test expression, the reserved wddn , and a sequence of expressions), an optielsal clause (consisting of the
reserved woralse followed by a sequence of expressions), and finally the vegervordend. For example,

if x € {0,1, 2 } then O
elif x € {3, 4,5 } then 3
else 6 end

The type of arif expression is the least upper bound of the types of all ctau$¢here is neelse clause in arif
expression, then the last expression in every clause malktade to() .

2.1.4 While loops
while loops are written as follows:

while  expr do
exprs
end

The value of avhile loopis() .

2.1.5 Forloops
for loops are written as follows:

for v1 < g1,
V2 < g2,

v, ¢ g, do
exprs
end

The loop header is made up of a serieg@ifierators Generators are described in Section 3.2.2. Each genéiaty
one or more loop variables. A loop variable scopes over thmir@ing generators and over the body of the loop. By
default, loop iterations are assumed to run in parallel. ditter of nesting of generators does not imply anything

about the relative order of loop iterations. Multiple neslieops preserve the order of loop iterations. The value of a

for loopis() .

2.1.6 Bindings

A binding is an expression that declares a variable. The rd@meariable can be any valid Fortradsntifier, which is
a non-empty sequence of alphanumeric characters in Unic6d@that begins with a letter, and that is noéserved
word. Throughout this text, reserved words are identified whew #re first discussed.
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The scope of a variable is the rest of the innernastlosing contexof its binding. Several Fortress language con-
structs define new enclosing contexts; we mention each suddtraict when we define it.

There are four forms of binding expression. The first form:

name: type= expr

declaresnameto be an immutable variable with static typgoe whose value is computed to be the value of the
expressiorexpr. The static type oéxprmust be a subtype d¢§pe

The second (and most convenient) form:

name= expr

declaresnameto be an immutable variable whose value is computed to beate of the expressioexpr,; the static
type of the variable is the static type efpr.

The third form:

var name: type= expr

declaresnameto be a mutable variable of typggpewhose initial value is computed to be the value of the exjwass
expr. As before, the static type @xpr must be a subtype dfpe The modifiervar is optional when:= " is used
instead of =’ as follows:

[var ] name: type:= expr

The first three forms are referred to@defined bindingsThe fourth form:

[var ] name: type

declares a variable without giving it an initial value (waenutability is determined by the presence of the
modifier). It is a static error if the variable is referred tefdre it has been given a value either by another binding
expression or by assignment. Whenever a variable boundsimidnner is given a value, the type of that value must be
a subtype of its declared type. This form allows declaratibtine types of variables to be separated from definitions,
and it allows programmers to delay assigning to a variablerba sensible value is known.

All forms can be used witkuple notationto bind multiple variables together. A tuple of variablestod is enclosed
in parentheses and separated by commas, as are the type®eddot them:

(nam¢, nam¢*):( typd, typq~)

Alternatively, the types can be included alongside thegetye variables, optionally eliding types that can berirge
from context:

(namé¢: typd[, namg: typd] *)
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Alternatively, a single, non-tuple, type can be declaradafbof the variables:
(namg, namg*): type

This notation is especially helpful when a function apgimareturns a tuple of values. Note, however, that tuples ar
notvalues in Fortress. In particular, a single variable catwedbound to a tuple.

Here are some simple examples of binding expressions:

m = 3.141592653589793238462643383279502884197169399375 108209749445923078

binds the variabler to an approximate representation of the mathematical bhjdt is also legal to write:
m:Float = 3.141592653589793238462643383279502884197169 399375108209749445923078

This definition enforces that has static typ&loat .

In this example, the declaration of the type of a variableitsdefinition are separated:

7 : Float
m = 3.141592653589793238462643383279502884197169399375 108209749445923078

The following example binds multiple variables using tuptgation.

var (X, y): Int = (5, 6)

The following three expressions are equivalent:

(X, ¥y, 2): (Int, Int, Int) = (O, 1, 2)
(x:Int, y:Int, z:Int) = (0, 1, 2)
X, y, 2): Int = (0, 1, 2)

2.1.7 Comprehensions

Fortress provides “comprehension” syntax for several efhilt-in aggregate types.

Set comprehensions are enclosed in braces, with a left-4vgméssion separated by drom a sequence of boolean
expressions and generators. The generators bind variekdetly as in dor loop. The boolean expressions act as
filters. For example, the comprehension:

{x*|x « {012345 }, xMOD 2 =0}

denotes the set
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{0,4,16}

Array comprehensions are like set comprehensions (exicapttey are syntactically enclosed in brackets). However,
an array comprehension may have multiple clauses as fallows

a =[xyl = 0.0 | x + 1:xSize, y +~ 1l:ySize
(1,y,2) = 0.0 | vy + 1liySize, z « 2:zSize
(x,1,z) = 0.0 | x + 2:xSize, z « 2:zSize
(x,y,2) = x+y*z | X «— 2:xSize, y « 2:ySize, z < 2:zSize ]

Each clause conceptually corresponds to an independgnt@auses are run in order.

2.1.8 Function definitions

A function definition is similar to a binding expression faor mmutable variable: it establishes a name for a function
whose scope is its entire enclosing context. Function diefivs can be mutually recursive.

Syntactically, a function definition consists of the namehaf function, followed by all type parameters (described
in Section 2.5), all value parameters with their (optiopatieclared types, the optional types of all return valules, t
thrown exceptions, an optional contract for the functiois¢dssed in Section 2.1.21), and finally the body. Value
parameters cannot be mutated inside the function body.¥ewngle, here is a definition of a simple function:

swap(x:Any, y:Any):(Any, Any) = (y, X)

This function has no type parameters, throws no checkedpros, and has no contract. It takes two parameters of
type Any and returns a tuple of two values. Namely, it returns its petars in reverse order. If the return type is
elided, it is inferred to be the static type of the body. Thofeing definition ofswap has the same return type as the
above definition:

swap(x:Any, y:Any) = (y, X)

Similarly, function parameter types can often be infermedfthe body of the function. When a least upper bound can
be inferred for a parameter from the body of the functiont fzaameter need not be declared explicitly. In the case
of swap, the unique least upper bound of bathindy happens to be typeny. Thus, the following definition ofwap

has the same parameter types and return type as the abovtatefin

swap(x, y) = (v, X)

When a function is called, the body of the function is evaddah a new enclosing context, extending the enclosing
context in which it is defined with all parameters bound tartheguments.

A function parameter is allowed to includedafault expression, which is used when no argument is bound to the
parameter explicitly. The default expression of a parametef function f is evaluated each time the function is
called without a value provided far at the call site. All parameters declared to the right-hade sf z must include
default expressions as well amdscopes over the remaining parameters and over the body hfrtbtion. The default
expression of: is evaluated in an environment extending the environmenthith f is defined with all parameters
textually preceding: bound to their arguments.
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If no type is declared for a parameter with a default, the fgpeferred from the static type of its default expression.
Syntactically, this default value is specified after-asign. For example, we can write:

wrap(xs, ys = Xs) = [xs, ys]

The functionwrap returns an array containing its parameters. If a value foy the parametexs is given towrap
at a call site, the value ofs is bound toys as well, and an array that contaixss as both of its indices is returned.
Default parameters can be bound at a call site by keyworchaggts, as described in Section 2.1.9.

The rightmost parameter of a function definition that doeshawe a default expression is allowed to have type
for any typeT. A parameter with this type is\arargsparameter; it is used to pass a variable number of argunents t
a function as a single array. For example:

asArray(xs:Object...) = xs

takes an arbitrary number of arguments and returns an aoragiaing them all.

If a function does not have a varargs parameter then the numhbeguments is fixed by the function’s type. A varargs
parameter is not allowed to have a default expression.

Function definitions can be immediately preceded by theidlig special modifiers:

io: Functions and methods which perform externally visible&f such as I/0O are said to e functions. Anio
function must not be invoked from a ndm- function.

pure: If a method has no visible side effects, it is said tgpbee . This means that no side effects are performed to
references. New objects may be allocated freely. A puretiominvokes only other pure functions.

2.1.9 Function calls

A function value consists of three parts: the function’setyjts body, and the environment in which it is defined.

As with languages such as Scheme and the Java Programmiggdgm function calls in Fortress are call-by-value.
Each argument passed to a function is evaluated to a valoegsie function is applied. Arguments to a function can
be specified at a call site in one of two wapssitionallyor by askeyword arguments

1. Positionally. If none of the parameters of a function daéin include default expressions, the arguments are
passed to the function as a tuple of expressions. The vafuksse expressions are bound to the parameters of
the function in the order specified in the function declamtilf the last parametegrin the function declaration
has typeT... for some typeT, then all arguments whose position is greater than or equélet position op
are placed in an immutable array (i.e., an object of %peay [T]), and bound te.

2. With keyword arguments. If a function definition consists parameters without default expressions (and no
varargs parameter) followed hyparameters with default expressions, then there is a sequéh expressions
passed positionally, followed by a sequence of bindingatameters with default values. The fikshrguments
are bound to the firgt parameters of the function, as specified in its definitione Témaining arguments are
passed as bindings-e. For each binding=e¢, the value ok is bound to the parameter with namelf a boolean
expressiomr; =e; is passed as an argument, it must be parenthesized=as) . If the function has parameters
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without default expressions followed by a varargs paramgtthen any arguments after the fiksthat are not
passed as bindings are placed in an immutable array and lhlogndParameters specified with default values
can be bound only by keyword arguments.

Parameters not explicitly bound are bound to their defaalties. If a parameter that has no default value is not
explicitly bound to an argument, a static error is signaled.

If the application of a functiorf ends by calling another functian tail-call optimization must be applied. Storage
used by the new environments constructed for the applicafig must be reclaimed.

Examples:

sqrt(x)

atan(y, x)

makeColor(red=5, green=3, blue=43)
processString(s, start=5, end=43)

If the function takes a single argument, then the argumesd net be parenthesized:

sgrt 2
sin X
log log n

Most function applications do not include explicit instatibns of type arguments; the type arguments are staticall
inferred from the context of the function application.

2.1.10 Operator applications

To support a rich mathematical notation, Fortress allowstridmicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions|las these characters and character combinations:

e # $ % * + - = | = < > [/ 2
-> --> => ==> > <= >= /= ** I

In addition, a token that is made up of a mixture of uppercaiers and underscores (but no digits), does not begin or
end with an underscore, and contains at least two diffeettark is also considered to be an operator:

MAX MIN SQRT  TIMES

Some of these uppercase tokens are considered to be equivaténgle Unicode characters, but even those that are
not can still be used as operators.

All of the operators described above can be used as prefix, pustfix, or nofix operators as described in Section 2.7;
the fixity of an operator is determined syntactically, arelsame operator may have definitions for multiple fixities. A
simple example is that * may be either infix or prefix, as is conventional. As anothearaple, the Fortress standard
library (discussed in Chapter 4) definé$to be a postfix operator that computes factorials when appb integers.
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Simple juxtaposition is also regarded as an infix operatéoittiress. When the left operand is a function, juxtapasitio
performs function application; when the left operand is enhar, juxtaposition conventionally performs multiplica-
tion; when the left operand is a string, juxtaposition cartienally performs string concatenation.

Here are some examples of Fortress expressions where tietsrindicate subscripts:

(-b + sgrt(tb™2 - 4 ac)/ 2 a
nn e*(-n) sqrt(2 pi n)

alk] b[n-K]

X[1] y[2] - x[2] y[1]

1/2 g t2

n(n+1)/2

G+kMG kN

1/3 3/5 5/7 7/9 9/11

17.3 meter/second

17.3 m_/s_

u DOT (v CROSS w)

u- (v x w

(A UNION B) INTERSECT C
(A uB) nC

i <] <=k AND p PREC ¢

i <j <kAp<=<q
print("The answers are " (p+q) " and " (p-q))

Another class of operators is always postfix: afollowed by any ordinary operator (with no intervening wdspace)

is considered to be a superscripted postfix operator. Fongbea “* ' and “+ ' and “? ' are available for use as part
of the syntax of extended regular expressions. As a veryi@pease, *T ' is also considered to be a superscripted
postfix operator, typically used to signify matrix transitios.

Certain infix mathematical operators that are traditignedigarded aselational operators, delivering boolean re-
sults, may bechained For example, an expression suchfag B ¢ C C D; it is treated as being equivalent to

(A CB) A(B Cc C) A (C C D) except that the expressioBsandC are evaluated only once (which matters
only if they have side effects). Fortress restricts suclinthg to operators of the same kind and having the same sense
of monotonicity; for example, neither C B < CnorA C B O Cis permitted.

Any infix operator that does not chain may be treatechafiifix. If n — 1 occurrences of the same operator separate
n operands where > 3, then the compiler first checks to see whether there is a tefirfior that operator that
will acceptn arguments. If so, that definition is used; if not, then therafme is treated as left-associative and
the compiler looks for a two-argument definition for the @ier to use for each occurrence. As an example, the
cartesian produ&: x S; x --- x S, ofn sets may usefully be defined as a multifix operator, but orgliaddition
p+g+r+s isnormallytreatedagp + q) + 1) + s

Finally, more than two dozen pairs of brackets are availdizlecan be defined by the user as functions on any number
of arguments. For example, angle bracketgnot to be confused with the less-than and greater-thars sige) may
be used as a defined function of any desired number of argesment

opr {( x:Num ) © Num = X2

opr ( x:Num, y:Num ) Num = X2 + y2

opr {( x:Num, y:Num, zzZNum ) : Num = X2 + y2 + 272
(3 ) (* evaluates to 9 *)

(3, 4 ) (* evaluates to 25 *)

(2 3,4 ) (* evaluates to 29 *)
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Alternatively, we might have written a single definition tartdle any number of arguments:

pr { x:Num... Y : Num = SUM[a € x] a2
(* evaluates to 0 *)
(* evaluates to 9 *)
(* evaluates to 25 *)
(* evaluates to 29 *)

(* evaluates to 54 *)

~ ~— ~— ~— ~——

While the standard Fortress libraries are quite rich, tla@eemany possible operators that are not predefined by the
standard Fortress libraries and so are available for laggyaatension by users.

Every operator application is equivalent in behavior to acfion call. The behavior of every Fortress operator is
defined by an explicit operator declaration. Frequentlhsaudeclaration will simply invoke an appropriate method.
For example, the boolean operatairdD OR XOR andNOTare defined in the standard Fortress library as

opr AND(BoolOperators x, BoolOperators y) = x.and(y)
opr OR (BoolOperators x, BoolOperators y) = x.or (y)
opr XOR(BoolOperators x, BoolOperators y) = x.xor(y)
opr NOT(BoolOperators x ) = x.not()

(The arguments are of tyfolOperators S0 that these operator definitions may be shared by othes,tgpeh as
Boolinterval  , that support such operators. The t&ibl extends the traBoolOperators . These are details that
are of concern to library designers; application progransmeed not be aware of them.)

2.1.11 Assignments

An assignment expression consists of a left-hand sideatidiz one or more variables to be updated, an assignment
token, and a right-hand-side expression.

The assignment token may he °, to indicate ordinary assignment; or may be any operatthrgfothan ! " or ‘=" or
‘<’or'>"or‘/") followed by ‘=" with no intervening whitespace, to indicate compound @tpdy) assignment.

A left-hand side may be a single variable or a tuple. If it isiplé, then the right-hand side must be either a tuple of
equal length or a funtion application that returns multigdéues, equal in number of the length of the left-hand-side
tuple.

If the left-hand side is a tuple and the assignment tokerri§ then each element of the tuple may be a variable or
a binding consisting of a variable, a colon, and a type (inclltase the variable is declared as a local variable and
initialized to a value rather than being assigned). If tfeHand side is a tuple and the assignment token is other
than“=", then each element of the tuple must be a variable; bindimgsiot permitted in this case. Examples:

x = f(0)

cfijl = cfij] + afik] bfk,]

(@& b, ¢c) = (b, ¢, @) (* Permute a, b, and c *)

(g:Int, r:Int) := quotientAndRemainder(x, y) (* Bind g and r *)

(g, s:Int) := quotientAndRemainder(x, y) (* Assign g but bin ds ¥
X +=1

(X, y) += (delta_x, delta_y)
myBag = myBag U newltems
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myBag U= newltems

Variables updated in assignment expressions must be gldesatared.

The value of an assignment expressio() is

2.1.12 Block expressions

A block expression consists of the reserved wiwda series of expressions, and the reserved wodd The value of
a block expression is the value of the last expression in libkb Some compound expressions have clauses that are
implicitly block expressions. Here are examples of funtiiefinitions whose bodies are block expressions:

f(x: R64) = do
(sin(x) +1)2
end

foo(x: R64) = do

y =X

z =2X

y +z
end

mySum(i: 7Z64): 764 = do

acc:Int := 0
for j  « 0O: do
acc = acc + j
end
acc
end

2.1.13 Labelled block expressions

Block expressions may be labelled with a name and any inn@essgion can exit the labelled block with an optional
value. The same name is required after bablel andend.

label 195
if goingTo(Sun)
then exit 195 with x32B
end

end 195

2.1.14 Case expressions

A case expression evaluategest expressioand determines which of a set of case clauses applies toshexjgres-
sion’s value. When an applicable case clause is found (agétom left to right), the body of that case clause (and
only that clause) is evaluated. If no applicable clauseusf an exception is thrown.
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To find which case clause applies, tpearding expressionf each case clause is evaluated in turn and compared to
the value of the test expression. The two values are compea@atding to an optional binary method named by an
identifier specified in thease expression immediately after the test expression. For pigmwe could write:

case planet € of

{ Mercury, Venus, Earth, Mars } = "inner"
{ Jupiter, Saturn, Uranus, Neptune, Pluto } = "outer"
else = "remote”

end

The special case clausiBe always applies; if it appears incase expression, it must appear as the rightmost clause.

If the binary method is omitted, it defaults toor €:

case 2 + 2 of

4 = "it really is 4"

5.7 = "we were wrong again”
end

The special reserved worttsgest andsmallest may appear in a test expression context to select the laigyest
smallest) quantity from a set of case clauses:

case largest of

mile = "miles are larger"

kilometer = "we were wrong again”
end

A more interesting example is described in Section 3.3.

2.1.15 Atomic expressions

An atomic expression consists of the reserved vatochic followed by a block expression. The block expression is
executed as an atomic transaction. See Section 3.2.5 fecasdion of atomic memory transactions.

A function or method with modifieatomic acts as if its entire body were surrounded iragrmic  expression.

2.1.16 Throw expressions

A throw expression consists of the reserved wiirdw followed by an expression which has the ti&iteption
The thrown exception must be caught in an enclosingexpression or declared in tiieows clause of the enclosing
function definition.

2.1.17 Try expressions

try expressions start with the reserved wogd followed by a sequence of expressions, and tteech |, forbid
andfinally  clauses, as in the following example:
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try
do
in = read(file)
write(in, newFile)
end
catch e
IOException = throwException(e)
end

If a thrown exception matches the exception iflordid clause, an exceptoin is thrown. For example, we could also
write the abovery expression as follows:

try
do
in = read(file)
write(in, newFile)
end
forbid 1OException
end

finally clauses inry expressions are likénally blocks in the Java Programming Language. Tihaly
clause is executed after the exception handler completesexXample,

try
open(file)
do
in = read(file)
write(in, newkFile)
end
catch e
IOException = throwException(e)
finally
close(file)
end

2.1.18 Function expressions

Function expressions denote functions. They start withréserved wordn followed by a parameter list, optional
return type,=-, and finally an expression. Unlike defined functions, fumttexpressions are not allowed to include
type parametersyhere clauses, and contracts described in Section 2.5.8. Hersiiigpde example:

fn(x:double) = if x < 0 then -x else x end

2.1.19 Dispatch expressions

Fortress supportéispatch  expressions, which provide a shorthand for multiple didpah a sequence of types. The
form of these expressions is as follows:
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dispatch ( wvi=ej, v2=e€3,..., vV,=e€,) in
(ti1, ti2sees  tin) = €XPrs,
(t21, to2,ey  t2n) = €Xprs,
(tmly m2yeey tmn) = eXprS;m

end

A dispatch expression evaluates the expressigns - , e, and then performs a type dispatch, exactly as if each
clause were the header of an overloaded function descnib8ddtion 2.2.1. The most specific clause is chosen, and
the corresponding value expressi@xprs, are evaluated (and the value of the last expressi@xpfs, is the value

of the construct). All the rules of function overloading §ppn particular, ambiguity is not allowed and the order of
the clauses is irrelevant.

If n =1, the parentheses may be elided, as in the following example:

dispatch x = myLoser.myField in
String = x.append("foo")

Num = X + 3

Thread = x.run()

Object = yogiBerraAutograph
end

Note that %” has a different type in each clause.

The syntactic sugar

dispatch z in ... end

(wherez is a valid local identifier) is equivalent to:
dispatch 2z = z in ... end

At least one clause’s type must be a supertype-or-equal thfeabther clauses’ types.

2.1.20 Typecase expressions

A typecase exression hasthe same syntax dspatch  expression except that the reserved wgpgcase occurs
in place ofdispatch . However, aypecase expression evaluates its clauses from top to bottom, anfirhenatch
is chosen. What would be forbidden ambiguity idispatch  expression is allowed intgpecase expression.

2.1.21 Function contracts

Function contracts consist of three partsequires  part, anensures part, and arnvariant  part.

Therequires  part consists of a sequence of expressions of Bqut . Therequires  clause is evaluated during a
function call before the body of the function. If any expiessn arequires clause does not evaluate Teue , an
exception is thrown. For example, we can addquires  clause to oufactorial function as follows:
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factorial(n:Int)
requires n >0
=if n =0 then 1
else n factorial(n-1) end

Theensures part consists of a sequenceeafsures clauses. Each such clause consists of a sequence of expres-
sions of typeBool , optionally followed by aprovided clause. Aprovided clause begins with the reserved word
provided followed by an expression of tygool . For each clause in thensures part of a contract, thprovided

clause is evaluated immediately after thguires  clause during a function call (before the function is exedt If
aprovided clause evaluates ftrue , then the expressions preceding thisvided clause are evaluated after the
function is executed. If any of the expressions evaluated &fnction execution does not evaluatetoe , an excep-

tion is thrown. The expressions preceding phevided clause can refer to the return value of the function. If there

is a single return value for the functionyesult  variable is implicitly bound to the return value of the fuiect If

there are multiple return values, an immutable array narsadt contains these values.rdsult  variable scopes

over the expressions preceding tievided clause. For example, we can write the following function:

print(input:List)
ensures sorted(result) provided sorted(input)
= if x # Empty then
print(first(input))
print(rest(input))
end

Theinvariant  clause consists of a sequence of expressioasptype These expressions are evaluated before and
after a function call. For each expressiom this sequence, if the value efwhen evaluated before the function call
is not equal to the value efafter the function call, an exception is thrown.

2.2 Traits

Programmers can define new types in their programs thrtraglk. Traits are named collections ofethodswhich
are functions that can be inherited and overridden. Methoelinvoked orobjects which are values that have traits.

Syntactically, a trait definition starts with a sequence oflifiers followed by the reserved wondit , followed by

the name of the trait, an optional seteftendedraits, an optional set agfxcludedraits, an optional set dioundson

the trait, a list of method declarations and definitions, tnedreserved wordnd. Syntactically, a method declaration
is identical to a function declaration, except that a sgesei parameter is provided immediately before the name of
the method. When a method is invoked, #e¢ parameter is bound to the object on which it is invoked. I&aib
parameter is provided explicitly, it is implicitly a parateewith nameself .

For example, the following trait definition:

trait Catalyst extends Molecule
self.catalyze(reaction: Reaction): ()
end

defines a traiCatalyst ~ with no modifiers, n@xcludes clauses, and nbounds clauses. TraiCatalyst extends
a single trait namedolecule . A single method (namedatalyze ) is declared, which has a parameter of type
Reaction and the return typ@ .
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Methods are invoked with the following syntax:

receiver app

wherereceiverevaluates to the receiver of the invocation (bound tostie parameter of the method). There must
be no whitespace on either side of the, ‘and there must be no whitespace between the method namibeheft
parenthesis of the argument lishpp is syntactically identical to a function application, egt¢hat the norself
arguments must be parenthesized, even if there is only oteenf. All nonself parameters are bound in a manner
identical to function application. Examples:

myString.toUppercase()
myString.replace("foo", "few")
SolarSystem.accelerate(( w/2 radian) / 452 million year)

Even if a method takes a single argument, it must neverthéleparenthesized:

myNum.add(otherNum) (not myNum.add otherNum )

Every trait extends the built-in tradbject . Every trait with anextends clause extends every trait appearing in its
extends clause. If a traifl” extends trail/, we callT' a subtrait oV andU a supertrait of/". Extension is transitive;

if T extendd it also extends all supertraits bf. Extension is also reflexive’ extends itself. The extension relation
induced by a program is the smallest relation satisfyingeteonditions. This relation must form an acyclic hierarchy
rooted at traiObject .

We say that traifl” strictly extenddrait U if and only if (i) 7" extendsU and (i) 7" is notU. We say that traifl’
immediately extendsait U if and only if (i) T" strictly extendd/ and {i) there is no trait” such thafl" strictly extends
V andV strictly extendsy. We callU animmediate supertraibf 7' and7T animmediate subtraiof U. If a trait
definition of T" includes abounds clause, the trait must not be extended with immediate sitbioéher than those
that appear in itbounds clause. Furthermoréd, serves as the least upper bound of the traits appearingkouitels
clause. For example, the trait:

trait Molecule
bounds {OrganicMolecule, InorganicMolecule}
mass(): Mass

end

is bounded by two traitsOrganicMolecule  andInorganicMolecule . Therefore, the following trait definition is
not allowed:

(* Not allowed! *)
trait ExclusiveMolecule extends Molecule end

If a trait 7' excludes a trail/, the two traits are mutually exclusive. No object can hawarttboth, no third trait
can extend them both, and neither can extend the otfieran optionally excludd'. For example, we define traits
OrganicMolecule  andinorganicMolecule as follows:

trait OrganicMolecule extends Molecule
excludes {InorganicMolecule}
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end

trait InorganicMolecule extends {Molecule} end

OrganicMolecule  excludesnorganicMolecule . It does not matter thaorganicMolecule has noexcludes
clause; the traits are mutually exclusive solely on accofithe definition ofOrganicMolecule . For example, the
following trait definition is not allowed:

(* Not allowed! *)
trait InclusiveMolecule extends {InorganicMolecule, Org anicMolecule} end

A trait is allowed to have multiple immediate supertraitheTollowing trait has two immediate supertraits:

trait Enzyme extends {OrganicMolecule, Catalyst}

reactionSpeed(): Speed

catalyze(reaction) = reaction.accelerate(reactionSpee d()
end

Traits inherit methods from their immediate supertraitsfdct, a trait inherits every method from every one of its
immediate supertraiexcepfor methods that are overridden by declarations in theitsatf. In our exampleEnzyme
inherits the abstract methaalass from OrganicMolecule  and overrides the abstract methadalyze from trait
Catalyst

We say that a declaration of a function or metlamatursin a trait definition if and only if the trait definition either
syntactically contains the declaration or inherits thelai@tion. If a declaration occurs in a trait definition, we sa
the trait definitionsuppliesthe declaration. For example, tr&bzyme supplies methodmass andcatalyze , but it
syntactically contains only the declaration of methathlyze

2.2.1 Overriding and overloading

A signatureof a method consists of the name of the method, the numberyaed bf its formal parameters, and the
names of keyword arguments. Note that the type of the recefve method and the return type of a method are not
parts of its signature. A method declaratioverridesa declaration in a supertrait if and only if tsgnaturesof the

two declarations match exactly. If a declaration with rettypeT is overridden by a declaration with return type
thenU must extend'. It is not permitted for an abstract method declaration ®rogle a concrete method declaration.

If a trait inherits multiple methods with the same name, ¢hdsclarations must conform to the restrictions explained
in Section 2.6 on multiple dispatch.

For every trait, there is a corresponding static type withghme name, calledteit type If trait S extends traifl’,

then the trait type of is a subtype of the trait type @f. If an expressiom has a trait type, then any method supplied
by the trait can be invoked an

2.2.2 Method contracts

Contracts on methods are handled similarly to the mannearitbesl in [10]. In particular, substitutability under
subtyping is preserved.
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Evaluation of a call site.m(...), wheree has static typd’, proceeds as follows. First,is reduced to a value with
runtime typelU. Let C be the contract declared in the declaratiomodetermined by static typgE. We callC thepivot
contractof the call site. Theequires clause ofC is checked. If thatequires  clause fails, aCallerViolation
exception is thrown.

Otherwise, consider every contract in every declaration ofn that overrides the declaration of determined byr",
as well as declarations af in any supertype df". If C’ occurs in a typd/ that is a supertype afs runtime typel/,
then therequires  clause ofC” is checked. If any suctequires  clause fails, aontractHierarchy exception is
thrown.

Otherwise, consider every contract’ in every declaration ofn that occurs either in a supertype Gf (including
U itself). Theprovided clauses ofC” are evaluated. For evegyovided clause that evaluates Mue , the
correspondingnsures clause is recorded in a tahte for later evaluation. Similarly, thewvariant  clauses of””
are evaluated and the results are store# fior later comparison.

Then the body ofn (as determined by's runtime typeU) is evaluated. After evaluation of the body, atfisures
clauses inE that are declared in the contractlihare checked, and altvariant  clauses inE declared inU are
checked to ensure that they reduce to values equal to thes/tiiay reduced to before evaluation of the body. If any
such check fails, &alleeViolation exception is thrown. Otherwise, all othemisures clauses andhvariant
clauses inE are checked. If any of these clauses faif;atractHierarchy exception is thrown.

2.3 Objects

Objectsare values that have object types described in Section. 2Z3bjects contaitieldsandmethodsand have a
set of traits from which they inherit methods.

Syntactically, an object definition begins with a sequenfcmadifiers followed by the reserved wottject , fol-
lowed by the name of the object, the traits of the objectfididsof the object, the methods of the object, and finally
the reserved wordnd. The traits of an object are listed in an optiotralts  clause, which starts with the reserved
wordtraits  followed by a sequence of one or more trait references segubioy commas and enclosed in bracgs *
and }'. Ifa traits  clause contains only one trait, the enclosing braces majidede If an object definition has no
traits  clause, the object is understood to have only taitct .

For example, we define an empty list object with ttaét as follows:

object Empty traits {List}
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

This object has no fields and four methods.

Fields are variables local to an object. They must not benedeo outside their enclosing object definitions. Field
declarations in an object are syntactically identical threel bindings, with the same meanings attached to the form
of binding. However, special modifiers can precede a fieldedaton:

hidden: By default, a field declaration implicitly definesgaettermethod for the field. This method takes no argu-
ments, has the same name as the field, and a return type edbaelfteld type. The implicitly defined getter returns
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the value of the field when called. A field with modifigitiden has no implicitly defined getter.

settable: A field with this modifier has an implicitly definesletter This method takes a single parameter (with
no default) whose type is the type of the field. It retugns When called, the implicitly defined setter rebinds the
corresponding field to its argument. A settable field mustioitnmutable.

Method declarations in objects are identical to their syimaraits.

The implicitly defined getters and setters of fields can beraaen with methods with the appropriate signatures,
names, and return types. An explicitly defined getter mugtidte the modifiegetter . An explicitly defined setter
must include the modifiesetter

A getter method must be invoked with the syntax:
expr. name

wherenameis the name of the getter.

A setter method must be invoked with tagsignment syntax
expr. name:= exph

Getter and setter methods can be declared in traits as wghta@&ically, such definitions are bindings. If such
a binding is a defined binding, a getter is defined with the &sgion in the defined binding. If the binding is not a
defined binding, the getter is abstract. If the binding idelsithe modifiesettable  an abstract setter is also declared.
If the binding includes the modifiesettable  andhidden , only an abstract setter is declared. Such a binding must
not include the modifiehidden withoutsettable , or a static error is signaled.

A getter must not be overridden by a method other than a geéttsetter must not be overridden by a method other
than a setter.

2.3.1 Object expressions

Object expressions denote objects. They start with thewedevordobject followed by the ordinary aspects of
an object definition (except for the name). Unlike top-lesiject definitions, object expressions are not allowed to
include type parametershere clauses, and contracts. For example, the following is al\drtress expression:

object traits {StarSystem, OrbitingObject }
sun = Sol
planets =
{ Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune, Pluto }

position = Polar (25000 lightYear, O radian)

w:radian/s = 2 m radian / 226 million year in s
accelerate( 6) = w = w + 6
end

This expression evaluates to a new object, with tigitsSystem andOrbitingObject
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2.3.2 Parametric objects

Object definitions are also allowed to be parametric withheesto other objects. Object parameters are specified after
an object’s type parameters. They are enclosed in parestthesl are separated by commas. Syntactically, each object
parameter is identical to the beginning of a field definitibopnsists of a sequence of modifiers followed by the name
of the parameter, followed by g a type, and, optionally, a default value. Here is an exarople parametricCons
object with traitList [T]:

object Cons [T]
( first: T,
rest : List [T] )
traits List [T]

cons (x ) = Cons(x,self)
append(xs) = Cons(first,rest.append(xs))
end

Note that this declaration implicitly introduces the “fact” function:

Cons|[T](first:T, rest:List I

which is used in the body of the trait to define ttwhs andappend methods. Multiple factory functions can be
defined by overloading a parametric object with functiora. &xample:

Cons|[T](first:T) = Cons(first,Empty)

transient: A parameter to a parametric object can be declatedient , indicating that it doesn’'t correspond to
afield in an instantiation of the objec¢tansient  parameters are in scope only in other field definitions of gaatp
they are not in scope in the object’s method definitions.

Fields can be explicitly defined within a parametric objectuaual. All fields of an object are initialized before that
object is made available to subsequent computations.

As with functions, parametric object definitions are allovt@include contracts€quires , ensures , andinvariant
clauses). Syntactically, these contracts appear afterdie  clause and before the field definitions of an object.
They are called at the appropriate times during an instiamtiaf the object.

wrapped: If the field f with trait typeT is declared to have modifierapped , then the enclosing object implicitly
includes “forwarding methods” for all methodsdh Each of these methods simply calls the corresponding rdetho
the object referred to by field. If the object definition enclosing explicitly defines a methogh that conflicts with
an implicitly defined forwarding methoe’, then the enclosing object contains only methodotm’. The signature
of m must be a valid overriding signatureaf or a static error is signaled.

For example, in the following definitions:

trait Dictionary [T]
put(x:T):()
get():T

end
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object WrappedDictionary [T]
( wrapped val:Dictionary [T )
traits Dictionary [T]
get() = throw Error

end

the parametric obje&/rappedDictionary  implicitly includes the following forwarding method:
put(x) = val.put(x)

If get were not explicitly defined inwrappedDictionary , thenwrappedDictionary ~ would also include the for-
warding method:

get() = val.get()

2.4 Value Objects

There is a special modifiemlue in the language. Conceptually, an object definition with ifiedvalue is under-
stood to define what is called in many languagsimitive value. For example, here is a definition of a parametric,
primitive, Complex number:

value object Complex(real:Double, imaginary:Double)
opr +(other:Complex) = Complex(real + other.real(),
imaginary + other.imaginary())

end

A variable defined with modifievalue (including the name of an object definition) implicitly hasodifier pure ,
indicating that it must not be assigned to. The fields edlae object are implicitlypure , indicating that they cannot
be assigned to.

2.4.1 Value object types

If a trait T has modifiervalue , all objects with that trait are required to be value objettse object type defined by a
value object implicitly has the modifiealue .

2.4.2 Predefined value objects

We are now in a position to expand our description of sevdrideobuilt-in types, and, in some cases, how they might
be implemented in a library. For Java there was a conscitermpt to minimize the number of distinct primitive types
to reduce programmer confusion. Fortress has a richer $gbeé to address a richer set of programming situations.
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Booleans

Booleans include the tradition@tue /False objects:

value trait Bool end
value object True traits Bool end
value object False traits Bool end

opr A(b0O:Bool, bl:Bool):Bool
opr V(b0:Bool, bl:Bool):Bool
opr —(b0:Bool):Bool

opr @(b0:Bool, bl:Bool):Bool

opr A(bO:True, bl:Bool) = bl
opr V(b0:True, bl:Bool) = True
opr —(b0:True) = False

opr &(b0:True, bl:Bool) = —bl
opr A(bO:False, bl:Bool) = False
opr V(bO:False, bl:Bool) = bl

opr —(b0:False) = True
opr @(b0:False, bl:Bool) = bl

We also provide foBool intervals and possibly oth&ool algebras.

Characters

In addition to theChar andString types already described, Unicode also has the idea of a gmamhwhich is sort

of like a character but may be represented as a sequenceaddéntode points, typically a base character plus a set
of combining marks such as accents. We may want to allow fapigeme” and “grapheme string” data types. For
this purposeGrapheme andsString  should be traits, which various sorts of objects may haveaBse users of other
languages will expeathar to be small and cheap, we will use that to name the value typmode characters, and

it will have the traitGrapheme, but so will other objects that contain appropriate seqesmd characters. Similarly,
UTF32String , UTF8String , GraphemeString , and so on may have the tr&tring

Numbers

In addition to the number types already described, Foral®s's various numeric (and other) types of traits in libear
that represent algebraic structures of interest such a®iagngroups, rings, and fields. For example, reduction
operators generally can accept any type of a monoid trdit thié appropriate binary operator.

2.5 Types

Types in Fortress include all built-in types, all trait tgp@and all object types. Additionally, Fortress supporntesa
forms of parametric polymorphism, described in this sectio
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2.5.1 Object types

A defined object has an object type (of the same name). Thetdjee defined by an object definition includes,
as abstract methods, all of the public methods, includihgradlicitly defined getters and setters, introduced by the
object definition (i.e., those methods not declared by aai{stof the object). It extends all of the declared traitshef t
object. No other objects can have the object type and na trait extend an object type

2.5.2 Trait parameters

Atrait is allowed to be parametric with respect to othettsrarhesdrait parametersare listed in white square brackets
‘I’ and ‘]’ immediately after the name of the trait. We use the teraked trait variableto refer to an occurrence of

a trait variable as a stand-alone trait (rather than as astjatsubcomponent of a larger trait reference). They are in
scope in the entire body of the trait definition, and can appeany context that an ordinary type can appear, except
that a naked trait variable must not appear indkiends clause of the trait definition. Here is a parametric version
of trait List :

trait List [T]
first(): T
rest (): List [T]
cons (x: T): List [T]
append(xs: List [T]): List [T]
end

Trait parameters are allowed to have bounds placed on themiirere clause. Awhere clause begins with the re-
served wordvhere , followed by a sequence of trait parameter constraintsosed in braces{* and ‘}’ and separated
by commas. For example, we could place a constraint on thig@#ameter ofist as follows:

trait List [T] where {T extends Comparable }
first(): T
rest (): List [T]
cons (x: T): List [Tl
append(xs: List [T]): List [T]
sort (): List [T]
end

A where clause is allowed to introduce new tradriables i.e., identifiers for traits that may not be trait parameter
Trait variables that are not also trait parameters are ipesomly in theextends andwhere clauses of a trait. For
example, we can write a trait definition like the following:

trait C [S] extends D [T]
where {S extends T }
end

In this example, for every subtygof T, C[S] is a subtype oD[T]. For example, botl[Object ] andC[SolarSystem ]
are subtypes db[Object ].

Each trait constraint in here clause is either a type alias (described in 2.5.6) or begittstve name of a naked
trait variable, followed by the reserved wogdtends , followed by a trait reference. This trait reference is akal



2.5. TYPES 39

to be any valid trait reference in the enclosing scope inoyd naked trait variable. Mutually recursive bounds are
allowed inwhere clauses. A trait parameter that is not explicitly bound inha&re clause is implicitly bound by trait
Object . All trait variables in an object or trait definition must acceither as a trait parameter or as a bound trait
variable in awhere clause.

Trait definitions are allowed to extend other instantiagiohthemselves. For example, we can write:

trait C [S] extends C [T]
where {S extends T }
end

In this definition, for every subtyps of T, C[S] is a subtype of[T].2 A trait parameter that is bound by a naked
trait variable must not appear in the types of method pararsef trait parameter that serves as the bound of a trait
variable must not appear in the types of method return valliesse restrictions apply both to programmer-defined
methods and to the implicitly defined methods such as getters

In fact, trait definitions need not have any trait parametessder to have ahere clause. For example, the following
trait definition is legal:

trait C extends D  [T]
where {T extends Object }
end

In this definition, traitC is a subtrait ofeveryinstantiation of parametric trad. Thus, traitC has all of the methods
of every instantiation ob. By thinking of the declaration this way, we can see whattitions we need to impose on
the body of traitCin order for it to be sensible. If tral inherits a method definition that refersTpit really contains
infinitely many methods (one for each instantiationTdfso it must be possible to infer which method is referred to
at a call site. IfCinherits an abstract method definition, then an object wih € must be able to define this method
without referring to trait variabl&, (which is not in scope in the definition af nor in any object definition with trait
C). In Fortress, the only valid way to write such a method badpithrow an exception.

Object definitions are also allowed to includkere clauses. Here is an alternative definition ofeanpty list:

object Empty traits List [T] where {T extends Object }
first() = throw Error
rest () = throw Error
cons(x) = Cons(x,self)
append(xs) = xs
end

whereCons is defined in Section 2.3.2 asdlf denotes the object itself.

2.5.3 Nat type parameters

Trait definitions are allowed to be parametric with respeet sequence ofat type parameters. These parameters are
instantiated at runtime with numeric values. They are adldwo be used to instantiate otheat type parameters, or
to appear in any context that a variable of typa¢ can appear, except that they cannot be assigned to. Syathcta

2Effectively, we have expressed the fact that the type paerfieof Cis covariant.
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nat type parameter is declared along with other type parametadsbegins with the reserved warat followed by
a variable name. For example, the following functfan

f [nat n J(x:Length 2M): Length " = sqrt(x)

declares aat type parameten, which appears in both the parameter type and return type of

The set of expressions allowed to instantiateaa type parameter includes alht constants along with ahat

type parameters, and is closed under addition and mubipdic. Static determination of the equivalence of such
expressions is limited to a simple normalization processrevfall factors are distributed, the variables of each term
are put in lexicographic order, and the normalized termgatén lexicographic order. For example, that type:

(d+a) -(c + b
is normalized to:
a-b +a-c+b-d+c-d

Method and function definitions are also allowed to be patdowith respect to a sequenceradt type parameters.

2.5.4 Dimensions

There are special types calléimensionghat are separate from traits. Dimensions must be decldoddlty in a
program component. For every two dimensi@nandE, there is a dimensiob E, corresponding to the product of
the dimension® andE and a dimensio/E, corresponding to the quotient of the dimensi@ngverE. There is
also a dimensio®"n (henceforth writterD") for everynat typen. Instances of a given dimension are referred to as
guantities The set of declared dimensions have the algebraic steiofua free abelian group. The identity element
of this group is dimensionity which represents dimensionless quantity. The syntacgersuD is equivalent to
Unity/D  for all dimension.

For each dimensiob referred to in a Fortress program component other than diloetnity , exactly one variable

of that dimension must be declared globally asia variable and must not include a definition. This variable may
appear in the definitions of other variables of the same déoen For example, we might include the following
declarations in a program:

dim Length
unit m : Length
k = 1000

circumference = 40075 k m

Although exactly onanit variable of each dimension must not include a definitionepthariables are allowed to be
unit variables along with a definition. If multiple imported valies of a given dimension are declared tabie ,
all but one must be given a definition in the importing prog@mponent.
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2.5.5 Dimension parameters

Trait definitions are allowed to be parametric with respeca sequence of dimension parameters. Syntactically, a
parameter begins with the reserved wdird followed by a variable name, and occurs alongside otherpgpameter
declarations. For example, here is a function that is patréaneith respect to a dimension:

trait Coordinates [dim D]
nth(n:Int):D
end

These parameters are allowed to appear in any context thiaiegsion can appear.

2.5.6 Type aliases

Fortress allows names to serve as aliases for more compexrtgtantiations. Thigpe aliasbegins with the reserved
wordtype followed by the alias name, followed by followed by the type it stands for. Here are some examples:

type IntList = List [Int ]
type Area = Length 2
type BinOp = (Float, Float) — Float

All uses of type aliases are expanded before type checkiype dliases do not define nominal equivalence relations
among types. Type aliases must not be recursively defined.

2.5.7 Operator parameters on traits

Traits may be parameterized with respect to operator sysrdad names of methods. Syntactically, these parameters
occur along with other trait parameters and are prefixed thghreserved wordpr . Here are some examples:

trait UnaryOperator [T, opr OPR]
where { T extends UnaryOperator [T,OPR] }
OPR():T

end

trait BinaryOperator [T, opr OPR]
where { T extends BinaryOperator [T,OPR] }
OPR(that:T):T

end

trait UnaryPredicate [T, opr OPR]
where { T extends UnaryPredicate [T,OPR] }
OPR():Bool

end

trait BinaryPredicate [T, opr OPR]

where { T extends BinaryPredicate [T,OPR] }
OPR(that:T):Bool
end
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2.5.8 Parametric functions

Functions and methods are also allowed to be parametricrefipect to a sequence of traigt , and dimension
parameters. Syntactically, these trait parameters desllia white square brackets immediately before a fundion’
ordinary parameters. They are in scope in the entire bodeofrtethod definition, and are allowed to appear in all
contexts that ordinary types appear. Bounds may be put se fierameters inwhere clause occurring after all other
parts of the header of a function. For example, here is a sipgllymorphic function for creating lists:

List [T](rest: T...) where {T extends Object } =
do
length = rest.length()
if length = 0 then Empty
else Cons(rest[0], List(rest.asTuple(1, length - 1)) end
end

Here is a simple function that is parametric with respectdmzension:

square [dim D](x:D):D 2 = x2

2.5.9 Array types

Array types are written ag[ eo, e, ..., enm] WhereT is the type of the elements ard(0 < 7 < m) is either a
nat type corresponding to the size of th¢h dimension of the array or the range: n, meaning that an index of the
i-th dimension of the array is between (inclusive) andn, (exclusive).

2.5.10 Arrow types

Functions can be passed as arguments and returned as Vdiedgpes of function values are calladow types An
arrow type specifies the types of parameters to the fundiientypes of return values, and (optionally) the checked
exceptions of thrown values. Syntactically, an arrow typeuns in either of the following forms:

1. Positionally. The type consists of a sequence of parangtes in parentheses followed by the token
followed by a sequence of return types, and optionatlyeaws clause. Here are some examples:

(Float, Float) — Float
Int — (Int, Int) throws IOException

2. With keyword arguments. This form is like the positionairfi, except that some parameters have names. All
parameters with names are default parameters that shoghillbd with keyword arguments. For example:

(Int, Int, p:Printer) — Int

2.6 Overloading and Multiple Dispatch

Fortress allows functions and methods to be overloadedeidntext of a single lexical scope. Calls to overloaded
functions and methods are resolved via dynamic dispatcthisrsection, we define the mechanism for this dynamic
dispatch, and the restrictions placed on overloaded defisit First, we introduce some terminology.
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Recall that two traits can also be defined to be disjoint, ating to theirexcludes clauses. Therefore any two traits
AandB are related by exactly one of the following relationships:

equality A=B AisB
subtrait A < B Astrictly extends
supertrait A > B Bstrictly extendA

incompatible A| B Ais disjoint fromB
incomparable A~ B none of the above

We writeA < Bto mean thaf extendsB (that is,(A < B) VV (A = B)); similarly, we writeA > B to mean thaB extends
A(thatis,(A> B) V (A= B)).

Similarly, a trait can be defined to have a fixed set of immedsabtraits, according to it®unds clause.

We write Tt to mean a sequence aftypesT,Ts,...,T,, and we writeT* to mean a sequence af -+ 1 types
To,T1,To, .-, Tn. Henceforth we assume thatis the same for all sequences under discussion, restrigtingtten-

tion to only functions and methods that havparameters and to function calls and method calls thathavguments.
Everything that follows is true separately for each possildiue ofn. Method declarations, function declarations,
method calls, and function calls do not interact at all ifytheve different values fot. Functions and methods with
variable argument parameters must not be overloaded. &liwifunctions and methods with keyword parameters
must not be overloaded. However, there can be a single matith keyword parameters and with the same name as
a set of overloaded functions; calls to this function can &teinined syntactically, as keyword arguments are always
present. For brevity, we refer to functions and methodsdaatbe overloaded akispatched functions

Any two sequences of types are related by one of five relatipas

equality Tt=uUt Vi<i<n:T;=U;

more specific TT C Ut (V1 <i<n:T; <U;)andnotT™ = U™
less specific TH JUt (V1 <i<n:T;>U;)andnotT = U™
incompatible TT ||UT J1<i<n:T; || U

incomparable T+ ~ Ut none of the above

We writeA C Bto mean(A C B) V (A = B); similarly, we writeA J Bto mean(A 1 B) V (A = B).

A dispatched function is overloaded only with other dispattfunctions whose definitions appear in the same lexical
scope. If a dispatched function definition uses the same raeefunction or method in an enclosing scope, all
dispatched functions with that name in the enclosing scopesladowed; only functions of that name in the new
scope are accessible. When a subffaif a traitS defines a set of overloaded methddigiith the same name as a set
of overloaded methodd in S, the method® overridethe method# if and only if for every methodnin N there is

a methodmin M with the same signature; a call to such a method on an ofj&dgth trait T dispatches to a method

in N.

A declaration isvisiblefrom a given program poiri if it occurs in a trait definition or blocB that lexically contains
Z.

We writef(P +) to refer to a declaration for a function namiedvhose parameter types are the sequeticeBy an
abuse of notation, we similarly writi¢A *) to refer to a call to a function namédwhere the arguments given in the
call have (static) types™. By a further abuse of the notation, we writ® *) to describe a call to a function for
which the dynamic object types of the calculated actualments at run time argt. (Note that if the type system is
sound—which we certainly hope it is'—thert T AT C P*.) Context will distinguish which of these three cases are
meant.

A declarationf(P *) is more specifithan another declaratid@ *) iff P = Q".
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Adeclaratiorf(P ) isdynamically applicabl¢o a function calf(x *) with dynamic argument types' iff PT™ 3 XT.
A declarationf(P *) is statically applicableto a function calf(A *) with static argument types® iff PT J A*.

A declarationf(P ) is accessiblgo a function calf(x *) iff it is visible from the function call.

A declarationi(P *) is applicableto a function calf(X *) iff it is dynamically applicable to the function call.

The basic principle for a function call or method call, as @val is that we wish to identify a unique concrete dec-
laration that is the most specific among all declarations éin@ both accessible and applicable at the point of the
call. (However, the meanings of the terms “accessible” applicable” are slightly different for Fortress from their
meanings for Java.) If there is no such concrete declardtimof course an error; moreover, if there are two or more
such concrete declarations, no one of which is more speldit all the others, the call is said to&mbiguouswhich

is also an error.

Now we introduce a requirement on programs that is moreggrinthan in Java.

The Meet Rule (for functions): Suppose that two distinctlaietions for a function named are
accessible at some poigtin a Fortress progran¥Z(need not be the site of a function call); call these
two declarationg(P *) : R andf(Q *): ST, wherePt andQ" are the sequences of parameter types and
RT andS™ are the sequences of return types for the two declaratioms alstatic error if the following
condition does not hold:

either
PT | Q"
[parameter types are disjoint at some parameter position]
or
all three of
Vi<i<n: (P <QVP,=QVP; > Q)
[parameter types are comparable at all positions]
and
JN<i<n:P;#Q
[parameter types differ at some position]
and
there is a declaration visible froifor f(P * N Q"):T +, whereTt C RT AT+ C St
[if there is an ambiguity, a third declaration with more dfie@r equal return types must resolve it]

where themeetoperator on sequences of types is defined as

P; if P; <
P; if P, =
(PFIQh); =< Q if P; >
undefined ifP; ||
undefined ifP; ~

Yo ¥ oW o¥e)

Notice that this requirement makes no mention of any spduifiction call that might refer to such declarations. This
is in contrast to Java, where the prohibition against ambyigupplies only to method calls that actually appear in the
program.

Notice also that it may be th&™ n Q" = Pt or Pt 11 Q" = @', in which case the requirement that there be a
declaration forf(P * Q") is trivially satisfied, there is no ambiguity, and a sepathatel declaration is not needed
after all.

To put this requirement simply: static overloading ambigis forbidden. If two function declarations create the
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potential for an ambiguous function call because neithenase specific than the other, then there must be a third
function declaration that is more specific than either anekall the ambiguous cases.

(This requirement should not be difficult to obey, espegibkcause the compiler can give useful feedback. First
example:

foo(x:Num, y:Integer)
foo(x:Integer, y:Num)

Assuming thatnteger < Num the compiler reports that these two declarations are dgmobecause of ambiguity
and suggests that a new declarationfée(Integer, Integer) would resolve the ambiguity. Second example:

bar(x:Printable) = ...
bar(x:Throwable) = ...

Assuming thaPrintable ~ ~ Throwable , the compiler reports that these two declarations are agmobecause
Printable  andThrowable are incomparable but possibly overlapping types.)

Now consider a function calfX *) at some program poirf. Let A be the set of parameter type sequences of
function declarations df that are visible aZ and dynamically applicable to the call, and¥ebe the set of parameter
type sequences of function declarations dhat are visible fronZ and statically applicable to the call. Moreover,

let & be the subset of\ such thatvd € § : =3d’ € A\ {d} : d C d and leto be the subset oE such that
Vs€o:-3s' e B\ {s}:¢ Cs.

Claims (to be proved):

1 jo| <1
2. 16 <1
3. If || =1then|d| =1

4. If o = {s}andd = {d} thend C s
Put into words:

1. Itis impossible for a function call to be statically amidgis. (This is a consequence of the Meet Rule.)
2. ltis impossible for a function call to be dynamically agibus. (This is also a consequence of the Meet Rule.)

3. If there is a statically most specific applicable declaratthen there is a dynamically most specific applicable
declaration.

4. The parameter type sequence for the dynamically mostfepagplicable declaration is more specific than, or
the same as, the parameter type sequence for the staticatyspecific applicable declaration.

Therefore an implementation strategy may be used in whiehsthtically most specific applicable declaration is
identified at compile time, and the run-time dispatch megdmameed only consider dispatching among that declaration
plus declarations that are more specific than that deaterati
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2.6.1 Overloaded methods

Now we discuss additional rules for overloaded methods astthod calls.

A method call Xo.m(X*) is first resolved based on the runtime tyeof the receiver, and then by the runtime types
X+ of the arguments. When a subtrait of a traitP, defines a set of overloaded methadswith the same name as
a set of overloaded methodg in Py, the methodsV override the method3/ if and only if for every methodnin

N there is a methodhin M with the same signature. Furthermore, the signatures afaaded methods in a trait
definition must respect the same constraints as the sigisadfia set of overloaded functions.

2.7 Operator Fixity

Most operators in Fortress can be used variously as prefstfiypanfix, nofix, or multifix operators. (Some operators
can be used in pairs as enclosing (bracketing) operators-Seetion 2.8.) The Fortress language dictates only the
rules of syntax; whether an operator has a meaning when nsegarticular way depends only on whether there is a
definition in the program for that operator when used in tlzatipular way (see Section 3.4).

The fixity of a non-enclosing operator is determined by cxintdo the left of such an operator we may find (1) a
primary expression, (2) another operator, or (3) a comnmajcs#on, or left encloser. To the right we may find (1) a
primary expression, (2) another operator, (3) a comma,c@am, or right encloser, or (4) a line break. Considered
in all combinations, this makes twelve possibilities. Im&ocases one must also consider whether or not whitespace
separates the operator from what lies on either side. Tles nfloperator fixity are specified by Figure 2.1, where the
center column indicates the fixity that results from the &itl right context specified by the other columns:

left context whitespace| operator fixity whitespace right context
yes infix yes
primary yes error (ir_1fix) no primary
no postfix yes
no infix no
yes infix yes
primary yes error ("?ﬁx) no operator
no postfix yes
no infix no
primary yes error (pqstflx) , ; rightencloser
no postfix
primary yes |nf|x. line break
no postfix
operator prefix primary
operator prefix operator
operator error (nofix) , ; right encloser
operator error (nofix) line break
, ; left encloser prefix primary
, ; left encloser prefix operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (prefix) line break

Figure 2.1: Operator Fixity (1)

A case described in the center column of the table asreor is a static error; for such cases, the fixity mentioned
in parentheses is the recommended treatment of the opéwsatbe purpose of attempting to continuing the parse in
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search of other errors.

The table may seem complicated, but it all boils down to a appractical rules of thumb:

1. Anyoperator can be prefix, postfix, infix, or nofix.

2. An infix operator can bwose(having whitespace on both sides)tyht (having whitespace on neither side),
but it mustn’t belopsided(having whitspace on one side but not the other).

3. A postfix operator should have no whitespace before it hodld be followed (possibly after some whitespace)
by a comma, semicolon, right encloser, or line break.

See Section 2.1.10 for a discussion of how infix operators lmeaghained or treated as multifix operators.

2.8 Enclosing Operators

These operators are always used in pairs as enclosing ofgerat

(/ /) (\ \)
[ ] v 1 ASY 7
{ } { i HANEY; %
</ /> <\ \>
<</ [>> <<\ \>>

(ASCII encodings are shown here; they all correspond taquéar single Unicode characters.) There are other pairs
aswell,suchas |and[ 7.

These operators may also be used as enclosing operators:

| .| il
Il n n-m

Vo W WoW

but there is a trick to it, because on the face of it you caltvtbether any given occurrence is a left encloser or a
right encloser. Again, context is used to decide, this ticeeding to Figure 2.2:

This is very similar to the table in Section 2.7; a rough rdlthamb is that if an ordinary operator would be considered
a prefix operator, then one of these will be considered ahefioser; and if an ordinary operator would be considered
a postfix operator, then one of these will be considered a eigtioser.

In this manner, one may use | for absolute valueg, || for matrix norms, and // for continued fractions.

2.9 Operator Precedence

Fortress specifies that certain operators have higher gieace than certain other operators, so that one need not use
parentheses in all cases where operators are mixed in a@ssign. However, Fortress does not follow the practice of



48 CHAPTER 2. BASIC CONCEPTS

left context whitespace operator fixity whitespace right context
yes infix yes
primary yes _Ieft encloser no primary
no right encloser yes
no infix no
yes infix yes
primary yes !eft encloser no operator
no right encloser yes
no infix no
primary yes error (right encloser) , ; right encloser
no right encloser
primary yes |nf|x_ line break
no postfix
error (left encloser es .
operator ( ) y primary
left encloser no
error (left encloser es
operator ( ) y operator
left encloser no
operator error (nofix) , ; right encloser
operator error (nofix) line break
, ; left encloser left encloser primary
, ; left encloser left encloser operator
, ; leftencloser nofix , ; right encloser
, ; left encloser error (left encloser) line break

Figure 2.2: Operator Fixity (II)

other programming languages in simply assigning an integeach operator and then saying that the precedence of
any two operators can be compared by comparing their agbigtegers. Instead, Fortress relies on defining traditiona
groups of operators based on their meaning and shape, acifiegpspecific precedence relatonships between some
of these groups. If there is no specific precedence reldtiprisetween two operators, then parentheses must be
used. For example, Fortress does not accept the expressiob U c; one must write eitheta + b) U c or

a + (b U c). (Whether or not the result then makes any sense dependsairdefinitions have been made for the

+ andu operators—see Section 3.4.)

Here are the basic principles of operator precedence imgssrt

e Subscripting [ ] ), superscripting”(), member selection. §, method invocation.(namé . ..) ), and postfix
operators have higher precedence than any operator listed/bwithin this group, these operations are left-
associative (performed left-to-right).

e Tight juxtapositionthat is, juxtaposition without intervening whitespacas migher precedence than any oper-
ator listed below. The associativity of tight juxtapositis type-dependent; see Section 2.10.

e Next,tight fractions that is, the use of the operatér with no whitespace on either side, have higher precedence
than any operator listed below. The tight-fraction opar&ts no precedence compared with itself, so it is not
permitted to be used more than once in a tight fraction witlige of parentheses.

e Loose juxtapositiofthat is, juxtaposition with intervening whitespace, heghbr precedence than any operator
listed below. The associativity of loose juxtaposition ypd-dependent and is different from that for tight
juxtaposition; see Section 2.10.

e Prefix operators have higher precedence than any operstea helow.
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e The infix operators are partitioned into certain traditiagr@ups, as explained below.

e Binding and assignment operatots =, +=, -=, A=, V=, N=, U=, and so on) have lower precedence than any
operator listed above.

The majority of infix binary operators are divided into fougrgral categories: arithmetic, relational, boolean, and
other. The arithmetic operators are further categorizeddsplication/division/intersection, addition/sulttion/union,
and other. The relational operators are further categb@meequivalence, inequivalence, chaining, and other. The
boolean operators are further categorized as conjundlisinctive, and other.

The arithmetic and relational operators are further dditiéo groups based on shape:

e “plain” operatorsi+ — - x /[t F PO OROHEHEIK<<>> <K K> > £ £ # 4 etc.
e “rounded” or “set” operatorsn M UUBW CC DD ED ¢ ¢ 2 2 etc.

e “square” operatorsti LI C C J 1 £ A etc.

e “curly” operators:A Y < <X = > A & # etc.

e “triangular” relations:<t < > > 4 £ IF 1% etc.

¢ “chickenfoot” relations:< > etc.
The principles of precedence for binary operators are tsdallws:

e A multiplication or division or intersection operator haglier precedence than any addition or subtraction or
union operator that is in the same shape group.

¢ Certain addition and subtraction operators come in paih as+ and—, or ¢ ands, which are considered to
have the same precedence and so may be mixed within an exprassl are grouped left-associatively. These
addition-subtraction pairs are tlomly cases where two different operators are considered to haveame
precedence.

¢ An arithmetic operator has higher precedence than any &lguiee or inequivalence operator.
e An arithmetic operator has higher precedence than anyaeédtoperator that is in the same shape group.
¢ Arelational operator has higher precedence than any bodlgerator.

e A conjunctive boolean operator has higher precedence thadisjunctive boolean operator.

While the rules of precedence are complicated, they aradei to be both unsurprising and conservative. Note that
operator precedence in Fotrress is not always transitivexfample, while- has higher precedence thafso you can
write a + b < ¢ without parentheses), ardhas higher precedence tham(so you can writea < b OR ¢ < d
without parentheses), it mttrue that+ has higher precedence thaR—the expressioa OR b + cis not permitted,
and one must instead write OR b) + ¢ ora OR (b + c) .

Another point is that the various multiplication and dieisioperators daot have “the same precedence”; they may
not be mixed freely with each other. For example, one canmidéw - v x w; one must writqu - v) x wor
(more likely)u - (v x w). Similarly, one cannot writa. - b / ¢ - d; but juxtaposition does bind more tightly
than a loose (whitespace-surrounded) division slash, edsoallowed to writea b / ¢ d , and this means the same
as(a b)/(c d) . Onthe other hand, loose juxtaposition binds less tightinta tight division slash, so thatb/c d
means the same as(b/c) d . On the other other hand, tight juxtaposition binds morbttjgthan tight division, so
that(n+1)/(n+2)(n+3) means the same &s+1)/((n+2)(n+3))
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There are two additional rules intended to catch misleadodg: it is a static error for an operand of a tight infix
operator to be a loose juxtaposition, and it is a static dfrtire rules of precedence determine that a use of infix
operatora has higher precedence than a use of infix opeiatbut that particular use af is loose and that particular
use ofb is tight. Thus, for example, the expressiim x + y is permitted, busin x+y is not permitted. Similarly,
the expressiom - b + c is permitted, as ara-b + c anda-b+c, buta - b+c is not permitted. (The rule detects
only the presence or absence of whitespace, not the amowtitelspace, sa - b + c is permitted. You have to
draw the line somewhere.)

When in doubt, just use parentheses. If there’s a probleacdampiler will (probably) let you know.

2.10 Interpretation of Juxtapositions

The manner in which a juxtaposition of three or more itemsautthbe associated requires type information and aware-
ness of whitespace. (This is an inherent property of custpmmeathematical notation, which Fortress designed to
emulate where feasible.) Therefore a Fortress compilet praduce a provisional parse in which such multi-element
juxtapositions are held in abeyance, then perform a typlysisan each element and use that information to rewrite
the n-ary juxtaposition into a tree of binary juxtaposigoill we need to know is whether each element of a juxtapo-
sition is a function.

A loose juxtaposition is reassociated as follows:
First the loose juxtaposition is broken into chunks; wherebere is a non-function element followed by a

function element, the latter begins a new chunk. Thus a cluanisists of some number (possibly zero) of
functions followed by some number (possibly zero) of nonetions.

The non-functions in each chunk, if any, are replaced byglesglement consisting of the non-functions grouped
left-associatively into binary juxtapositions.

What remains in each chunk is then grouped right-assoelgtiv

Finally, the sequence of rewritten chunks is grouped Iefaiatively.

(Notice that no analysis of the types of newly constructash&s is needed during this process.)

Here is an examplen (n+1) sin 3 n x log log x . Assuming thasin andlog name functions in the usual
manner and that, (n+1) , andx are not functions, this loose juxtaposition splits intcethichunks:n (n+1) and
sin 3 n x andlog log x . The first chunk has only two elements and needs no furthesoe&tion. In the second
chunk, the non-function3 n x are replaced by3 n) x) . In the third chunk, there is only one non-function, so
that remains unchanged; the chunk is the right-associatéatin (log (log x)) . Finally, the three chunks are
left-associated, to produce the final interpretation (n+1)) (sin ((3 n) x))) (log (log X)) . Now the
original juxtaposition has been reduced to binary juxt@posexpressions.

A tight juxtaposition follows a different strategy:

e If the tight juxtaposition contains no function element,ifoonly the last element is a function, go on to the
next step. Otherwise, consider the leftmost function elgraed examine the element that follows it. If that
latter element is not parenthesized, it is a static errtwemtise, replace the two elements with a single element
consisting of a new juxtaposition of the two elements (inghee order), and perform a type analysis on this
new juxtaposition. Then repeat this step on the originaigpasition (which is now one element shorter).

e Left-associate the remaining elements of the juxtapasitio
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(Note that this process requires type analysis of newlyteceehunks along the way.)

Here is an (admittedly contrived) examplezduce(f)(a)(x+1)sqrt(x+2) . Suppose thateduce is a curried
function that accepts a functidnand returns a function that can be applied to an aardthe idea is to use the
function f, which ought to take two arguments, to combine the elemetleoarray to produce an accumulated
result).

The leftmost function iseduce , and the following elemer(f) is parenthesized, so the two elements are replaced

with one: (reduce(f))(a)(x+1)sqrt(x+2) . Now type analysis determines that the elenm(esttuce(f)) is a
function.

The leftmost function igreduce(f)) , and the following element) is parenthesized, so the two elements are re-
placed with one((reduce(f))(a))(x+1)sqrt(x+2) . Now type analysis determines that the elenggatiuce(f))(a))

is not a function.

The leftmost function igsqrt) , and the following elemenk+2) is parenthesized, so the two elements are replaced
with one: ((reduce(f))(a))(x+1)(sqrt(x+2)) . Now type analysis determines that the elenieai(x+2))
is not a function.

There are no functions remaining in the juxtaposition, gorédmaining elements are left-associated:

(((reduce(f))(a))(x+1))(sqrt(x+2))
Now the original juxtaposition has been reduced to binaxygposition expressions.

2.11 Tests

Thetest modifier on a function or variable definition indicates thatipart of the test suite of a component, and
can be referred to by other parts of the test suite. A testtimmd¢hat takes no arguments is run by default when a
component is tested. For example, we can write the followegy short) test function folactorial

test testFactorial() = d
assert(factorial(0)
assert(factorial(5)

end

(0]
=1
=1

)
20)

(This function makes use of the functiassert , provided in the Fortress standard library).

A test function may also be called directly on a componerth) ah appropriate set of arguments passed tatling
specific test functions directly can be used to form smadistrguites.

If a variable definition includes the modifiesst , then the value of that variable is used as a test case. Tedidos
that have one or more parameters are called with every patimiof test cases whose types are compatible with the
functions’ parameters.

test zero = 0O
test one = 1
test five = 5

test factorial(x,y) =
if x >y then
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assert factorial(x) > factorial(y)
end

If an object definition includes the modifiezst , then the methods of that object with modifiest are run when
the enclosing component is tested. The test cases apgliaaldrguments to the test methods of the object consist of
all test cases in the enclosing scope along with all fielde@bbject with modifietest .

test object TestFactorial
test zero = 0
test one
test five

=1

=5

test factorial() = do
assert(factorial(0) = 1)

assert(factorial(5) = 120)
end

test factorial(x,y) =
if x > y then
assert factorial(x) > factorial(y)
end
end

If the object definition is parametric, then it is instargidtvith every valid permutation of test cases from the emaips
scope, and the test methods of each instantiation are rulhalid permutations of test case arguments.

The parts of a program without modifist must not refer to those with thest modifier.



Chapter 3

Advanced Language Constructs

In this section, we build on the basic Fortress language exsrto develop more advanced aspects of the language.
In particular, we describe the semantics of parallelismsmgport for domain-specific languages. First, however, we
define the context in which a Fortress program executes.

3.1 Execution Model

All Fortress programs are executed in the context fafriiess which encompasses the functionality of a virtual ma-
chine, as well as handling the components system, as dedénlChapter 4. Fortresses are responsible for managing
the execution of processes, and can run multiple procesaaianeously.

3.1.1 Processes

A Fortress process is created wheneverttezute operation is invoked within a fortress (see 4.3). This nescpss
object executes the code in tec method of the specified component.

In the execution of a Fortress process, there is a sttreddsand a set ofegions Every Fortress object resides in
some region; those objects are in close proximity with resfmecommunication cost.

Threads are objects, and thus every thread also residesnia egion. A thread consists ofcantinuationP, de-
scribing the remainder of the computation tfatmust complete, and an environment which maps variabld? o
objects.

Regions are objects which are grouped hierarchically tmfatree; this tree reflects the relative locality of the ragio

it contains. Every pair of regions has a common ancestordrirthe, reflecting the degree of locality those locations
share. The different levels of this tree reflect underlyirgchine structure, such as threads within a CPU, memory
shared by a group of processors, or resources distributedsathe entire machine.

53
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3.2 Parallelism and Locality

Fortress is designed to make parallel programming as sianpdleas painless as possible. We adopt a multi-tiered
approach to parallelism:

e At the highest level, we provide libraries which allocatedbity-aware distributed arrays (Section 3.2.1) and
syntax to perform parallel looping (Section 3.2.2). Our o$egarallelfor loops is intended to maximize
available parallelism; this leads to computations witk laftslack (Section 3.2.3) which are easy to load balance.

e Immediately below that, we provide syntax for spawning afrblock as a new thread (Section 3.2.4), and
for synchronization using transactional memory accessti@e3.2.5).

e There is an extensive library distributions which permit the programmer to specify locality and datrdi
bution explicitly (Section 3.2.7).

e Finally, there are mechanisms for constructing new digtidims via recursive subdivision (Section 3.2.8) of
index spaces into tree structures with individual indicesha leaves. These mechanisms are grounded in
fundamental data structures suctRegion andLinearStorage  (Section 3.2.9).

We approach these from the highest level to the lowest |&Ved.lowest level is bare-metal programming and best left
until the end.

3.2.1 Arrays are distributed by default

Arrays in Fortress are assumed to be spread out across then@ad.ike arrays in Fortran, Fortress arrays are
complex data structures; simple linear storage is encagsliby thelinearStorage  type, which is used in the
implementation of arrays (see Section 3.2.9). The deféstlibution of an array is determined by the Fortress lilesr

in general it will depend on the size of the array, and on the and locality characteristics of the machine running
the program. For advanced users, the distribution libreatydduced in Section 3.2.7) provides a way of combining
and pivoting distributions, or of re-distributing two aygaso that their distributions match. Arrays can be creajed b
calling a factory function:

a = array(xSize, ySize, zSize)

Note that matrices and vectors are subtypes of arrays. Tieegllacated and distributed in the same way, but also
define arithmetic operations such as multiplication andteoid

3.2.2 Thef or loop is parallel by default

Generator is a trait in Fortress. Some common generators include:

I#n n consecutive integers beginning with
a.indices() The index set of an array

Theindices generator is of particular interest. Given a multidimensloarray, it returns multiple values. The
parallelism of a loop on this generator follows the spatisdribution of the array as closely as possible.
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By default, loop iterations are assumed to run in paralldéle Sequential  distribution can be used to change this
behavior (Section 3.2.7). For a parallel loop, the ordereastimg of generators does not imply anything about the
relative order of nesting of loop iterations. In most casedltiple generators are equivalent to multiple nestedsoop

for vy « g1 do
for vy « g9 do

for v, « g, do
exprs
end

end
end

The compiler will make an effort to choose the best posstblafion order it can for a multiple-generator loop. There
may be no such guarantee for nested loops. Thus loops witlipfeudenerators are preferable in general:

for v « ¢
V2 < 02

v, ¢ gn do
exprs
end

In both cases generated variablescope over subsequent generatgrs. and over the loop body.

Iterations may be re-structured to eliminate colliding elggencies, reductions may be localized as described in Sec-
tion 3.2.6, parallel iterations may be serialized, setiatations may be parallelized, and so forth, so long as the
compiled code executes if it matched the given source code.

Any loop iteration may throw an exception. In this case, taplas a whole throws an exception; every loop iteration
either runs to completion, does not run at all, or runs uhthicounters an exception. The exception thrown by the
loop can be any one of the exceptions thrown by individuaplderations. In this respect nested loops have very
different exception behavior from a single multiple-gexter loop.

3.2.3 Slack

Different iterations of a loop body may execute in very diffiet amounts of time. A naively parallelized loop will
cause processors to idle until every iteration finishes. siimplest way to mitigate this delay is to expose substdwntial
more parallel units of work than there are threads to run tHeyad balancing can move the resulting (smaller) units
of work onto idle processors to balance load.

The ratio between available work and number of threads ibeldparallel slackby Blumofe [3, 4]. With support for
very lightweight threading and load balancing, slack indneds or thousands proves beneficial; very slack computa-
tions easily adapt to differences in the number of availpbbeessors. The Fortress programmer should be aware that
slack is a desirable property, and endeavor to expose gigallwhere possible.

Note that there is no particular need for slack in array laycept the desire to collocate data and computation.
In general, we expect the structure of a distributed arrayet@onsiderably simpler (and coarser-grained) than the
equivalent generator. The built-in distributions accdonthis difference of granularity.
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3.2.4 Parallel threads

We can spawn a block of code in parallel as follows:

v = spawn do
exprs
end

Here the block of code represented éxprsis run in parallel with any succeeding computation. We réder as
athread Every thread returns a value (though that value mighf)be We writev.value()  to obtain the value
computed byexprs If threadv has not yet completed executionyalue()  will wait until it has done so. When
exprsdo not return a value, but are executed purely for effect, \&g aptionally omit the binding for—but note in
this case that there will be no simple way to detect the teaition of the block.

In the absence of sufficient parallel resources, the comgiecuteexprsbefore continuing execution of the code in
which thespawn occurred. We can imagine that it is actually thetof the computatiomfter the parallel block which

is spawned off in parallel. This is a subtle technical pdint, makes the sequential execution of parallel code simpler
to understand, and avoids subtle problems with the asym@oace behavior of parallel code [18, 11].

When a parallel block throws an exception, that exceptioteiferred Any invocation ofv.value()  throws the
deferred exception. If the value of the thread is discarttezlexception itself will be silently ignored.

Note that parallel loop iterations conceptually occur ipasate threads. The necessary synchronization for these
threads is performed by the compiler and runtime system.

3.2.5 Transactions

It is often convenient to imagine that a thread or a portioa tiiread behavesansactionally all reads and writes
appear to occur simultaneously in a single atomic step. Risrggurpose, Fortress providasomic blocks. For
example:

arraySum [N extends Additive, nat x J(@N[x]):N = do
sum:N = 0
for i <«a.indices() do
atomic do sum:=sum+a[i] end
end
sum
end

Very long transactions can degrade performance. Two tcéinsaconflictwhen one attempts to read or write state
written by the other. When transactions conflict, their exien must be partially serialized. The exact mechanism by
which this occurs will vary; the serialization is provideg the implementation of transactional memory. In general,
the execution of one or both transactions may be abandasitdgback any state changes which might have occurred,
and requiring that transaction to be re-run. The longerrstaation runs and the more memory it touches the greater
the chance of conflict and the larger the bottleneck that ibmflay impose.

Fortress provides a user-lewdlort()  function which abandons execution of a transaction and batk its changes,
again requiring the transaction to be re-run. This permitamsaction to perform consistency checks before commit-
ting.
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Fortress also includesteyatomic ~ construct, which attempts to run its body atomically. Ifutseeds, the result is
returned; if the transaction aborts, either due to conflichee to a call tabort , theTransactionFailed exception
is thrown. Conceptuallgtomic can be defined in terms afatomic ~ as follows:

label AtomicBlock
while True do
try
result = tryatomic do body end
exit AtomicBlock with result
catch e
TransactionFailed = () (* continue execution *)
end
end
throw(UnreachableCode)
end AtomicBlock

Transactions may be nested arbitrarily; semanticallyeiiransactions appear atomic within the scope in which they
occur. Unlessryatomic  is used, this has no particular semantic impact: erasingragratomic block can affect
the performance, but not the correctness, of a program.

When an exception of any kind is thrown from withinatamic block or atryatomic  block, and is not caught within
the block, the transaction fails. The exception continagedpagate to the enclosing context—uniBssisactionFailed

is thrown from inside amtomic block, in which case the transaction retries. All side @fd¢o previously-allocated
objects are discarded. Side effects to newly-allocatedatbjare retained (these objects will be local; see the next
section). A local variable reverts to the value it held beftbre transaction began.

We do not provide input and output in the context of a trarieagthus, we may only call aie function from outside
anatomic block. Similarly, we do not provide nested parallelism i ttontext of a transaction. An interesting
exception is within gure function: since these functions have no visible side efféste Chapter 2), such a function
may contain arbitrary parallelism, even if it occurs withine scope of amtomic block. Thus, onlypure andio
functions may contain parallel blocks or paraft@l loops.

It is not difficult to assign a semantics to arbitrary nestirg parallelism and transactions, permitting parallelism
everywhere—even insicdomic blocks. However, at the moment no efficient implementaticetsgy is known. As
a result, we defer transactions with npme nested parallelism to future work.

3.2.6 Shared and local data

Every datum (function or object) in a Fortress program isstered to be eithesharedor local (collectively referred
to as thesharednesef the datum). A local datum is accessible to at most one ngithiread. It may be accessed more
cheaply than a shared datum, particularly in the case afactional reads and writes.

The following rules govern sharedness:

e Data are considered to be local by default.
e The sharedness of a datum can change on the fly.
¢ If a datum is transitively reachable from more than one tthisgaa time, it must be shared.

e When a reference to a local datum is stored into a shared d@ayrfield assignment to a shared objects, or
by assigning to a mutable variable closed over by a sharettifum), the local datum must beublished Its
sharedness is changed to shared, and all of the data to whéfbrs is also published.
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e Local variables referenced by a thread must be publisheafdéfiat thread may be run in parallel with the
thread which spawned it.

e Datain a field or closed-over variable of value type is assigoy copying, and thus has the sharedness of the
containing object or closure.

The sharedness of a datum should only matter for performaungeses. Publishing can be expensive, particularly if
the structure being broadcast is large and heavily nesiisdzan cause an apparently short transaction (a single,writ
say) to run arbitrarily long. To avoid this, the programman cequest that an object be allocated as shared by tagging
a call to the factory:

x = shared Cons(x, xs)

A datum can be published early as follows:

publish(x)

A local copy of an object can be obtained by copying it:

localVar := sharedVar.copy()

Note that function closures may not be localized by copying.

The functionality described so far is solely a performangtnaization; we can't tell whether a given datum is shared
or local, and sharedness will not make a difference to prograritten using only these constructs. Two additional
methods are provided whiatanchange program behavior based on the sharedness of objects:

e o.isShared() returns true whem is shared, and false when it is local. This permits the progra take
different actions based on sharedness; it should be ushaaition.

e o.localizeNoCopy() is equivalent to the following expression:
if o.isShared() then o.copy() else o end

localizeNoCopy  can have unexpected behavior if there is a referenodram another local object. Publish-
ing that object will cause to be published; updates towill be visible through the other object. By contrast, if
o was already shared, and referred to by another shared gibjectewly-localized copy will be entirely distinct.

In order to perform computations as locally as possible,amid the need to serialize relatively simfite loops,
Fortress gives special treatmentremuctions A reduction is a commutative, associative binary openatigth an
identity (an abelian monoid) and is captured by the follayfirait:

trait Reduction [T]
op(l : T, r:T): T
identity() : T

end

A loop body may contain as many of the following reductionslesired:
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r.op(l,value)
r.op(value,l)

As long as every assignment uses the same reductiand the value of is not otherwise used in the loop body, we
sayl is reduced using.

Several common mathematical operators are also treatedlastions. These include *, AND OR andXOR Note
that since there are no guarantees on the order of execitioopoiterations, there are also no guarantees on the order
of reduction.

Reductions are treated roughly as in OpenMP [21]. The logaéblel is assigned.identity() at the beginning

of the loop body or block. At the end of the loop or block, theoral variable value before the loop and the final
variable values from each execution of the loop body are @oacbtogether using the reduction operator, in some
arbitrarily-determined order.

Consider thearraySum example from the previous section:

arraySum [N extends Additive, nat x J(@N[x]):N = do
sum:N = 0
for i <«+a.indices() do
atomic do sum:=sum-+ali] end
end
sum
end

Here the variableumis reduced, so this loop is equivalent to the following code:

arraySum [N extends Additive, nat x J(@N[x]):N = do
sum:N = 0
for i <«a.indices() do
var temp:N
atomic do
temp:=a[i]
end
sum:=sum-+temp
end
sum
end

3.2.7 Distributions

Most of the heavy lifting in Fortress is performed 8igtributionsand parallel blocks. The job of a distribution is to
impose parallel structure on generators, and to providéhiallocation and distribution of arrays on the machine.

An instance of traiDistribution describes the placement of data or computation on a machibéstribution

acts as a transducer for generators and for arrays. It capiesray, re-distributing its elements as it does so. It
organizes the data produced by a generator into the leaveesreé whose inner nodes correspond (conceptually) to
the levels of parallelism and locality on the underlying imae. Thus, a distribution does the hard work of splitting
data up and distributing it over the machine.
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The intention of distributions is to separate the task ofdistribution and program correctness. That is, it shoald b
possible to write and debug a perfectly acceptable panadtgiram using only the default data distribution provided
by the system. Imposing a distribution on particular corapans, or designing and implementing distributions from
scratch, is a task left for performance tuning.

A distribution also acts as a factory for generators andyarraNe can think of these factories as being defined
in terms of transducers and the built-in default factory hods. This is the default implementation provided by
the Distribution trait; built-in distributions will usually override thigriplementation and construct arrays and
generators directly.

There is alefault  distribution which is defined by the underlying system. Tdigribution is designed to be reason-
ably adaptable to different system scales and archites;tatéhe potential cost of some runtime efficiency. Arrayd an
generators which are not explicitly allocated through #rithistion are given thelefault  distribution. Thusarray

is merely a convenient shorthand ftefault.array

We said in Section 3.2.2 that there is a generatdices , associated with every array. This generator is distribute
in the same way as the array itself. When we re-distributeray,ave also re-distribute the generator.

There are a number of built-in distributions:

default Name for distribution chosen by system.
sequential Sequential distribution. Arrays are allocated in one pafamemory.
local Equivalent tosequential
par Blocked into chunks of size 1.
blocked Blocked into roughly equal chunks.
blocked( mn) Blocked inton roughly equal chunks.
subdivided Chopped int@*-sized chunks, recursively.
interleaved(  di, d»,... d,) The firstn dimensions are distributed according#o..d,,
with subdivision alternating among dimensions.
joined(  di, da,... dn) The firstn dimensions are distributed according#o. .d,,

subdividing completely in each dimension before procegtirthe next.
From these, a number of composed distributions are provided
morton ,, Bit-interleaved Morton order [19], recursive subdivision
in n dimensions. Local in remaining dimensions.
blocked( =z1, z2,... z,) Blocked inn dimensions intac; chunks in dimensio#;

remaining dimensions (if any) are local.

To allocate an array which is local to a single thread (andtrikely allocated in contiguous storage), theal
distribution can be used:

a = local.array(xSize, ySize, zSize)

Other distributions can be requested in a similar way.

A generatory can be made sequential simply by sequentializing the bigtan as follows:
v < sequential( g)

Note that at the moment there is no way to tell the compilentigareally mean it when we ask for sequentiality, as op-
posed to saying that we should preserve sequential semalmtifuture, we may distinguishcal andsequential
distributions for this purpose.
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Distributions can be constructed and given names:

spatialDist = blocked(n,n,1) (* Pencils along the z axis *)
spaceVecs = spatialDist.array(n,n,n,5) :Double[n, n, n, 5 ]
spaceMats = spatialDist.array(n,n,n,5,5):Double[n, n, n , 5, 5]

The system will lay out arrays with the same distributionhie same way in memory (as much as this is feasible),
and will run loops with the same distribution in the same was/fiuch as this is feasible). By contrast, this code will
likely divide up the arrays into the same-sized pieces asalit these pieces need not be collocated:

spaceVecs
spaceMats

blocked(n,n,1).array(n,n,n,5) :Double[n, n, n, 5]
blocked(n,n,1).array(n,n,n,5,5):Double[n, n, n, 5 5]

3.2.8 Recursive subdivision

Internally, generators accomplish their taskrbgursive subdivisionThis subdivision is guided by the distribution. It

is possible to write computations which follow this recuesstructure directly. We can view the pattern of recursive
calls used by a generator as a tree with arbitrary fanouthétdaves are sequential loops over index space. Interior
nodes represent recursive subdivision. Thus, we can brpakadlel generator into a series of sequential generators.
Interior nodes generate a series of generators (childréreafurrent generator). Leaf nodes generate the actuas/alu
produced by the iterator. Thus, the following code followue structure of a generator recursively, and sums the
generated values:

recSum(gen : Generator [Int ]) : Int = do
sum : Int := 0
if (gen.isSequential) then

for i <« gen do
sum += |
end
else

for childGen + gen.children() do
sum += recSum(childGen)
end
end
sum
end

This can be parallelized as follows. Note the use ofghe distribution to make every iteration of the sequential
generatogen.children() run in parallel, and the use of a simple reduction on the fégigum.

recSum(gen : Generator [Int ]) : Int = do
sum : Int := 0
if (gen.isSequential) then

for i <+ gen do
sum += |
end
else

for childGen + par(gen.children()) do
sum += recSum(childGen)
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end
end
sum
end

Properties of known distributions may be exploited in thesyvto do complex restructuring of generated traversals.
This mechanism lies at the heart of the Fortress loop cotigilatrategy.

3.2.9 Primitives for constructing distributions

Every object reference, including a thread, and every &Andgx pair, has a corresponding region (see Section 3.1.1)
For an array, the region of the array will contain the regibarmy element of that array. In an array of references the
region of an array element may be different from the regiothefobject referred to by that element.

Non-array objects are allocated in a region whigtlocalTo  the region in which their constructor is run, unless they
are produced by a factory with an appropriate region argtiiremwhich case the factory itself embeds a parallel block
which constructs the object in the appropriate region).

A thread can be placed in a particular region by providing tegion as an argument $pawn:

Vv = spawn region(a,i) do
ali]
end
w = spawn v.region() do
v.value() * 17
end

Here the spawned thread is sent to the indicated region. Gtign continues locally immediately after the spawned
region, regardless of the current load on the machine. Byrasity an ordinary unplaced spawn executes the spawned
code first, and optionally ships the region after the spavantither processor for execution.

Finally, Fortress provides thenearStorage  data type.LinearStorage  represents contiguous, one-dimensional,
zero-indexed memory. Arrays in Fortress are constructemh individual pieces ofinearStorage , plus objects
representing dope vectors and so forth. AgainearStorage is allocated in the region from which it is requested.

Recall that regions are organized into a tree-structurehghy. Objects are placed at an appropriate level of taat h
archy when they are created. For example, the region of adhreght refer to the particular processor core on which
it is run, or to the multi-threaded CPU which contains thakecd he region of a data object may, by contrast, refer to
the shared memory on one node of a large multiprocessor., While the memory is local to a particular thread, it
might be local to many other threads as well. Thasregion andthread.region need not be equal wheaf

is allocated bythread . However, it should be the case thetregion.isLocalTo(thread.region) —that is,
ref.region will be a transitive parent ahread.region in region hierarchy.

3.3 Matrix Unpasting

Matrix unpasting is an extension of variable declarationtay as a shorthand for breaking a matrix into parts. On
the left-hand-side of a declaration, what looks like a mgbasting of unbound variables serves to break the right-
hand side into pieces and bind the pieces to the variablds.syhtax is concise, eliminates several opportunities for
fencepost errors, guarantees unaliased parts, and aw@dspecification of how the matrix should be taken apart.
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The motivating example for matrix unpasting is cache-ablig matrix multiplication. The general plan in a cache

oblivious algorithm is to break the input apart on its latghsiension, and recursively attack the resulting smalter a
more compact problems.

mnjnat m, nat n, nat p  J(leftT[m x n], right:T[n x p], result:T[m x p)):() = do
case largest of
1 = result[0,0] += (left[0,0] right[0,0])
m = [ lefttop
leftbottom ] = left
[ resulttop
resultbottom ] = result
tl = spawn do mm(lefttop, right, resulttop) end
mm(leftbottom, right, resultbottom)
t1.wait()
p = [ rightleft rightright ] right
[ resultleft resultright ] result
tl = spawn do mm(left, rightleft, resultleft) end
mm(left, rightright, resultright)
t1.wait()
n = [ leftleft leftright ] = left
[ righttop
rightbottom ] = right
mm(leftleft , righttop , result)
mm(leftright, rightbottom, result)

end
end

In unpasting, the element syntax is slightly enhanced bmihetmit some specification of the split location and to
receive information about the split that was performed. é&s@mple, perhaps only the upper left square of a matrix is
interesting. The programmer can add array bounds to thesgupasted element:

foo(A:T[m  x n]):() = do
if  m < n then
[ square:[m x m] rest ] = A

elif m > n then
[ square:[n x N
rest ]=A

else (* A already square *)

end
end
If an unpasting into explicitly sized pieces does not eyaotiver the right-hand-side matrix, an exception is thrown.
An element’slow#high extent specification establishes the origin for the padmfthe array. The lower extent

must be bound, either before the unpasting, or earlier@leétbove) in the unpasting. For example, suppose that an
algorithm chooses to break an array into 4 pieces, but rétaioriginal indices for each piece:

bar [nat p, nat g [(X:T[rO#p x c0#q]):() = do
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[ A[rO#m x cO#n] B[rO#m x c0+n#q-n]
C[rO+m#p-m x cO#n] D[rO+m#p-m x cO+n#q-n] ] = X

end

Unpasting currently does not directly support non-unifai@eomposition, and does not provide any sort of constraint
satisfaction between the extents of the parts. Thus, tlierdposition would not be legal because it constrains the
split sizes to be equal without specifying the actual size.

fubar [nat m, nat n J(X:T[m x n]):() = do
(* p and g unbound *)
[ Alp x q] Blp x q]
Clp x gl D[p x ql ] =X

end
To get this effect, the programmer should compute the caingtd values:

fubar [nat m, nat n J(X:T[m x n]):() = do
[ AiIm/2  x n/2] B[m/2 x Nn/2]
C[m/2 x n/2] D[m/2 x n/l2] 1] =X

end
Some non-uniform unpastings can be obtained with compasitvhich can be expressed either by repeated unpasting:

unequalRows [nat m, nat n J(X:T[m x n]):() = do
[ clIm x n/2] c2m x n/2] ] = x
[ Al mi4 x n/2]

C[Bm/4 x n/2] ] = cl
[ B[B3m/4 x n/2]
D[ m/4 x n/2] ] = c2

end
or simply by nesting matrices in the antipasting:

unequalColumns [nat m, nat n J(X:T[m x n]):() = do
[ [ AIm2 x n/4] B[m/2 x 3n/4] ]
[ CIm/2 x 3n/4] DIm/2 x ni4]1]=X

end

3.4 Operator Definitions

An operator definition may appear anywhere a function déimimay appear. Such definitions are like function
definitions in all respects except that an operator defimitias the reserved worghr and has an operator instead of
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an identifier. The precise placement of the operator withédefinition depends on the fixity of the operator. Just as
functions may be overloaded, so operators may have overdbdefinitions, of the same or differing fixities.

An operator definition has one of five forms: infix/multifix opeor definition, prefix operator definition, postfix
operator definition, nofix operator definition, and brackgperator definition. Each is invoked according to specific
rules of syntax.

3.4.1 Infix/multifix operator definitions

An infix/multifix operator definition has the reserved wangk and then an operator where a function or method

definition would have an identifier. The definition must novdany keyword parameters, and must be capable of
accepting at least two arguments. It is permissible to use aparameter; in fact, this is a good way to define a

multifix operator. Type parameters may also be present,dmtihe operator and the parameter list. Example:

opr MAX|T extends Rational Jx:T,y:T):T = if x >y then x else y end

An expression consisting of an infix operator applied to gression will invoke an infix/multifix operator definition.
The compiler considers all infix/multifix operator definitfor that operator that are both accessible and applicable
and the most specific operator definition is chosen accorirte usual rules for functions. If the expression is
actually multifix, the invocation will pass more than two angents.

An infix/multifix operator definition may also be invoked by gefix or nofix (but not a postfix) operator application
if the definition is applicable.

Note that superscripting § may be defined using an infix operator definition even thotighs very high precedence
and cannot be used as a multifix operator. (An operator definfbr superscripting should have exactly two value
parameters.)

3.4.2 Prefix operator definitions

A prefix operator definition has the keywoogr and then an operator where a function definition would have an
identifier. The definition must have one value parameterckvhiust not be a keyword parameter..or parameter.
Type parameters may also be present, between the operdttiteaparameter list. Example:

opr “(x:Widget):Widget = x.invert()

An expression consisting of a prefix operator applied to gression will invoke a prefix operator definition. The
compiler considers all prefix and infix/multifix operator aétfions for that operator that are both accessible and -appli
cable, and the most specific operator definition is choseordirty to the usual rules for functions.

3.4.3 Postfix operator definitions

A postfix operator definition has the keywasdr where a function definition would have an identifier; the eper
itself followsthe parameter list. The definition must have one value paemnvehich must not be a keyword parameter
or .. parameter. Type parameters may also be present, betweeastryed worcbpr and the parameter list.
Example:
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opr (n:Integer)! = PRODUCT]i «Ln]i (* factorial *)

An expression consisting of a postfix operator applied taragmy expression will invoke a postfix operator definition.
The compiler considers all postfix operator definitions fattoperator that are both accessible and applicable, and
the most specific operator definition is chosen accordinggasual rules for functions.

3.4.4 Nofix operator definitions

A nofix operator definition has the keyworgr and then an operator where a function definition would have an
identifier. The definition must have no parameters. Example:

opr () = ImplicitRange

An expression consisting only of a nofix operator will invak@ofix operator definition. The compiler considers all
nofix and infix/multifix operator definitions for that operathat are both accessible and applicable, and the most
specific operator definition is chosen according to the usies for functions.

Uses for nofix operators are rare, but those rare examplaggraiseful. For example, the colon operator is used to
construct subscripting ranges, and it is the nofix definitibn that a lone to be used as a subscript.

3.4.5 Bracketing operator definitions

A bracketing operator definition has the reserved wagnd where a function definition would have an identifier. The
value parameter list, rather than being surrounded by faeees, is surrounded by the brackets being defined. A
bracketing operator definition may have any number of patarsekeyword parameters, and parameters in the
value parameter list. Type parameters may also be presanteén the reserved woogr and the parameter list. Any
paired Unicode brackets may be so defiegdeptordinary parentheses and white square brackets.

(* angle bracket notation for inner product *)
opr <| x:Vector, y:Vector |[> = SUM]Ji + x.indices()] x[i] * vli]

(* vector space norm (may not be the most efficient) *)
opr ||x:Vector|| = sqrt <| x, x |>

An expression consisting of zero or more comma-separateesions surrounded by a bracket pair will invoke a
bracketing operator definition. The compiler considerdedkcketing operator definitions for that type of bracket pai
that are both accessible and applicable, and the most spkaifition is chosen according to the usual rules. For
example, the expressiafip,g/> might invoke the sample bracketing method shown above.

3.5 Subscripting and Subscripted Assignment Operator Methd Definitions

A subscripting or subscripted assignment operator metlfidiion may appear anywhere a method definition may
appear. Such definitions are like method definitions in alpeets except that a subscripting or subscripted assignmen
operator method definition has the reserved wad and has special syntax instead of an identifier. Just as nietho
may be overloaded, so subscripting and subscripted assigroperator methods may have overloaded definitions.
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3.5.1 Subscripting operator method definition

A subscripting operator method definition has the resernvadiwpr where a method definition would have an iden-
tifier. The value parameter list, rather than being surrednoly parentheses, is surrounded by a pair of brackets. A
subscripting operator method definition may have any nurobealue parameters within the brackets, keyword pa-
rameters, and. parameters in that value parameter list. Type parameteysafsa be present, between the reserved
word opr and the parameter list. Any paired Unicode brackets may liefinedexceptordinary parentheses and
white square brackets; in particular, the ordinary squeaekets ordinarily used for indexing may be used.

(* subscripting method *)
opr [x:Bizarrolndex] = self.bizarroFetch(x)

An expression consisting of a subexpression immediatdligviied (with no intervening whitespace) by zero or more
comma-separated expressions surrounded by bracketewake a subscripting operator method definition. Methods
for the expression preceding the bracketed expressioaristonsidered. The compiler considers all subscripting
operator method definitions that are both accessible arlitaple, and the most specific method is chosen according
to the usual rules. For example, the express&iofp] might invoke the sample subscripting method shown above.

3.5.2 Subscripted assignment operator method definition

A subscripted assignment operator method definition hasetberved wordbpr where a method definition would
have an identifier. The value parameter list, rather thangosiirrounded by parentheses, is surrounded by a pair of
brackets; this is then followed by the operatorand then a second value parameter list in parentheses, whish
contain exactly one non-keyword value parameter. A suptetiassignment operator method definition may have any
number of value parameters within the brackets, keywordrpaters, and. parameters in that value parameter list.
A result type after the second value parameter list, but gtrbe() . Type parameters may also be present, between
the reserved wordpr and the first parameter list. Any paired Unicode brackets beago definedxceptordinary
parentheses and white square brackets; in particularytieany square brackets ordinarily used for indexing may be
used.

(* subscripted assignment method *)
opr [x:Bizarrolndex] := (newValue:Widget) = self.bizarro Install(x, newValue)

An assignment statement consisting of an expression inategifollowed (with no intervening whitespace) by zero
or more comma-separated expressions surrounded by sadtidwed by the assignment operater, followed

by another expression, will invoke a subscripted assigmperator method definition. Methods for the expression
preceding the bracketed expression list are considered.cdmpiler considers all subscript operator method defi-
nitions that are both accessible and applicable, and thé¢ spesific method is chosen according to the usual rules.
For example, the assignmefb[p] := myWidget might invoke the sample subscripted assignment methodrshow
above.

3.6 Support for Domain-specific Languages

In order to support syntax for domain-specific languages, tanallow the Fortress language to grow with time,
programmers are allowed to extend the basic syntax of Bariretheir programs. Extensions are allowed through the
use ofsyntax expanders
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Syntax expanders must be defined in the top-level scope adgrgm component. There are three kinds of syntax
expanders:

Simple syntax expanders

A simplesyntax expander starts with the reserved wayrdax |, followed by an identifier, followed by an, followed
by an expression with typiertress.ast.SyntaxTree , as in the following example:

syntax Area =
RaisedTypeRef
(SimpleTypeRef
(Identifier("Length™)),
SimpleTypeRef("2"))

A use site of a syntax expander consists solely of an ococgrefthe expander’s identifier. This identifier is expanded
into theSyntaxTree specified in the definition of the expander.

Parametric syntax expanders

A parametricsyntax expander starts with the reserved wenatax , followed by anopeningidentifier, followed

by a contentsparameter (implicitly of typédortress.lang.SourceAssembly , Which is a sequence of Unicode
characters and abstract syntax trees) atedrainatingidentifier. The terminating identifier is followed by arand an
expression of typéortress.ast.SyntaxTree . Here is an example:

syntax sql exp end = parseSQL(exp)

whereparseSQL is a static function that takes $ourceAssembly , interprets it as an SQL query, and returns a
SyntaxTree consisting of constructor calls to SQL syntax nodes (definedme SQL library).

Ata use site, all characters between the opening identifgtlze terminating identifier are turned int8aurceAssembly
and all escaped subsequences of SogrceAssembly  are converted into abstract syntax trees (see Sectionf816.3
a discussion of escaped subsequences). The resgliingeAssembly is bound to the contents parameter of the
parametric syntax expander. The use site is then expandeghhyating the body of the expander.

For example, we could defimmrseSQL so that a use site such as:

sql
SELECT spectral_class FROM stars
end

would be expanded into:

Call(Empty,
List(VarRef(Identifier("SqlQuery")),
Call(Empty,
List(VarRef(Identifier("Select")),
String("spectral_class"))),
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Call(Empty,
List(VarRef(ldentifier("From™)),
String("stars")))))

(The Empty lists passed teall s are the lists of type parameters to these calls). Note hissyntaxTree corre-
sponds to the following Fortress concrete syntax:

SqlQuery(Select("spectral_class"), From("stars"))

Parenthesized syntax expanders

A parenthesizedyntax expander starts with the reserved weydtax , followed by an identifier, followed by a
sequence of parameters, each enclosed in parenthesemabarms. Each parameter enclosed in parentheses is im-
plicitly of type SourceAssembly . After these parameters, amnd an expression with typertress.ast.SyntaxTree

is provided. Here is an example of a parenthesized syntaanebqy that allows for Java-styler loops in Fortress
programs:

syntax jfor (inits) {bodyText } = do
bindings , inits = parseBindings (inits)
terminator, inits = parseTerminator(inits)
increment , inits = parselncrement (inits)
body = parseForBody(bodyText)
JavaFor(bindings, terminator, increment, body)
end

Depending on how we define the parse functions in this expamde could parse the following use site of this
expander:

jfor (int i = 0; i < 10; i++) {
System.out.printin(i);

}

into aSyntaxTree denoting instantiations of parametric “Java syntax” otgjatich as this:

Call(Empty,
List("JavaFor",
Call(Empty,
List("JavaBinding",
Identifier("i"),
DecimalLiteral("0"))),
Call(Empty,
List("JavaOp",
Identifier("<"),
Identifier("i"),
Identifier("10"))),
Call(Empty,

List("Javalncrement".
Identifier("i"))),
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Call(Empty,
List("JavaCall",
Identifier("System.out.printin"),
Identifier("i")))))

which corresponds to the Fortress concrete syntax:

JavaFor(JavaBinding("i","0"),
JavaOp("<","i","10"),
Javalncrement("i"),
JavaCall("System.out.printin”, "i"))

Alternatively, the parse functions could be defined so tkatgites expand intoSyntaxTree for a Fortressor loop.

Syntax expanders must not call any functions or refer to amiables except those declared tosksic . Addition-
ally, a syntax expander must not refer to any variables actfans that have modifigest .

Because syntax expanders are defined at the top-level ofgstnogomponents, and because they are syntactically
distinguished, they can be identified before scanning osipgr Use sites are then identified and expanded before
parsing occurs.

3.6.1 Introduced variable names

Often, when expanding concrete syntax for a domain-spdaifiguage, it is useful to introduce variable binding
constructs into the resultingyntaxTree . It is required that such bindings, in general, respect tiesrof hygiene
and referential transparency [7]. Therefore, our systetoraatically renames identifiers, following thgntax-case
system of Dybvig et al. [9].

3.6.2 Expanders for Fortress

As the above examples demonstrate, it is often useful totdérartress abstract syntax using Fortress concrete syntax
A special set of parametric syntax expanders are definedeirapfortress.syntax for every nonterminal in
Fortress concrete syntax. The name of each expander coo$igie name of the nonterminal in lowercase. The
terminating symbol for each nonterminal consists of its egmefixed withend_ . For example, the expression:

expr
X +y
end_expr

evaluates to th8yntaxTree

Call(Empty,
VarRef(ldentifier("+")),
VarRef(ldentifier("x")),
VarRef(ldentifier("y")))
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When one of these syntax expanders parses a binding canstredound identifier is replaced with an identifier
resulting from a call tgensym, and all variable references captured by the original iflentire replaced with refer-
ences to the new identifier.

For convenience, there is a special parametric expafiddrat behaves identically to tlexpr expander. Uses of this
expander are terminated with and escaped witk (see Section 3.6.3 for a discussion of escape clauses).

Using thefortress.syntax expanders, we can rewrite our original example of a simppaeger as follows:

syntax Area = </Length  2/>

3.6.3 Escape clauses

Programmers are encouraged to decéseapeclauses in their expanders. Escape clauses allow for npstgdam
fragments in another concrete syntax. They occur immdgibtfore the= sign of an expander. They start with the
reserved wor@scape followed by a delimiteiString . For example, we modify our SQL expander as follows:

syntax sql exp end escape ~ = parseSQL(exp)

An occurrence of the escape character at a use site delithiés the immediately proceeding identifier dd@urceAssembly
enclosed in any of the standard parentheses. The delisa@deAssembly is parsed as a Fortress expressibimis
expression is allowed to be a use site of a syntactic expamtiézh may itself have an escape clause

We can now embed program fragments in other domain-speaifgulages at a use site of this expander. For example,
we could write the following function:

spectralClass(star:SourceAssembly) = sql
SELECT spectral_class FROM
SELECT “star FROM stars
end

Escapes at use-sites of expanders are processed fromtthedefnnermost clause outward.
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Chapter 4

Program component compilation and
linking

Fortress programs are developed, compiled, and deployedcapsulated upgradable componethigt exist not only

as programming language features, but also as self-cedtaim-time entities that are managed throughout the life
of the software. The imported and exported references ofigpoaent are described with explieipis which can be
thought of as interfaces of components. With componentsagig] Fortress provides the stability benefits of static
linking with the sharing and upgrading benefits of dynamikiing.

4.1 Overview

Components are the fundamental structure of FortressgmugrThey export and import apis, which serve as “inter-
faces” of the components. Components do not refer direotbtier components. Rather, all external references are
to apis imported by the component. These references arlwedduy linking components together: the references of
a component to an imported api are resolved to a componer#tparts that api. Linking components produces new
components, whoseonstituentg@re the components that were linked together.

Components are similar to modules in other programminguaggs, such as those of ML and Scheme [17, 14, 13].
But, unlike modules in those languages, components argrgbifor use during both development and deployment
of software. In addition to compilation and linking, compnits can be produced by upgrading one component using
another component that exports some of the apis exportduetfyrét component.

A key aspect of Fortress components is that they are en@ipdubo that upgrading one component does not affect any
other component, even those produced by linking with thepmmant that was upgraded. Abstractly, each component
has its own copy of its constituents. However, implemeatetiare expected to share common constituents when
possible.

Users do not manipulate components directly. Insteadyes@nponent is installed in a persistent database on the
system. We think of this database, which we calbdress as the agent that actually performs operations such as
compilation, linking, upgrading, and execution of compatse a virtual machine, a compiler, and a library registty al
rolled into one. A fortress also maintains a list of apis #ratinstalled on it. A fortress also provides a shell by which
the user can issue commands to it.

1The system described in this chapter is based on that deddrif2].
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The ways in which fortresses are actually realized on paeicplatforms is beyond the scope of this specification.
An implementor might choose to instantiate a fortress aag®s, or as a persistent object database stored in a file
system, with fortress operations being implemented aptsdtiat manipulate this database.

In addition to an informal description of the component eyst we also formally specify key functionality of the
system, and illustrate how we can reason about the corsfethe system. Components and apis are abstract
immutable objects. A fortress maps names to componentdlgdbn the system. The fortress operations are modeled
as methods of the fortress that change the mapping.

4.2 Source Code

We call the source code for a single software component gepio Typically, when a project written in other
programming languages is compiled, each file in the progeséparately compiled. To ship an application, these files
are linked together to form an application or library. Fess uses a different model: a project is compiled directty in

a single component, which is installed in the compilingriess.

From the point of view of the compiler, all the source codeaproject is contained in a single file. This approach sim-

plifies the design, and gives a well-defined order for irizition of static elements of the component. However, this

approach is unworkable for components of substantial diherefore, the compiler can be instructed to concatenate
several source files together before compiling, while naémiig the original source location information.

After these components are compiled from source files, thaytlen be linked together to form larger components.

Components

In this specification, we will refer to components createdcbgnpiling a file as “simple components”, while compo-
nents created by linking components together will be knogifttampound components”.

The source code of a simple component definition begins Wihdserved wordomponent followed by an identifier,
followed by a sequence of import and export declarations fiamally a sequence of declarations and definitions.

Each import or export declaration includes api names. Arsapies as an interface of a component; it includes the
declarations (but not definitions!) of top-level functiombjects, traits, and other values. In our examples, we use
published descriptions of packages in the Java 6.0 AP| [24kamples of apis expressible in our component system.

We use, as names for these apis, the names of the correspdadim packages, wifava replaced withfortress
For example, the following is the beginning of a source fileddictional applicationronCrypto

component com.sun.lronCrypto

import fortress.io
import fortress.security

export fortress.crypto
end

When a component is compiled, the apis it refers to must bgepten the fortress. The import declarations in a
component are not a way to abbreviate unqualified names e€tbpr functions. In our system, an import declaration
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merely allows references to the imported api to appear irctimeponent definition. References to elements of an
imported api must be fully qualified.

A key design choice we make is to require that componentsrrreter to other components directly; all external
references are to apis. This requirement allows programteeextend and test existing components more easily,
swapping new implementations of libraries in and out of paogs at will.

For convenience, the following extended forms of importidetions are provided:

import  {nane*} from api
import * from api

The first declaration imports the given api and allows thieedisslements (separated by commas) to be referred to
with their unqualified names. The second imports the giveraag allows all elements in that api to be referred to
with unqualified names. If multiple elements with conflictinames are imported from separate apis, all references
to those elements within the component definition must Hg fudalified. Every component implicitly imports a set
of core apiscalledthe Fortress standard librarye.g.,fortress.lang and other core apis to be determined); ev-
ery fortress has at least one component implementing alesfe apis. Areferredcomponent exporting these apis
(configurable by the user) is implicitly linked to every coomgnt installed in the fortress.

One important restriction on components is that no api malydike imported and exported by the same component.
This restriction is necessary to make sense of the opesatinprtomponents that we define in section 4.3. Formally,
we introduce two functions on componeritap andexp that return the imported and exported apis of the compgnent
respectively. For any componen; imp(c) N exgc) = (. This restriction is required throughout to ground the
semantics of operations on components, as discussed i0i5é3.

Every component has a unique name, used for the purposespbo@nt linking. This name includes a user-provided
identifier. In the case of a simple component, the identifieldtermined by a component name given at the top of the
source file from which it is compiled. A build script may keetafly on version numbers and append them to the first
line of a component, incrementing its tally on each compifat The name of a compound component is specified as
an argument to théink operation (described in section 4.3) that defines it.

Component equivalence is determined nominally to allowually recursive linking of components. By programmer
convention, identifiers associated with components begfim thie reverse of the URL of the development team. A
fortress does not allow the installation of distinct comguots with the same name. Component names are used during
link andupgrade operations to ensure that the restrictions on upgradesdmaanent are respected, as explained
in Section 4.3.

Every component also includes a vendor name, the name obttreds it is compiled on, and a timestamp, denoting
the time of compilation. The time of compilation is measubgdhe compiling fortress, and the name of the fortress
is provided by the fortress automatically. Every timestdegued by a fortress must be unique. The vendor name
typically remains the same throughout a significant portibthe life of a user account, and is best provided as a user
environment variable.

Apis

Apis are compiled from special api definitions. These arga®iiles which declare the entities defined by the api,
the names of all apis referred to by those declarations, emgkplocumentation. In short, the source code of an api
should specify all the information that is traditionallyopided for the published apis of libraries in other langsage

The syntax of an api definition is identical to the syntax obeponent definition, except that:
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1. An apidefinition begins with the reserved ward rather tharromponent . As with components, the identifiers
associated with apis are prefixed with the reverse of the URheodevelopment team.

2. An api does not includexport declarations. (However, it does incluiigport declarations, which name the
other apis used in the api definition.)

3. Only declarations are included in an api definition. Alltheal bodies and variable definitions are elided. A
method or field declaration may include the moditiestract . (Whether a declaration includes the modifier
abstract has a significant effect on its meaning, as discussed below).

For example, consider the afftstress.io , fortress.security , andfortress.crypto , with declarations
similar to those in their respective Java packages. Thdseaapinterdependent. For example, bBtiblicKey in

fortress.security and Secretkey in fortress.crypto have the traiffortress.io.Serializable and
the trait CipherSpi in fortress.crypto has methods that return values of typlgorithmParameters in

fortress.security . So the header of afrtress.crypto is written as follows:

api fortress.crypto

import fortress.io
import fortress.security

end

For the sake of simplicity, every reference in an api debinitinust refer either to a declaration in a used api (i.e., an
api named in an import declaration, or a core api, which idiuitly imported), or to a declaration in the api itself. In
this way, apis differ from signatures in most module systeimsy are not parametric in their external dependencies.

Every api has a unique name that consists of a user-provattdifier. As with components, api equivalence is
determined nominally. Every api also includes a vendor nafme name of the fortress it is compiled on, and a
timestamp.

Component and api names exist in separate namespaces nveniance, a compiler can also produce an api directly
from a project with the same name as the component it is dkfieen. Such an api includeratchingdeclarations
that include all the public definitions (and only the publefiditions) of the component.

A component must include, for every agpiit exports, matching definitions for all the declarations:inA matching
definition of a declaratiorD is a definitionC with the same name ab that includes a public member for every
member inD and that includes definitions for all members other thandlteslaredibstract  in D. C is allowed to
include additional definitions not declarediin

Other than its identity, the only relevant characterisfiai apia is the set of apis that it uses, denotedusega).
Because an api might expose types defined irse$a), we require that a component that expartalso exports all
apis inusega) that it does not import. Formally, the following conditionltis on the exported apis of a component

a€expc)Aa €usesa) = a' €imp(c)Uexpc)

4.3 Basic Fortress Operations

We now describe the operations that can be performed on @derby developers and end-users for developing,
installing, and maintaining components. We can think o§éheperations as commands to an interactive shell provided
by the fortress.
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fortress.io fortress.crypto
Ironlo / IronCrypto /
fortress.io

fortress.security

Figure 4.1: Simple components in box notation: A componergpresented by a box, with the name of the component
at the top of the box. The arrow protruding from the uppertrighrner of a box is labeled with the apis exported by
the component. The arrow pointing into the bottom of a boxaieled with apis imported by the component. If no
apis are imported, we elide the arrow.

In this section, we discuss operations on a fortress in thest basic form, postponing the discussion of more advanced
options, including additional optional parameters, tot®ac4.4. Although these more advanced options are critical

to performing some real-world tasks with components, itasier to describe their behavior after the basic forms of

operations have been discussed.

Compile This operation takes the source code for a simple componeap() definition and produces a new com-
ponent object (or api object) that is installed on the fadrdts type is as follows:

compile(file:String):()

For example, supposmnCrypto.fss contains the source code for the aforementioinetCrypto  application,
which importsfortress.io andfortress.security , and exportdortress.crypto . Suppose we also have
source codeyonlo.fss , for another applicatiorironlo , which imports nothing and exporsritress.io . We
generate these components by compiling the source files:

compile("lronlo.fss")
compile("lronCrypto.fss")

The results are depicted diagrammatically in Figure 4.1.

Formally, compilation takes a program and produces a newoaent with exported and imported apis as defined in
the program. In the example above,

imp(IronCrypto ) = {fortress.io , fortress.security }
exp(IronCrypto ) = {fortress.crypto }

Link A collection of one or more components exporting differgrisanay be combined to form a new, compound,
component by calling thénk operation, passing the names of the components to link algtiigthe name of the
resulting compound component. Syntacticallink operation is written as follow$:

2We present only the basic form bk  here.link has additional optional arguments that we discuss in théd®et.4.
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fortress.io
fortress.crypto

f

IronLink /
fortress.io fortress.crypto
Ironlo / IronCrypto /
fortress.io
fortress.security

?

fortress.security

Figure 4.2: A compound component: A component inside amatbmponent is a constituent of the component that
immediately encloses it.

link(result:String, constituents:String[]):()

The components being linked are callsmhstituentf the resulting component, which exports all the apis etqubr
by any of its constituents, and imports the apis importedtidgast one of its constituents but not exported by any of
them.

For example, we can link theonlo  andironCrypto  libraries compiled above:
link(IronLink, [lronlo, IronCrypto])
The resulting component, illustrated in Figure 4.2, impdsttress.security and exportgortress.io and

fortress.crypto

link does not distinguish between simple and compound comparemtve can get arbitrarily nested components.
For example, we can construct an applicattmolCryptoApp by compiling another source codmnSecurity.fss ,
for the librarylronSecurity that importsfortress.io and exportdortress.security , and then linking the
result withlronLink

compile(lronSecurity.fss)
link(CoolCryptoApp, [lronSecurity, IronLink])

The resulting components are illustrated in Figure 4.3.

Formally, givenasef = {cy,..., ¢} of components, we define a partial functlerk( C') that returns the component
resulting frome; throughcy. If ¢ = link(C'), thenexg(c) = U,..c o €xl¢’) andimp(c) = U, c o imp(c’) — expc).
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fortress.io
fortress.crypto
fortress.security

f

CoolCryptoApp /

fortress.io
fortress.crypto

f

IronLink /
fortress.security fortress.security fortress.io fortress.crypto
IronSecurity / IronSecurity / Ironlo / IronCrypto /
fortress.io fortress.io fortress.io
fortress.security

fortress.security

Figure 4.3: Repeated linking

The functionlink is partial because we do not allow arbitrary sets of comptnenbe linked. In particular, two
components cannot be linked if they export the samé @his restriction is made for the sake of simplicity; it allew
programmers to link a set of components without having taigpexplicitly which constituent exporting an api
provides the implementation exported by the linked comparend which constituent connects to the constituents
that importa: only one component exports so there is only one choice. Although we lose expressivewéh this
design, the user interface to link is vastly simplified, ahi irare that including multiple components that export a
given api in a set of linked components is even desirable. &ids how even such rare cases can be supported in
Section 4.4.

For a compound component, in addition to the exported anaitag apis, we want to know what its constituents
are. So we introduce another functions which takes a component and returns the set of its constiuerhat
is, cnglink(C)) = C. Itis an invariant of the system that for any compound conepor (i.e., cngc) # 0),
any api imported by any of its constituents is either impebrby ¢ or exported by one of its constituents (i.e.,
Uereongey iMp(e’) € imp(c) U U,reenge) €XAc’)). This property is crucial for executing components, as vge d
cuss below. A simple componen{(i.e., one produced directly by compilation) has no coustits (i.e.cnqc) = 0).

Execute Components provide implementations of the apis they exgodomponent isexecutabléf it imports no
apis and it exports the special agecutable , defined as follows:

3There is one exception to this rule: the specialgpgradable , which is used during upgrades discussed below.
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api executable
public exec(args:String[]):()

An executable component may brecutedy calling theexecute operation, resulting in a call to the component’s
implementation of thexec function in a new process. Arguments to thec function are passed to the shell:

execute(componentName:String, args:String[]):()

We say that a component is being executed whenute has been called on that component and has not yet returned,
or if it is the constituent component of a component beingeted. During an execution, references may be made to
apis exported by a component being executed, which may fmbaike references to apis that it imports.

For references to an apiexported by the component, if the component is simple, theoritains the code necessary
to evaluate any reference to an api it exports, possibly ngatéferences to apis that it imports to do so. If the com-
ponent is compound, then it contains a unique constituettetkportsa; the reference is resolved to that constituent
component.

For external references within a constituent componewglir¢hat all such references in a component must be to
apis that the component imports. A component being exeaitedr does not import any api (and thus there are no
external references to resolve), or else is a constituesmother component that is being executed. In the latter, case
the constituent defers the reference to its enclosing coento

For example, suppo$olCryptoApp above is the constituent of some executable component, bed that compo-
nent is executed, it generates a referenc&etoetkey in fortress.crypto , Which it resolves t@oolCryptoApp
CoolCryptoApp resolves this reference tmnLink , which resolves it taronCrypto , which is a simple compo-
nent. Suppose that in evaluating this referehoceCrypto  generates a referenceftablickey in fortress.security
BecauséronCrypto  importsfortress.security , itresolves this reference to its enclosing componemtl.ink
which in turn resolves it t@oolCryptoApp , which resolves it toronSecurity  , which is a simple component.

Not all projects are compiled to components that expgetutable . For example, a library component does not
usually exporexecutable

Upgrade Compound components may be upgraded with new constituempaoents by calling anpgrade op-
eration, passing the name of the component to upgradddtpel), the name of a component to upgrade with (the
replacemer)t and a name for the resulting component (which we calféiself). The type of thaipgrade operation

is as follows:

upgrade(target:String, replacement:String, result = tar get):()

If no result name is provided, the result is bound to the nahtieeotarget, and the target is uninstalled (see below).

For example, we can upgra@eolCryptoApp with a componenCoolSecurity , which exportsortress.security
and imports nothing t@oolCryptoApp.2.0

upgrade(CoolCryptoApp, CoolSecurity, CoolCryptoApp.2. 0)

The resulting component is illustrated in Figure 4.4. Netitat the constituentonSecurity  , exporting
fortress.security has been replaced.

A component can be upgraded only if it exports the specialpgriadable , defined as follows:
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fortress.io
fortress.crypto
fortress.security

f

CoolCryptoApp.2.0 /
fortress.io
fortress.crypto
[ronLink /
fortress.security fortress.io fortress.crypto
CoolSecurity / Ironlo / IronCrypto /
fortress.io
fortress.security
fortress.security
Figure 4.4: An upgraded component
api upgradable
import {Component, UpgradeException} from components
public isValidUpgrade(that:Component):Boolean
public upgrade(that:Component):Component throws Upgrad eException

end

Theupgradable api imports a special agiomponents that provides handles ddomponent andApi objects.
Thecomponents api is described in Appendix B.

An upgrade operation on a component invokes ibéalidUpgrade =~ method, as declared in the agigradable

This function must take a component and rettiree iff it is legal to upgrade with respect to that component. The
upgrade operation throws an exceptionsf/alidUpgrade  returnsFalse . Developers can define their own versions

of this component to restrict how their components can beagueyl. For example, they can prevent upgrades with
older versions of a component, or with a matching comporrent an untrusted vendor.

Theupgradable api presents a problem for our model. Its implementatiorhleyarious constituent components in
a compound component must be accessed duringguade operation. However, because the exported apis of the
constituent components must be disjoint, they cannot albexipgradable  after linking.
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We solve this problem by introducing an additional step myitinking. In alink operation, a special component,
called arestriction componenis constructed automatically, based on the provided ¢aests. This component ex-
ports theupgradable api; its implementation is a function of all the constitueeptovided to théink operation. The
provided constituents are then used to construct a new sethstituents that are identical to the provided constitien
except that they do not exparpgradable . These new constituents are then combined, along with gteaton
component, to form the constituents of a new compound coeon

In addition to the constraints imposed by a componésiWslidUupgrade  method, there are several other conditions
that must be met in order for an upgrade to be valid. Theseitionsl are necessary to ensure that the resulting
component is well-formed and imports and exports the sarseaaqhe target:

1. Every api imported by the replacement must be either itedasr exported by the target.
2. The apis exported by the replacement must be a subsetsef @xported by the target.

3. If the replacement does not subsume a constituent theer d¢fite replacement and constituent do not export any
apis in common or the constituent can be upgraded with tHacement.

The rationale for the first two conditions is straightfordialf an api is imported by the replacement but not imported
or exported by the target, then references to that api cdremsolved in the result (unless we also import that api in
the result). If an api is exported by the replacement but metarget, then the result will export an api not exported
by the target.

The third condition says that the constituents of the targatbe partitioned into three sets: those that are subsuymned b
the replacement, those that are unaffected by the upgnadajlahe rest, which can be upgraded with the replacement.
This condition enables recursive propagation of upgratleat is, an upgrade not only replaces constituents at the top
level of the the component, but is also propagated into angttaents with which it exports some apis in common.
Thus, in the example above, we could have upgrattedCryptoApp with a component that exportstress.io

However, we could not have upgradedolCryptoApp  with a component that exports bofbtrtress.security

and fortress.io becausearonLink  exportsfortress.io but notfortress.security . In Section 4.4, we
show how hiding and constraining apis can help us get arowryrof the limitations that this condition imposes.

Formally, a predicateipg?takes two components and indicates whether the first can @paded with the second;
that is,upg?q ¢, c.) returns true if and only it; can be upgraded with.. This predicate captures both the constraints
imposed by a componentisvalidUpgrade  method and the conditions that guarantee the well-formesioéthe
result. That is,

upg?ct, ;) = c.isvalidUpgrade  (¢)
Aimp(e;) C expe;) Uimp(e)
Aexpe) C expe)
AVc € engct).(expc) C expe) Vexpc) Nexple) = 0V upgdc, ¢))

Recall that in our system, unlike with dynamic linking, comngnts are encapsulated so that an upgrade to one com-
ponent does not affect any other component on the system.aweragine that all operations on components copy
the components that they operate on rather than share theswauBe components are immutable, these two inter-
pretations are semantically indistinguishable. Conwvereeoperations that support mass upgrades are provided on
fortresses (e.g., apgradeAll  operation that takes a component and upgrades all compineght fortress that can

be upgraded with its argument).

4 These conditions are sufficient provided there are no hiddeonstrained apis, which are discussed in Section 4.4.
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Extract and install A component installed on a fortress maydsdractedby calling anextract  operation on the
fortress, passing the name of the component as an argurtaerg,with an argumernirereqgs , denoting the names of
all apis that must be installed on any fortress before thispmment can be installed.

extract(componentName:String, prereqgs:{String} = {}):( )

Furthermore, the destination fortress must have a compdhahexports these apis and is a valid upgrade of the
extracted component. Intuitively,mmereqs argument allows a component to be serialized without haiingclude
all of its libraries; new libraries can be provided when thenponent is installed at a destination fortress.

Theprereqs argument is optional; if omitted, the extracted component loe installed on any fortress. Any com-
ponent can be extracted; however only compound componantbe extracted with prereqs  argument: because
extracted components must be upgradable with respect tmpareent exporting therereqs , nopreregqs argu-
ment makes sense for a simple component.

The apis included in @arereqs argument must be the apis exported by some subset of thetdreomponent’s
constituents (or a subset of the constituents of one of itsttoients, and so on, due to recursive updating).

The extracted component is serialized to a file, includihthal apis it refers to (and, transitively, all apis they refg
and all constituent components, except those that expepréegs . This operation does not remove the extracted
component from the fortress; there is a separabestall operation for that.

When the component is extracted, if peereqs were passed to thextract operation, then the contents of the
file can be deserialized by any fortress into the extractedpoment, which can be installed on the fortress. How-
ever, ifprereqs  were passed textract , then the file must be deserialized into a component thatrexpaly the
installable api:

api installable

import Component from components

public reconstitute(candidate:Component):Component
end

The deserialized component is immediately linked with @nefd implementations of all of its imported apis. (Pre-
ferred implementations of apis are maintained in a table fiyteess, which maps each api to a list of components
that implements it, in order of preference). Because thertidzed and linked component exports thetallable

api, it has areconstitute method that takes eandidatecomponent, which exports theereq apis, and checks
whether the given component satisfiesitivalidUpgrade  condition of the extracted component. If so, it returns the
extracted component upgraded with the given component.réldoastitute method is called by the fortress with
a new component, formed by linking the preferred componfemteach api in the extracted componenigreqs
argument.

Note that an extracted component witlereqs  apis isnotthe same as an extracted component that imports the same
apis but has nprereqs apis. The latter can always be installed on a fortress, agml ¢hn be subsequently linked
with any component that exports the imported apis. In caehtthe fortress has no access to an extracted component
with preregs  apis unless it has a component that exports these apis asfiesahdsValidUpgrade = method of the
extracted component. This difference provides a meansfaralling access to the extracted component, for security
legal, or other reasons.

Syntactically, arinstall operation takes the name of a file constraining an extraaetbonent. Thenstall
operation is overloaded with another operation that takesnme of a component to matgtereqs . If this op-
tional argument is provided, and the deserialized composeports thenstallable api, then theeconstitute
method is called with the component denoted by the optiogairaent ofinstall  , rather than the fortress’ preferred
implementation of therereq apis. Install operations are written as follows:
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install(file: String):()
install(file:String, prereqs:{String}):()

By default, a fortress adds a newly installed component ¢ohiiad of the “preferred” list for every api it exports.
However, this default may be overridden by the end-user;nalhuser may modify the table or even map some apis
differently during a particular installation. If one or neoof the apis required by an extracted component is not mapped
to an api on the destination fortress, an exception is thrown

There is a corresponding operation for ajistallApi , that takes a serialization of a set of apis and installs them
into a fortress.

installApi(file:String):()

This set of apis must be closed under imports. If an api thastslled in this way is already installed on the fortress,
the definitions must match exactly, or an exception is thrown

Uninstall Anuninstall ~ operation takes the name of a component as an argument aodagthe top-level bind-

ing of that component from a fortress. Note that the unifedalomponent may have been linked to other components,
or used as a replacement in an upgrade, and the result mayestilstalled; aruninstall operation will not affect
these other components.

uninstall(file:String):()
There is a corresponding operation for apisinstallApi , that removes an api from a fortress.
uninstallApi(file:String):()

Typically, this operation is used only to remove apis thaiehaeen corrupted in some fashion.

4.4 Advanced Features of Fortress Operations

The system we have described thus far provides much of theeddanctionality of a component system. However it
has a few significant weaknesses:

1. It exposes to everyone all the apis used in the developoienproject.
2. By allowing access to these apis, it inhibits significanss-component optimization.

3. It prevents components that use two different implententsa of the same api from being linked, even if they
never actually pass references to that api between each othe

4. It restricts the upgradability of compound componerggjescribed earlier.

We can mitigate all these shortcomings by providing two #tngperationshide andconstrain . Informally, hide
makes apis no longer visible from outside the componentanstrain  merely prevents them from being exported.
An api that is constrained but not hidden can still be upgiladéere are other subtle consequences of this distinction,
which we discuss as they arise.
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Formally, we introduce two new functions on components, which returns the apis of a component that have
not been hidden; angdrov, which returns those visible apis that are exported by sapdevel constituent of the
component (or all the exported apis of a simple componerg)say these apis apFovidedby the component. We
need to distinguish provided apis because they can be iegpbyt the top-level constituents of a component, and thus
by a replacement component in an upgrade, while other eisipls cannot be. Thus, for a compound comporent
prov(c) = Vis(c) N U eeng) €XHc’). FOr a simple componet prov(c) = vis(c) = expc).

Some of the properties about the apis exported by a compaiimnissed in Section 4.3 are actually properties of
apis that are visible or provided by a component. For exangges visible in a component cannot be imported by
that component, even if they are not exported. Other prigseare really properties only of the exported apis. Most
importantly, components that do not export any common apishe linked, as can components that share only visible
apis.

Constrain A constrain  operation takes a component name of an installed compoaerm@w component name,
and a set of apis, and produces a new component that doegxoot ary of the apis specified. Syntactically, we write:

constrain(source:String, destination = source, apis: {String  }):()

If no destination name is provided, the name of theurce is used.

The set of apis provided must be a subset of the apis expoytdtelcomponent. Also, recall that every api used by
an api exported by a component must be imported or exportéisldbgomponent. Thus, if we constrain an api that is
used by any other api exported by the component, then we rfsastanstrain that other api.

If the component is a simple component, we first link it bylftsend then applyonstrain  to the result.

Formally, if ¢ is a compound component anl C exp{c) is a set of apis such that € expc) A @’ € usega) N

A = a € A, we definec’ = constrair(c, A) such thatexp¢’) = exp¢) — 4 and for any component”,
upg?ac’, ¢”) <= upgdec,c”) Aexc') € exdc¢”). Theimp, vis, provandcnsfunctions all have the same values
for ¢ and¢’. The extra condition on the upgrade compatibility simplptcaes the restriction we mentioned above,
that a replacement component should not export every apiresgby the target.

Hide A hide operationis like @onstrain  operation, except that the given set of apis is subtractad fhe visible
and provided apis, along with the exported apis, in the tiegutomponent.

hide(source:String, destination = source, apis: {String }):()

The requirement of apis being imported or exported whenameapi using them is exported also applies to visible
apis. Thus, if we hide an api used by another exported api, wst mde that other api as well.

Formally, if ¢ is a compound component addC vis(c) is a set of apis such thakp(c¢) Z A anda € vis(c) A a’ €
usega) N A = a € A, we definec’ = hide(c, A) such thatvis(¢’) = vis(c) — 4, prov(c’) = prov(c) — A4,
exp(c’) = exp(c) — A, and for any componert’, upg?c’, ¢’) <= upgqc, ) Aexpc') Z exp(c") Avis(c") C
vis(¢'). The additional clause inpg? ¢, ¢"’) (compared with that ofonstrain reflects the hiding of the apis: we can
no longer upgrade apis that are hidden.

Link  With constrained apis, there is a new restriction on linkyApi visible in one constituent and imported by
another must be exported by some constituent. This raetrict necessary because an api visible in a component
cannot be imported by that component. Thus, if one of the aorapt's constituents imports that api, then the api
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must be provided by some other constituent. Other thanttigtnk operation is largely unchanged: the visible apis
are just all the apis visible in any constituent, and the jgled apis are just those exported by any constituent. There
is a subtle additional restriction on how linked componeats be upgraded, which we discuss below.

Rather than requiring users and developers toccalitrain ~ andhide directly, we provide optional parameters to
thelink operation to do these operations immediately. itie operation has the following type:

link(result:String, constituents:String[], export = {} , hide = {}):0

If the export clause is present, only those apis listed insttefollowing export  are exported; the others are con-
strained. If the hide clause is present, those apis listéukiset followinghide are hidden. An exception is thrown if
the export clause contains any api not exported by any ¢oastj or if the hide clause contains any api not visible in
any constituent.

Hiding enables us to handle the rare case in which programwent to link multiple components that implement the
same api without upgrading them to use the same implementaBefore linking, the programmer simply hides (or
constrains) the api in every component that exports it exitepone that should provide the implementation for the
new compound component.

For example, suppose we wish to link the following two comgus:

e A componeniNetApp that importsfortress.io and exports théortress.net api.

e A componen€EditApp that importsfortress.io and exports the
fortress.swing.textrf api.

We want to link these two components to use in building anieafbn for editing messages and sending them over
a network. But we want to use different implementationsoafess.io (e.g.,loAppl andloApp2 for the two
components). We simply perform the following operations:

link(templ, [ NetApp, loAppl], export = {fortress.net}, hi de = {fortress.io})
link(temp2, [EditApp, loApp2], export = {fortress.swing. textrf},
hide = {fortress.io})

link(NetEdit, [templ, temp2])

In this case, théletEdit component does not export, or even make visifolésess.io at all.

Upgrade For theupgrade operation, there is no change at all in the semantics. Hawéesause hiding and
constraining apis allow us to change the apis exported byrgoaent, it is possible to do some upgrades that are not
possible without these operations.

For example, suppose we have a comporeSdcurity  that exportsortress.io andfortress.security ,and
we want to upgrad€oolCryptoApp  with loSecurity . As discussed above, we cannot Us®ecurity  directly
becauséronLink  exportsfortress.io but notfortress.security . We can get around this restriction by doing
two upgrades, one witfortress.security hidden and the other witfortress.io hidden.

hide(loSecurity, Newlo, {fortress.security})

hide(loSecurity, NewSecurity, {fortress.io})

upgrade(CoolCrytoApp, NewSecurity, temp1l)

upgrade(CoolCryptoApp.3.0, templ, Newlo)



4.4. ADVANCED FEATURES OF FORTRESS OPERATIONS

fortress.io
fortress.crypto

fortress.

security

A

CoolCryptoApp.3.0

/

fortress.io
fortress.crypto

4

IronLink-upgrade

/

fortress.security fortress.io
f f fortress.crypto
NewSecurity / Newlo / f
fortressio—— fortress.io IronCrypto /
fortress.security fertress-seeurity——
loSecurity / loSecurity /
fortress.io
fortress.security

fortress.security

Figure 4.5: Upgrading with hidden apis: Crossed out apishaiden.
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The resulting component is shown in Figure 4.5.

The interplay between imported, exported, visible and joley apis introduces subtleties that not present in our
discussion above. In particular, the last of the three dardi imposed for well-formedness of upgrades is modified
to state that for any constituent that is not subsumed by lacement component, either it can be upgraded with
the replacement, or itgisible apis are disjoint from the apis exported by the replacemiest {t is unaffected by
the upgrade). To maintain the invariant that no two constits export the same api, we need another condition,
which was implied by the previous condition when no apis wemestrained or hidden: if the replacement subsumes
any constituents of the target, then its exported apis mxesttly match the exported apis of some subset of the
constituents of the target. That isupg? c;, c.) A Ic € cngcr). expc) C expc,) thenexpc,) = U, o eXHc) for
someC C cng¢). In practice, this restriction is rarely a problem; in moases, a user wishes to upgrade a target
with a new version of a single constituent component, wheeeapis exported by the old and new versions are either
an exact match, or there are new apis introduced by the neywaoent that have no implementation in the target.

4.5 Component-related modifiers

The following modifiers are specific to the Fortress composgstem.

abstract

A method declaration in a trait declaration of an api miglstude amabstract  modifier, indicating that an object of
the traitdoes noinherit the definition of the method from that trait.

private

An object, function, variable, or trait declaredmivate  must not be declared by any implementing api of a compo-
nent. Apis are not allowed to include thavate  modifier on any of their constituents.

A method or field declared asivate  must not be referred to outside its enclosing object or tigfinition.



Chapter 5

Abstract Syntax

In this chapter, we describe the abstract syntax of Forpresgams.

First, we provide some context about the role that the aftstgatax plays in the Fortress language. For the sake of
interoperability of compilers and development tools, atfesis compiler is required to be divided into the following
top-level phases:

e Parser
e Type Annotator

e Code Generator

The Parser passes a syntactically well-formed abstratasyree to the Type Annotator, the Type Annotator passes
a fully annotated type safe abstract syntax tree to the Cateef@tor, and the Code Generator produces a simple
component. (Note that the output of the Type Annotator isegisph case of the Parser output; that is, a fully annotated
abstract syntax tree is just an abstract syntax tree.)

The only communication between these phases is the infmmpassed in the data structures mentioned above. For
example, there is no symbol table passed between modulegpaination must be encapsulated in the abstract syntax
trees.

Programmers are able to easily plug in their own modulesHesé various phases because the interfaces between
modules are tightly defined. For example, a programmer coefthe his own Parser module that would work just
fine with the rest of the compiler provided that the outputhe Parser is an abstract syntax tree. Alternatively, a
programmer may define his own Type Annotator and hook it upRaraer and code generator.

The data structures passed between modules should havedefiakd serializations into text. That way, programmers
can write new modules in other languages and plug them itoetst of the system. Our goals with this design are to
make it easy to write new diagnostic tools, and to standartttie abstract syntax and allow for specialized notations
that parse into it.

The abstract syntax of Fortress programs in BNF notatios feléows:
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Program

Component
Api
DottedName
Import

ImportApi
Importlds
ImportFrom

Export
Def

Decl

DefOrDecl

TypeAlias
VarDef
VarDecl
UniversalMod
TraitMod
ObjectMod
FnMod
MdMod
VarMod
FldMod
FnDef
FnDecl
FnHeader
FnName

FnClauses
Throws
Where
WhereClause

WhereExtends ::

Contract
Ensures

EnsuresClause ::

Provided
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Component

Api

Component DottedName ImpottExport Def*
Api DottedName ImpottDecl
DottedName 1d*

ImportApi

Importlds

Import DottedNamgDottedNamg
Import DottedName ImportFrom
Alllmports

NamedImports Id*

Export DottedName

VarDef

FnDef

TraitDef

ObjectDef

DefOrDecl

VarDecl

FnDecl

TraitDecl

ObjectDecl

DefOrDecl

Dimension Id

Unitvar Id TypeRef

TypeAlias

TypeAlias Id TypeRef

VarDef VarMod* Id [TypeRef Expr

VarDecl VarMod* Id TypeRef

Static | Test

Private | Value | UniversalMod

TraitMod

Atomic |lo | Private | Pure | UniversalMod
Getter | Setter | FnMod

Unit | Var | UniversalMod

Hidden | Settable |Var | Wrapped | UniversalMod
FnDef FnMod* FnHeader Expr

FnDecl FnMod* FnHeader

FnHeader FnName TypeParatParant [TypeRef FnClauses
Op

Id

FnClauses Throws Where Contract

Throws TypeRef

Where WhereClause

WhereExtends

TypeAlias

WhereExtends Id TypeRef
Contract Expr* Ensures Expfr

Ensures EnsuresClause
EnsuresClause Expr* [Provided
Provided Expr



TypeParam

SimpleTypeParam

NatParam

DimensionParam

OperatorParam
Param
TraitDef
TraitDecl
TraitHeader
Extends
Excludes
Bounds
MdDef
MdDecl
ObjectDef
ObjectDecl
ObjectHeader
Traits
ValParam
FldDef
FldDecl
TypeRef

TypeArg

NatTypeArg

OprTypeArg

DimType

Indicies

Range

KeywordArgType

91

SimpleTypeParam
DimensionParam
NatParam
OperatorParam
SimpleTypeParam
NatParam Id
DimensionParam Id

OperatorParam Op

Param Id [TypeRef[Expr]

TraitDef  TraitHeader(MdDef | MdDec)*

TraitDecl  TraitHeader MdDecl

TraitClauses TraitMod* I1d TypeParam [Extend} ExcludegBound$ Where
Extends TypeRef

Excludes TypeRef

Bounds TypeRef

MdDef MdMod* FnHeader Expr

MdDecl [Abstract ] MdMod* FnHeader

ObjectDef ObjectHeader FldDefMdDef

ObjectDecl ObjectHeader FldDe¢lMdDeck

ObjectHeader ObjMod* Id TypeParam ValParant [Traits] FnClauses
Traits TypeRef

ValParam [Transient ] FldMod* Param

FldDef FldMod* Id [TypeRef Expr

FldDecl FldMod* Id TypeRef

IdType DottedName

ParamType DottedName TypeAtg

SetType TypeRef

MapType TypeRef TypeRef

ListType TypeRef

TupleType TypeRef

MatrixType TypeRef Indices

ArrayType TypeRef Indices

ArrowType KeywordArgType TypeRef TypeRef Throws

RestType TypeRef

DimType

TypeRef

NatTypeArg

OprTypeArg

BaseNatTypeArg Number

IdNatTypeArg Id

SumNatTypeArg NatTypeArd

ProductNatTypeArg  NatTypeArd

Id

Op

UnitDimType

NameDimType DottedName

ExponentDimType DimType NatTypeArg

ProductDimType DimTypé

QuotientDimType  DimType DimType

FixedDim Rangé

PolyDim

Range [NatTypeArd[ NatTypeArd

KeywordArg Id TypeRef

Id [TypeRef]
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Expr

Flow

Value

Extent
Entry

Comprehension ::

Accumulator

Generator

CHAPTER 5. ABSTRACT SYNTAX

VarRef Id

Let

Flow

Value

Comprehension

LooseJuxt Expr*

TightJuxt  Expr*

OprExpr Op Expr*

PostfixExpr ~ Expr Op
FieldSelection Expr Id
Assignment Expr[Op] Expr
Apply Expr Expr

TypeApply Expr TypeArg
Subscript  Expr Expr
ExternalSyntax
ExpanderVarRef

Accumulator  Accumulator GeneratdrExpr
Throw Expr

AtomicExpr Expr

Tryatomic  Expr

Exit [Id] [Expr]

Block Expr*

If Expr Expr Elif * Expr*

Try Expr* [CatcH TypeRef Expr
Case Expr[ld] CaseClauseExpr*
Dispatch DispatchTypecase
TypeCase DispatchTypecase
Spawn [Expr] Expr

For Generatot Expr

While Expr Expr

Label Id Expr*

Number

FnExpr Parant [TypeRef Throws Expr
ObjectExpr  Traits FIdDef MdDef*
Set Expr*

Map Entry*

List Expr*

Tuple Expr*

Matrix Number Exterit Expr*
Array Number Exterit Expr*
Interval  Expr Expr

Infinity

String

Void

Extent Number Number
Entry Expr Expr
SetComprehension  Expr Expr Generatot
ArrayComprehension  ArrayComprehensionClause
Accumulatorld Id
AccumulatorBig  Op
Generator Id* Expr
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Let »=  Letld Id* TypeRef

| LetBinding  L-Val* Expr

| LetFn Id Parant [TypeRef Throws Expr
L-Val = L-Scalars Id[TypeRef

| L-Array Array

Elif = Elif Expr Expr*

Catch := Catch Id CatchClausé

CatchClause ;= CatchClause TypeRef Expr

CaseClause := CaseClause Expr Expr

DispatchTypecase := DispatchTypecase Binding* DispatchClause Expr
DispatchClause := DispatchClause  TypeRef Expr*

Binding = Binding Id Expr

ArrayComprehensionClause::= ArrayComprehensionClause Binding Expr Generatot
ExternalSyntax ;= ExternalSyntax Id SourceAssembly

ExpanderVarRef := ExpanderVarRef DottedName

5.1 Descriptions of Selected AST Constructs

Most of the nodes in the Fortress abstract syntax corresgioactly to the program elements described in Chapter 2.
However, there are a few special nodes, which we descrilfesrsection.

5.1.1 External syntax

An ExternalSyntastree includes the name ofsaatic  function and aSourceAssembly  object (see Section 3.6).
The static function referred to must takeSaurceAssembly  object as an argument. This function is called on the
givenSourceAssembly after parsing but before type checking. The result of thikmast be a new abstract syntax
tree, which is inserted in place of the external syntax treee

There is a special tree tyfxpandervarRef used by syntactic expander functions for the sake of refiaderans-
parency. These nodes should not appear in an abstract ye¢awntil that tree has been syntactically expanded to
eliminate arExternalSyntax ~ node. AnExpanderVarRef node is introduced by a syntactic expander to refer to a
variable in the scope of thexpander definitioitself. Note: because such a variable must be in scope dthegtatic
process of syntactic expansion, it must ketagic  variable.

Because a syntactic expansion does not occur until theergferto the corresponding syntactic expander is actually
resolved, the variable referred to in BxpandervarRef node is known at expansion time. Thus, a fully qualified ref-
erence to this variable (including the name of the compoimamhich it resides) is included in thexpanderVarRef

tree.
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Chapter 6

Concrete Syntax

In this chapter, we describe the concrete syntax of Forfmeggams in BNF notation. This syntax is “human-readable”
in the sense that it does not describe uses of whitespacesgamcdolons exactly. Instead, they are described as follows
Fortress has three different contexts influencing the whaee-sensitivity of expressions:

statement Expressions appearing in a block other than the last exprease in a statement-like context. Multiple
expressions can appear on a line if they are separatedif@nted) by semicolons. If an expression can legally
end at the end of a line, it does; if it cannot, it does not. Afigrer infix operator that lacks its last operand
prevents an expression from ending. For example,

an = expression +
spanning +
four +
lines

a = one-liner

four() ; on(); one(); line();

nested An expression or list of expressions appearing within pidieses or braces is nested. Multiple expressions
are separated by commas, and the end of a line does not engraissrn. Because of this effect, the meaning
of a several lines of code can change if they are wrapped enflagses. Parentheses can also be used to ensure
that a multiline expression is not terminated prematurethout paying special attention to line endings.

lhs = rhs
- aSeparateExpression

postProfit(revenue
- expenses)

pasted Fortress has special syntax for matrix pasting. Within sgjbaackets, whitespace-separated expressions are
treated (depending on their type) as either matrix elemanssibmatrices within a row. Because whitespace
is the separator, it also ends expressions where possib&ldition, newline-or-semicolon-separated rows are

pasted vertically along their columns. Higher-dimensigesting is expressed with repeated semicolons, but
repeated newlines do not have the same effect.
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[d2a = [ 10 ; 0 1]
ld2b = [ 1 0 ;
0 1]
ld2c = [ 1 0
01]
Cube2 =[10;01;1-1;11]

A restricted form of the pasting syntax can also be used otethband side of variable declarations to express
both declaration and submatrix decomposition.

[ top
bot ] =
[ left right ] =
= [ top -left top -right ;
bot -left bot -right ]

Section 3.3 describes matrix unpasting in detail and iredudore examples.

Program .= Component
| Api
Component ;= component DottedName ImpottExport Def* end
Api = api DottedName ImpottDecl end
DottedName m= o d (o Id)*
Import = import ImportFromfrom DottedName
| import  AliasedNameList
ImportFrom =
| Id
| { IdList }
IdList : Id (, Id)*

AliasedNamelList ::
AliasedName
Export
DottedNameList
Def

AliasedNamé, AliasedNamg
DottedNamgas DottedNamg
export DottedNameList
DottedNam¢d, DottedNam§
VarDef

| FnDef

| TraitDef
| ObjectDef
|

DefOrDecl

Decl == VarDecl

| FnDecl

| TraitDecl

| ObjectDecl

| DefOrDecl
DefOrDecl x= dimId

| unit Id: DimType

| TypeAlias
TypeAlias n=  type Id = TypeRef
VarDef = VarMod" Id [IsTypé = Expr

| VarMod" Id IsType:= Expr
VarMod* Id IsType
. TypeRef

VarDecl
IsType



UniversalMod
TraitMod
ObjectMod
FnMod
MdMod
VarMod
FldMod
FnDef
FnDecl
FnHeader

OpHeader

FnClauses
Throws
MayTraitTypes

TraitTypes

TraitTypelList
Where ..
WhereClauselList ::
WhereClause

|

Contract
Requires
Ensures
Invariant
TypeParams
TypeParamList
TypeParam

ValParams
Params

SimpleParamList ::
SimpleParam
VarArgParam
KwdParamList
KwdParam
IsRetType
LeftEncloser

RightEncloser n=

Encloser n=

static | test

private | value | UniversalMod

TraitMod

atomic |io |private | pure |UniversalMod
getter | setter | FnMod

unit | var | UniversalMod

hidden |settable |var |wrapped | UniversalMod
FnMod* FnHeader= Expr

FnMod* FnHeader

Id [TypeParamgValParamqIsRetTypgFnClauses
OpHeader

opr Op[TypeParamgValParamglIsRetTypgFnClauses
opr [TypeParamgValParams OflsRetTypgFnClauses
opr [TypeParamgLeftEncloser Params RightEnclosgsRetTypeFnClauses
[Throwd [Wheréd [ Contraci

throws MayTraitTypes

{}

TraitTypes

TraitType

{ TraitTypeList}

TraitType(, TraitType*

where { WhereClauseLis}

WhereClausé¢, WhereClausg

Id Extends

TypeAlias

[Require$[Ensure§[Invariant]

requires  Exprt

ensures (Exprt [provided Expr])*

invariant ~ Expr™

[TypeParamLisf

TypeParan(, TypeParany*

Id [Extend}

dim Id

nat Id

opr Op

([Param3)

SimpleParamList

(SimpleParam)* VarArgParam

(SimpleParam)* KwdParamList

(SimpleParam)* VarArgParam KwdParamList
(SimpleParam)* SimpleParam

Id [IsTypé

Id: VarArgType

(KwdParam )* KwdParam

Id [IsTypg = Expr

. RetType

IGO0 [V T < <<l 0D TR [ <y ]
Encloser

FIYID [0 1 1 1> ) [N [} > [»> [ ]%
Encloser

LD N L W
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TraitDef
TraitDecl
TraitHeader
Extends
Excludes
Bounds
MdDef
MdDecl
ObjectDef
ObjectDecl
ObjectHeader
ObjectParams
Traits
ObjParams

SimpleObjParamList ::=

SimpleObjParam

KwdObjParamList

KwdObjParam
FldDef

FldDecl
TypeRef

SimpleType

TraitType

ArgType

WithVarArgType

VarArgType
KwdArgTypeList
KwdArgType
TypeRefList
RetType

CHAPTER 6. CONCRETE SYNTAX

TraitHeader(MdDef | MdDec)* end
TraitHeader MdDeci end
TraitMod* trait
extends TraitTypes

excludes TraitTypes

bounds MayTraitTypes

MdMod* FnHeader= Expr

[abstract ] MdMod* FnHeader

ObjectHeader FldDéfMdDef end

ObjectHeader FldDe¢IMdDeck end

ObjMod* object Id [ObjectParamp[ Traits] FnClauses
[TypeParamiObjParams

traits  TraitTypes

0

( SimpleObjParamLis}t

( (SimpleObjParam)* transient ~ VarArgParam)
( (SimpleObjParam)* KwdObjParamLis)

( (SimpleObjParam)* transient  VarArgParam KwdParamLisf)
(SimpleObjParam)* SimpleObjParam

FldMod* SimpleParam

transient  SimpleParam

(KwdObjParam )* KwdObjParam

FldMod* KwdParam

FIdMod* transient KwdParam

FldMod* Id [IsTypé = Expr

FldMod* Id IsType[:= Expr]

FldMod* Id IsType

SimpleType

ArgType— RetTypd Throwd

TraitType

0

( TypeRef

DimType

DottedName

DottedNamd TypeArgLisi]

{ TypeRef}

[ TypeRef— TypeRef]

( TypeRef)

TypeRefl MatrixSize]

TypeRefl [ArraySizé]

SimpleType

( TypeRef TypeRefLis)

WithVarArgType

( (TypeRef)* [VarArgType ] KwdArgTypeLis)
VarArgType

( VarArgTypé

( TypeRefList VarArgType)

TypeRef...

KwdArgType, KwdArgTypg*

Id IsType

TypeRef(, TypeRef*

TypeRef

( TypeRef TypeRefLis)

WithVarArgType

Id [TypeParamg| Extend$[ Exclude$[Bound$ [Wherég



TypeArgList
TypeArg

OprTypeArg

ArraySize
Extent

MatrixSize
DimType

NatTypeArg

Expr

Flow

TypeArg(, TypeArg*

TypeRef

NatTypeArg

OprTypeArg

Id

Op

Extent(, Exten)*

NatTypeArg

NatTypeAr¢gNatTypeArg

NatTypeArg x NatTypeAry"

Unity

DottedName

DimType DimType

DimType™ NatTypeArg

DimType- DimType

DimTypex DimType

DimType/ DimType

1/ DimType

(DimTypg

Number

Id

NatTypeArg NatTypeArg

NatTypeArg+ NatTypeArg

NatTypeArg- NatTypeArg

( NatTypeAry

Id

Let

Flow

Value

Comprehension

Expr[[TypeArgList]] Expr*

PreOp Expr

Expr Op[Expt]

Expr. Id

Expr AssignOp Expf, GeneratorLis}

ExternalSyntax

Accumulatorf GeneratorLis} Expr

throw Expr

atomic Do

tryatomic Do

exit [Id] [with Expr]

Do

if Exprthen Exprt (elif Exprthen Exprt)* [else Exprt]end

try Exprt [catch Id (TraitType= Exprt)*]
[forbid  TraitType$[finally Expr‘] end

case Expr[ld] of (Expr=- Exprt)* [else = Exprt]end

dispatch  DispatchTypecase

typecase DispatchTypecase

spawn [Expr] Do

for GeneratorList Do

while Expr Do

label Id Expr* end Id
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Value n=

Empty =
Aggregate =

ExprList
EntryList
Entry
Parenthesized

Comprehension

IntervallL
IntervalR
Accumulator
AssignOp
GeneratorList
Generator
Do -
DispatchTypecase ::
DispatchBindings :
|
DispatchTypeRefs ::=
|

Bindings

Binding
BindingList
Let

L-Vals n=
L-Val =

L-ValList
L-ValNoTypes

L-ValNoType
L-ValNoTypeList

Number| oo

String

Empty

fn ValParamdIsRetTypg[ Throwg = Expr
object [Traits] FldDef* MdDef end
Aggregate

Parenthesized

g 1OM0

{ ExprList}

[ EntryList]

( ExprList)

( ExprList)

[ Expr(Expr|; )" Expr]

[ ExprList]

Expr(, Expn*

Entry (, Entry)*

Expr+— Expr

| Expr|

IntervalL Expr, Expr IntervalR

{ Expr| Expr* GeneratorList}

[ (Binding| Expr GeneratorLis)* ]
(

)

2 [TIIV[3]BIG Op

= | Op=

Generator(, Generato)*

IdList «+ Expr

do Expr* end
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DispatchBindingsn (DispatchTypeRefs- Exprt)* [else = Exprt] end

Id

Bindings

TraitType

( TraitTypelLis}

Binding

( BindingList)

Id = Expr

Binding(, Binding*

L-Vals= Expr

L-Vals[:= Expi]
L-ValNoTypeglsTypé = Expr
L-ValNoTypeglsTypé [:= Expr]
L-ValNoTypes TypeRef = Expr
L-VaINoTypes TypeRef [:= Expi]
Id ValParamgdIsRetTypg[ Throwg = Expr
L-Val

( L-Val, L-ValList)

[var ] Id [IsTypé

Unpasting

L-Val (, L-Val)*

L-ValNoType

( L-ValNoType L-ValNoTypelLis)
[var]1Id

L-ValNoTypg, L-ValNoTypg*
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Unpasting ;= [ L-Elt (Paste L-El}* ]
L-Elt = Id[[ L-ArraySizg] ]
| Unpasting
L-ArraySize =  L-Extent(xL-Exten)*
L-Extent = Expr
| Expr: Expr
| Expr#Expr
Paste = (Whitespacé; )*
ExternalSyntax := syntax Id[Id Id] [Escapé= Expr
| syntax Id (Parenthesizedld [Escapg = Expr
Escape escape String

Parenthesizedld ::

{id}[Cid) [[Id]
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Appendix A

Fortress Calculi

A.1 A Fortress Basic Core Calculus

In this section, we define a basic core calculus for Fortrééscall this calculuBasic Core FortressFollowing the
precedent set by prior core calculi such as Featherweighéf@eJava [12], we have abided by the restriction that all
valid Basic Core Fortress programs are valid Fortress progr

A.1l.1 Syntax

A syntax for Basic Core Fortress is provided in Figure A.1. We the following notational conventions:

e We use« for extends andtraits
e For brevity, we omit separators such,aand; from Basic Core Fortress.

e 7 is a shorthand for a (possibly empty) sequenge: -, 7.

e Similarly, we abbreviate a sequence of relationsa Ny, - -+, a,, <N, toa « ﬁ
e We user; to denote théth element of 7.

e For simplicity, we assume that every name (type variablek] fiames, and parameters) is different and every
trait/object declaration declares unique name.

¢ We prohibit cycles in type hierarchies.

The syntax of Basic Core Fortress allows only a small subiséteoFortress language to be formalized. Basic Core
Fortress includes trait and object definitions, method agid fivocations, andelf expressions. The types of Basic
Core Fortress include type variables, instantiated traigtantiated objects, and the distinguished tbhiect . Note
that we syntactically prohibit extending objects. Amonigestfeatures, Basic Core Fortress doesinclude top-level
variable and function definitions, overloadirggcludes clausesbounds clauseswhere clauses, object expressions,
and function expressions. Basic Core Fortress will be elddrio formalize a larger set of Fortress programs in the
future.
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a, B type variables
f method name
x field name
T trait name
0] object name
o, = o«
| N
| o[7]
N,M,L == T[7]
| Object
€ =T
| self
| O[7I(@)
| e x
e TN
fd n= fla < z@ﬂ(ﬁ) T=e
vd = I T=e R
td .= trait T[a < N] « {N Object } fd end R
od .= object Ofa <« NJ(z7#) < {N Object }vdd end
d n= td trait definition
| od object definition
p c= de program

Figure A.1: Syntax of Basic Core Fortress

A.1.2 Dynamic semantics

A dynamic semantics for Basic Core Fortress is provided gufé A.2. This semantics has been mechanized via
the PLT Redex tool [15]. It therefore follows the style of égip evaluation contexts and redexes. The Basic Core
Fortress dynamic semantics consists of two evaluatioesrane for field access and another for method invocation.
For simplicity, we use '’ to denote some parts of the syntax that do not have key rolastle.

A.1.3 Static semantics

A static semantics for Basic Core Fortress is provided inufeig A.3, A.4, and A.5. The Basic Core Fortress static
semantics is based on the static semantics of Featherw@mydric Java (FGJ) [12]. The major difference is the
division of classes into traits and objects. Both trait abgkot definitions include method definitions but only object
definitions include field definitions. With traits, Basic @dfortress supports multiple inheritance. However, due to
the similarity of traits and objects, many of the rules in Basic Core Fortress dynamic and static semantics combine
the two cases. Note that Basic Core Fortress allows pargrpetymorphism, subtype polymorphism, and overriding
in much the same way that FGJ does.

A.1.4 Type soundness proof

We prove the type soundness of Core Fortress using the statiedanique of proving a progress theorem and a subject
reduction theorem. The proof follows.

Lemma A.1.1 (Method Bodies). If mtype,(f, o[7]) = {[a < ﬁ]] :’} — 74} then there exists such that
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Evaluation contexts and redexes
O[7I( V)

I

| O[PI(VE?)

| E. z

| E.f[7I(E)

| O[7N V). fITI(VE?)
217

i= O[7)(W). =

| O[7I(Y). FITIV)
T
0

Evaluation rules‘:p FE[R] — E|[€] ‘

object Ofa < Z(a': () 2 _=¢ _€ep

[R-FIELD]
pt BLO[ZN( V). 2] — Bl [r/allv/a'le:]
R-Merog __obect O (z:)) _ep  mbody(f[7'],0[7]) = {(F) — ¢}

—
v/x'

pF ELO[ZI(D). fI7NW)] — Bl [/ )O[7I( V) /self |[/zle]

Method body lookupt mbody, (f[7],7) = {( @) — e}

Me-gory - Cla a7l ﬂj;_ €p f[[a’_q)_ﬂ(ﬁl?_ = e ¢ {Td}
mbody,(f['], C[7]) = {[r/allr'/a"]( 2") — e}
Me-Supe ) 0[[0@ Ca{N}.Hd_ep gLFnaiQ?de}
mbody,(f[7'],C[7]) = |J mbody(f[~'],[r/a]N;)
Nie{ﬁ}
[MB-OBJ] mbody, (f[ 7], Object ) =0

Function/method name lookupF-naméfd) = f

Fnamdf[a < N[(Z3): 7=¢)=f

Figure A.2: Dynamic Semantics of Basic Core Fortress
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Environments

A = a < 1?/
I = z:%

Program typing

p:d—;>e p}—gok p;0;0kFe:T

l—(?e:T

[T-PROGRAM]

Definition typing:
_)

A—a <N pAFNok pAFMok pA:0:TF Tdok

Vf e {Fname{fdi}.\owneq,(f, T)<1
[T-TRAITDEF L
phtrait T[a <« N] < {M} fd end ok

A=a < IG p;A}—ﬁok p; A+ 7 ok p;Al—ﬁOk
p;A;m'}—\Taok p; Az 4,0+ fd ok
. <
[T-OBJECTDE] Vf e {Fname{fd;} lowner,(f,0)| <1

vd fd

pFobject Ofa < N|(z77) < {M}vdf

L

p; A+ 7ok p; AT e 7 p AT <7
p; AT F oz 7=eo0k

[T-FIELDDEF]

Method typing:‘ p; AT, CHAd ok‘

—
_Cla’ < (]. «{M}_ep overide(f, {M},[a < N| 7 — m0)
A'=Aa <: 13 p;A’}—_]j\}Ok p; A+ 7 ok p; A+ 19 0k
p; A’ T self :C’[[o/,]]mkezr’ p A ET <7

T-METHODD
[T-METHODDEF] P AT CF fla < N)(#79): m0=e ok

Method overriding| override,(f, {N}, [a <« N] 7 — 7)

Uy (y MRS L) = 15 9 M1 7 )
— —)IEp“es —
N=[o/fM 7 =[/f7 pa< NbFr < |a/b7
overridg,(f,{L},]a < N] 7 — 7o)

[OVERRIDE]

Figure A.3: Static Semantics (1)
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Expression typing
[T-VAR] p; AT Ha:T(x)
[T-SELF] p; AT Hself :T(self )
[T-OBJECT] object O_(_.:7) _€p p;A}—Oﬂ?]]Ok p;A;FI—?M7 p;A}—77 <::’>
p; AT F O[[?]]( ?) : O[[?]]
o ——
p; AT F et boundx (7o) = O[ 7] object Ofa< J-z:7'=e _€p
[T-FIELD] =
p; AT & eg. z; 2 [7/al7]
= /
pATEeo:m  mtypg(f, bounds(ro)) = {fa < N 7' — 7o}
p; A+ 7 ok pAFT < [T/ﬂ)
[T-METHOD)] p;A;FI—?:ﬁ p;A|—7j <: [t/a]T’
PiATF eo. f[71(F) : [r/alrg
[S-ReFL] pAFT <: 7T
[S-TRANS] p;AFET < T P;AE T < T3
p;AF T <: T3
[S-VAR] pAFa <: Aa)
aa N
[S-BOTH] -Cla< ] <{N}-€p

pAFC[7] < [r/a]N;

Well-formed types

[W-OeJ] p; A - Object ok
[W-VaR] _a € doma)
p; A F a ok
[W-BoTH  — Ola<N.cp pArZok pAr? < [r/aN
p; A F C[7] ok

Figure A.4: Static Semantics (Il)
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Method type lookupr mtype,(f, 7) = {[o < ﬁ]} 7 o7}

Cla< ] T _ep  fIBaMI(-:7): mh=eec {fd}

[MT-BOTH] — =
mtypg (f, C[7]) = {[7/a][8 < M] 7" — ¢}
_>
M T-SUPEH Claa?]. «{N}.Td _ep f¢{Fnamafd)}
mtype (f, C[7]) = mtype, (f, ;)
Nelr/al{Ny
[MT-OBJ] mtype (f, Object ) =0
Owner Iookup* owner,(f,C) ={C} ‘
0-BorH] Clas?].Wd _ep fe{Fnamefd)}

owner, (£,C) = {C}

[O-SuPER| - Cla <] < {ﬁ}— fd - €Ep [¢ {W}
owner,(f,C) = owner, (f,T)
T[71e{N}

Bound of type] bound\ (7) =7

bound (@) = Aa)
boundy (V) = N
bounch (O[7]) = O[7]

Figure A.5: Static Semantics (l11)
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mbody, (f[+"], O[7]) = {(#) — e}.

Proof. Trivial induction over the derivation ahtype(f, o17]) ={Ja < ﬁ]] 7 70} O

Theorem 1 (Progress).If p; A;T' + e : 7 then eithere isavalue orp - e — €’.

Proof. The proof is by case analysis on the current redex(in the case that is not a value).

CaseO[7]( ). x;: By the well-typedness af, we knowp; A; T + O[7]( 7). z; : 7’ for somer/’. By the typing

rule [T-FIELD], we knowobject OJa < f]] _z: 7" =e _€ p. Therefore the evaluation rule [RHELD] can be
applied.

CaseO[7]( 7). f[7](¥): By the well-typedness af, we knowp; A; T - O[F[(¥). f[7]( ) : [ /a]r for
somer. By the typing rule [T-METHOD], we knowmtypq)(f,O[[?]]) = [a < ﬁ]]j — 1 for someﬁ, . By
LemmaA.1.1, we havmbodﬂf[[?]], O[7]) =( @) — efor somee. The size of’ and@ are equal because both

equal the size o{j by [T-METHOD]. A similar argument holds for’. So the evaluation rule [R-KrHOD] can be
applied. O

Lemma A.1.2 (Replacement).If p; A;T' - E[e] : 1o andp; A;T - e : mp andp; AT F € @ ) where
p; A7 <: 7 thenp; AT+ E[ €] : 7y wherep; A+ 1) <: 7.

Proof. This proof is a replacement argument in the typing derivatio O

Lemma A.1.3 (Weakening). Suppose; A a <: ﬁ F ]_\/2 ok andp; A + 79 ok.

1. Ifp;Ab 7 < 7thenp;Aa <: NF7 < 7.
2. Ifp; A+ 7 okthenp; A o <: N)Prok.

3. Ifp;A;THe:rthenp; A;Tax:gFe:Tandp;, A a <: E@;Fl—e:r

Proof. Each of them is proved by straightforward induction on thevdéion of p; A - = <: 7’ andp; A + 7 ok and
p; AT e T, O

—
Lemma A.1.4 (Type Substitution Preserves Subtyping)lf p; A a <: L?Ag Fr <:_r>’ andp; A, 7 < [T/a]ﬁ
with p; A; - 7 ok and none off appear inA; thenp; Ay [t/a]As F [r/alr <: [r/a]7’.

Proof. By induction on the derivation qf; A, m Ao b1 < 7,
Case [S-RFL]: Trivial.
Case [S-RANS], [S-BOTH]: Easy.
Case [S-MR]: T=a 7' =(Ara <: N As)(a)

If « € don( A;) udon( As), then the conclusion is immediate. Otherwisey i «;, then, by assumption, we have
p; Av F 1 <: [t/a]N;. Lastly, Lemma A.1.3 gives us the desired result. O
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Lemma A.1.5 (Type Substitution Preserves Well- Formedne$s|fp, A a i> N) Ao b rokandp; Ay F 7 < [T/a]J_V)
with p; A; - 7 ok and none ol appearing inA;, thenp; A, [T/(I]AQ [7/a]T ok.

Proof. By straightforward induction on the derivation@fA; o <: N A, F 7 ok. O
_)
Lemma A.1.6. Suppose; A1 a <: ﬁ As - 7 okandp; Ay - 7' <: /a ﬁ withp; Ay 7' ok and none ofy
i . ! ! . !
appear inA;. Thenp; Ay [/ /a]As + boundAl [mm(h JalT) <: [T /a bound o < Na,

Proof. The case where is a nonvarlable type is trivial. ¥ = o € dom( A;) Udom( Ay) then the proof is easy.

——
If r = o thenbound —/> ([ ’/a] ) = 7/ and [T’/oz}boundA1 mm( 7) = [7'/a]N;. Lemma A.1.3
finishes the proof. O
Lemma A.1.7. If p is well-typed andp; A = 7 ok andmtype,(f,boundy(7)) = [a < ﬁ]]r — 7'0, then for

somer’ such thatp; A - 7' <: 7 andp; A + 7' ok, we havemtype,(f, boundA( ) = e < N]]r — 7 and

p;Aa <: NI—TO <: T9.

Proof. By induction on the derivation of; A - 7' <: 7.
Case [S-RFL]: Trivial.
Case [S-MR]: Trivial becausébound (7) = bound (/).
Case [S-RANS|: Easy.

Case [S-BTH: r'=C[?] r=[r/aJM; where_ Cla< 2]. <« {M} _ep.

Subcasef¢ {Fnamdfd)}: Thenmtype,(f,C[7])= mtype,(f, [r/al{M}) = mtype (f,[r/alM;) = [a < N| = —

T0-

Subcasq‘[[ﬂ < L]]( T " 1) =e€ {fd} By |nduct|on on the derivation ahtype (f,7), we knowmtypg(f,7) =
- ! // n j— ﬁ -
[r/a]([B < L'] " — 77) wheremtype (f, M;) = ﬂﬂ a L'l — rf and[r/a] 7] = 7. By [T-METHODDEF]
and [OVERRIDE], we havep;a <: N 8 <: L, F 7, <: 7¢'. By Lemmas A.1.4 and A.1.3, we have

pAB < L+lr/am <: [rjalr
Sincemtype (f, bounda (7)) = mtype,(f, ') = [%]([[ﬁ q ii]] j — 1), we are done. O

EgmmaA 1. Sgerm Substitution Preseﬁs Typing).If p is well-typed ang; A;T z: 7 e : 7andp; A;T + e ﬁ
' andp; A+ 7' <: 7, thenp; A;T [e'/z]e : 7' for somer’ such thap; A+ 7" <: 7.

Proof. By induction on the derivation gf; A;T z: 7 + e : 7.
Case [T-&LF]: Trivial.

Case [T-WBJECT]: Easy.
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Case [T-VAR] p ATz #baz: I (z)
If z € dom(T) then the resultis immediate. Otherwise= z; andr = 7;. Thent’ = 7/.

piATFeo:r,  bounds(m) = O[~"] object Ofa < 2] a:r=e _€p

p;A;Fﬂ Feo. xp: [7" /o]t
By the induction hypothesis we hapeA; T+ [¢//z]eq : 7 andp; A F 7 <: 7. By inspection of the definition of
bound notice thatr)= O[[m]]. Then by inspection of the subtyping ruleg’, = O[[j]] and the result is immediate.

Case [T-FIELD]

P AT T Fbeo:7)  mtype(f,bounds(r))) = (' = )
— — —

pAFT ok p AR < [T"'/am’
Case p ATz #F€ :ﬁ p,A}— o <: [T”'/a]ﬁ

[T-METHOD]
P AT T 7 F e f[[T”']]( e) [t /a]To

By the induction hypothesis we have

—— =
p; AT F [ef /zleq : 1) p; AT = [e’/m]?:m
p; AT <7 p;AFT””<:7ﬁ
By Lemma A.1.7, we havetypg (f, bounds (7)) = [a < ﬁ]]f — 7" where
A« < ﬁ F oy’ <: ' By Lemma A.1.4, we havp;A F " /alry” <: [7"/a]r. By [T-METHOD], we have
pi AT F [/ (eo ST ®)) < [ ol O

Lemma A.1.9 (Type Substitution Preserves Typing).If p is well-typed andp; A, oz_>< ﬁ A_%F F e:T and
p AL F T < [7/a] ﬁwherg A, - 7 ok and none o appear inA;, thenp; A [r/a]Ag; [7/a]T [r/a}e 7/
for somer’such that; A; [7/a]As F 7' <: [7/a]T.

Proof. By induction on the typing derivatiop; A; a <: ﬁ Ao T' e : 7 with case analysis on the last rule applied.
Case [T-\AR], [T-SELF]: Trivial.

pi AT a <: N Ao;Tkeg: 7 bound a < Na (r0) = O[[T”]]

Case object O[3 <« M|(z': ) < {f}x M =e_€p
[T-FIELD]
p; Ao <: 13 As;T Feo. iz [T /6]7:"
By the induction hypothesis, we haweA; [7/a]Aq; [T/l & [r/alep : 7§ wherep; Ay [7/a]Aqs b 7y <: [7/a]7.
By inspection of the definition ddound notice that)= O["]. Thﬂby inspection of the subtypiﬂ rules, we know
the last rule applied in the derivation pfAy [7/a]As F 7§ <: [v/a]r)is [S-ReFL] and7] = [r/a]O[[j]]. The
rest of this case is immediate.

- —
object O[B8 <« M](z":7") < {f} -€p

Case piAra <: N AsF O[7] ok
piATa <: N)AQ;FI—?:? p;AL <:NA2|—3 <:j

[T-OBJECT]
piAra <: NAxTFO[R](?) : O[7]
By Lemma A.1.5, the induction hypothesis, and Lemma A.1&have

p; Ay [T/a}AZ F[r a}ou?]] ok
pi A [r/a] Ao [%{ Ir - [;/‘o)z AL Wherep, Ay [r]alBg 77 <: [r]alr”

p; Ay [7/a]Ag; X [T/a]T T/a
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Rules [S-TRANS] and [S-BoTH] finish the case.

_>
piAra <t NAyTFeo:) mtyp(;(f,bound Ao Na, ) —{ﬂmﬂT' - 7}
_)
piAra < N A o ok, phia < N A, FT”’_>< [T'"/g]
CaSe p,Al a <: 13 A2’I‘ }— . ’ p7A1 a <: Az "T” <: [T”I/,B]
[T-METHOD] 2, _)ﬁ -
p; A1 a <: N Ay Tkeo. f[7"](€) : [ /B8]0

\‘\\L E\l’

By the induction hypothesis, we have

%AMJJAMHMFFE@] . mAlhgm%h@gkhzgimﬁ
p; Ay [T/alAy F 7 < [T/a]T p; A [T/a)Ay 7" < [T /alT".

— —
By Lemma A.1.6, we havg; Aq [7/a]As F bound — (1) < [r/a]boundAl mAZ(T(’]).

[T/a]A,
T — =
By Lemma A.1.7, we haventype (f, boundA [TX]A (10)) =18 < [7/a]M] [r/a]T" — 75" where
1T 2

e — — —
p; Ay [T/a]As B <: [T/a]M, F 7" <: [r/a]re. By Lemma A.1.5, we have; Ay [1/a]As F [T/aﬁ ok. By
Lemma A.1.4, we have

pi A (/o) F [rfalr” < [r/all" /5
P 73l - [r/alr” < [r/alr" /8] 7

, . — - — — —
By [S-TrANS]and without a loss of generality, we haweA; [r/a]As F 7" < !

By Lemma A.1.4, we have

—_—

P Ay [r/alAs F [T < (el Bl (= [[r/al " /BT /almo).

Finally, [T-METHOD] gives usp; A; [r/a]A2 [T/a}FI— [T/a](eo flr ’”]]( @) [r '"//5’]76"- O

Theorem 2 (Subject Reduction).If p is well-typed angh; A;T' - e : 7 andp - e — €’ thenp; A;T F €' : 7/ where
pAFT <7,

Proof. The proof is by case analysis on the evaluation rule applied.

Case [R-FELD]: e= B[ O[Z[( V). z:] e'=E[ [r/al[v'/d)e:]

By the well-typedness of, we haVQJ, AT H O[[?]]( ). z; : [7/a]r] where
object Ofa < 13]](1:7”) < {M} z: 7" =efd ende p.
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By typing rules [T- CBJEC'I], [T-OBJECTDEF], [T-FIELDDEF], and [W-BOTH], we have:
(la) p; AT E T (1b) p;AI—T_U> <: ?
(2a) p; m, '—7} Fei:rl" (2b) p;m Frl” <o
(3) pAFT < [N
(a) p;ATFO[P)( V) : O[F]

By Lemmas A.1.3and A.1.8 appl|ed (9a), (1a), and(1d) we have:

(5a) p;Aa <: 13 I [v’/:c ei: 1" (50) p;Aa <: NF "< ]
By Lemma A.1.9 applﬂt(ﬁa) and(3b) we have: .
(6a) p;A;[r/a)l F [r/al[v'/2'e; « 7" (6b) p; AET < [v/a)r]”

By Lemmas A.1.3, A.1.4, and [SRANS] we have:
(7b) . A '_ nmi . 1
P; " < v /a7

Applying Lemma A.1.2 to judgement§a) and(7b) we finish the case.

Case [R-METHOD]:  e= B[ O[7]( V). SN €= B/ [ O[71( V) /self ]e']
Wherembod)g(f[[ﬁ]], o[7]) =( ) e

andmtype (f,0[7]) = [[,6<1M]]ﬁ%m
and pbject Ofa « N[(77#) < {M} vdfd end) € p.

By the well-typedness af we havep; A; T - O[7[( 7). f[[?,]]( oy [7’4/5} [7-‘/(;4]70

By typing rules [T @JIECT], [T-OBJECTDEF], [T-M ETHODDEF], [T-METHOD], and [W-BOTH] we have:
(1a)p; AT+ W : 7

Ab)p: A -7 < 7
@h)pAF T <: [r/a]N
(Ba)p; A;T 7 : :}

|

(5a)p;04 <: N,,B <: MI,, o self O[[?]] z:7" e T(/J wheree” = [T’ ﬁ][%]e’”

X
Bb)p;a <: 1\_/6 <: M,I—T{J <: 70
(6a) p;A;TFO[Z](7) : O[7]

~

By Lemma A.1.9, applied t@5a) and(4b) we have:

(7a)p,A,m,, F/aT 2 7" self :O[P]z:7"F [rjale" : 7
— —

(Tb)p; A B <: M, 1) <: [r/a]7)

By Lemmai).l.sa,‘%pplied t¢7a) and(2b) we have: R
(8a)p; A; [T'/,B}[T/a]l—‘_:v; s self O[7] a7+ [7)8][r)a)e : T
@b)p; A b 7" <: [7'/B]g

By Lemmas A 1 3 and A.1.8, applied (6a) and(7a) we hav;

©a)p: A3 [ A oIl s 7 w1 77 - (O[] D) fself | B[ ale : ri"
Ob)p; A - 7" <: 7y
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By Lemma E;3a‘m>j A.138, appIiLM)Ga), (3a) and(3b) we@)e:_}
(10a)p; A; [/ ][/l @ : 7" 1= v/ [a"|O[FT( W) /self |[~'/Bl[r/ale" : 75"
(10b)p; A+ 7" < 7"

By L A.l.3and A.1.8, lied {9a), (1 d(1b have:
y Lemma an applied {8a), (1a) and( )WLE!)VL)

(LLa)p; A; [7/]B)[falT - [of2][e' [2NOT1( ) [selt 117/ ]B]fale™ : 7™
(11b)p; A+ 7" <o "

By Lemmas A.1.3, A.1.4, anﬂSRTANS], we have:
—
(12b)p; A+ )" <: [ /B[ /a]To

Applying Lemma A.1.2 to judgemenfd0a) and(12b) we finish the case.



Appendix B

Api conponent s

We define a specialomponents api that provides handles on components and apis, and mperain them, for
use by components themselves (e.g., development enviraejnallowing components to build and maintain other
components, manipulate projects and components as gb@xtgpile projects into components, link components
together, deploy components on specific sites over thenieteetc. This api is also used by thpgradable and
installable apis. A component implementing this api is installed aloriifpthe core library components on every
fortress.

Note thatComponent s andApi s have no public constructors. They can be constructed omty the factory methods
provided by a fortress. The components returned frafaraiess ~ are also installed in th&ortress . Also note the
Fortress is a singleton class; it has no public constructor, but theeeesingle instance provided in a static field.

The operations on a fortress provided in this api take comptmnand apis as arguments directly, rather than names
of components and apis as the corresponding shell opesagi@ndescribed. This decision is done for the sake of
convenience. Note, however, that a component name may barréton a fortress, or even uninstalled, while some
processp keeps a reference to a correspond@wgnponent object. This possibility is not problematic because the
component corresponding to this object may be simply kephéyortress until the object is freed;in Also, note that
upgrade operations on a compound are purely functiona}: gheduce new compound components as a result. Thus,
the structure of a component as viewed througlomponent object does not became stale in the face of upgrades.

We include a methodetSourceFile  on components that returns the source file the componentamagiled from.
Source files could be included with simple components ducimgpilation as a compiler option. Doing so would
allow development tools such as graphical debuggers ttyadisplay the locations of errors without the possibility
that source code would not be synchronized with compiled@cas can happen in conventional programming models
where compiled code is stored in unencapsulated object files

api components.1.0

import File from fortress.io.1.0
import {List, Set, Date} from fortress.util.1.0

object Fortress
getComponent(name:Name):Component
getApi(name:Name): Api
preferences(api: Api):ListfComponent]

compile(source:File):SimpleComponent
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install(serialized:File):Component
upgradeAll(name:Name, other:Component):()

link(name:Name, constituents:ListfComponent],
export:{Api}, hide:{Api}):Component
throws LinkException
end

trait FortressElement
name():Name
vendor():String
owner():Fortress
timestamp():Date
getVersion():Version
uninstall():()

end

object Component

( imports {Api},

exports {Api},

provides:{Api},

visibles:{Api},

constituents:{Component} )
traits FortressElement
execute(args:String[]):()
constrain(name:Name, apis:{Api}):Component
hide (name:Name, apis:{Api}):Component
extract(prereqs:{Api}):File
isValidUpgrade(that: Component):Boolean

abstract upgrade(hame:Name, that:Component):Component

throws UpgradeException

getSourceFile():File throws SourceNotAvailableExcepti

end

object SimpleComponent traits Component

upgrade(hame:Name, that:Component):Component

end

object CompoundComponent traits Component

upgrade(name:Name, other:Component):Component

end

object Api
( uses:{Api},
extract:File )
traits FortressElement
end

object Name
toString():String
end

object Version

APPENDIX B. APICOVPONENTS

on
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major: Int
minor: Int
end
object UpgradeException(msg:String) traits Exception en d

object LinkException(msg:String) traits Exception end
object SourceNotAvailableException(msg:String) traits Exception end
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Appendix C

Support for Unicode Input in ASCII

ASCII encoding of Unicode in Fortress programs is suppaaetbllows:

1. Names for all Unicode characters except control charsctn be written in all caps. Spaces in a name are writ-
tenas '’ . Additionally, all Unicode character names are aliasethwiames in which the following substrings
are elided:

"LETTER "
"DIGIT "
"RADICAL "
"NUMERAL "
" OPERATOR"

2. All ASCll-encoded Unicode characters are converted twatie before parsing or scanning.

3. If two Unicode names are separated by an ampersand, thersang is removed as the two names are converted
to Unicode characters.

4. If a line is continued using a final ampersand, and the ooation line begins with an ampersand, and the first
ampersand is immediately preceded by an identifier with teniening space, and the second ampersand is
immediately followed by an identifier with no interveningase, then the two identifiers are logically glued
together to make one identifier.

Here is a simple example. The expression:

(GREEK_SMALL_LETTER_PHI GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA GREEK_SMALL_LETTER_LAMBDA)

is converted to:

(¢ ¢ +w )

where there are four identifiers in all. To get two identifiense writes

119
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(GREEK_SMALL_LETTER_PHI&GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA&GREEK_SMALL_LETTER_LAMBDA)

which is converted to:

(¢ + wh)

We include shorter names for common characters. In paaticihie following tokens are converted as follows:

BY becomes x *  becomes -
->  becomes — => becomes
-> becomes — ==> becomes

> becomes

<= becomes

- becomes

CAP becomes

TOP becomes
PRODUCT becomes
EMPTYSET becomes
NOTSUBSET becomes
NOTSUBSETEQ becomes
NOTEQUALS becomes
/= becomes

NOTIN becomes

~> becomes

>= becomes

;= becomes

CUP becomes
BOTTOM becomes
SUM becomes
INTEGRAL becomes
SUBSET becomes
SUBSETEQ becomes
EQUALS becomes
EQUIV becomes

IN becomes

Ml RINASME=CT IV 3
RARONSHADTAT |

The following tokens and there lowercase counterparts@messted as follows:

AND becomes
OR becomes
NOT becomes
XOR becomes
INF  becomes
SQRT becomes

R8BI <>

As a special feature, twenty-four names, in both uppercagdéosvercase form, are converted to Greek letters:

alpha beta gamma delta epsilon zeta eta theta iota kappa lamb da
mu nu xi omicron pi rho sigma tau upsilon phi chi psi omega

become:

afByvydel(nb it AXpvéompoTvdx Vv w

C.1 Distributed Pasting

There are many sets of Unicode character names for whichatcters in the set share the same prefix. For example,
consider the prefixes
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'GREEK_SMALL_LETTER’, 'KATAKANA_LETTER’, 'CYRILLIC_CA PITAL_LETTER’

etc. Furthermore, characters with the same prefix are oftsadttogether.
To facilitate entering characters with a common prefix, f&®s supports distribution of a Unicode prefix over a
sequence of character names. If an identifier-pasting esapéris followed by a left parenthesis, there is distributed

meta-pasting over the characters enclosed in parentifefiesied by Unicode conversion followed by pasting. For
example,

foo&(a&b&c&d&e)
becomes

fooa&foob&fooc&food&fooe
which becomes

fooafoobfoocfoodfooe

To keep error messages sane, unbalanced parenthesesdttectéd as errotseforemeta-pasting.

Program text is allowed to include Unicode directly. A Fess program editor is expected to convert ASCll-encoded
Unicode to straight Unicode as the characters are typed.

C.2 String Literals

By default, the preprocessing described above is not pagdrwithin string literals. Therefore, the string literal
“alpha " contains five characters.

To enable the unicode transformations, a backslaymst be prepended. Therefore, the string litekalpha
contains only one character, corresponding to the Unictdeacter fora. In order to embed a literal backslash
character, it must also be escaped with a backslash. Theréfteta " contains five characters, the first of which
is\.

The preprocessing described below, which is for identifeard numeric literals, is never performed within string
literals.

C.3 Identifiers and Numeric Literals

An alphanumeric token consists of a sequence of lettergsdand underscore characters; if it begins with a digit, or
ends with a radix specifier and contains no other underscihres it may also contain a period (to serve as a decimal
point or other radix point). The interpretation and dispgopearance of the token depends on which of a number of
categories it falls into.
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First, a preprocessing step: if the token is the (all-upgeecor all-lowercase) name of a Greek letter, or begins with
the name of a Greek letter followed by an underscore or a digiénds with the name of a Greek letter that is preceded
by an underscore, or contains the name of a Greek letter witimderscore on each side of it, then the name of the
Greek letter is replaced by the Greek letter itself. A sdexdahoc rule is that if the identifier begins witmt_" and
ends with “ ”, then the first underscore is deleted as the “mu” is condedghe Greek letter lowercase mu.

Examples: alpha OMEGA3alpha_hat theta elephant OMEGA Xl
a Q3 o_hat 6 elephant Q=

Now, if the token begins with a digit, it is a numeric tokenisldisplayed in roman type, with the optional radix as a
subscript.

Examples: 27 7fff_16 10101101_TWO  3.14159265 3.11037552_8
27 Tfff;g 10101101, 3.14159265 3.11037552
Note: the elegant way to write Avogadro’s numbe6i62 TIMES 10723

Otherwise, if the token contains no underscores, it is antifiler. If it consists of one or more letters and then one or
more digits, it is displayed by displaying the letters ididtéype and the digits as italic subscripts (to distinguisém
from true numeric indexing subscripts indicated by bragkethich would be shown in roman type); otherwise, it is
simply displayed in italic type.

Examples: Fred foobar al a23 alphal [33tsp33k
Fred foobar ay ass a [133tsp33k

If the token contains one underscore and what follows thesrgudre is either a decimal integer from 2 to 16 or the
English name (in all capital letters) of an integer from 2 & it is a numeric token. The part before the underscore is
displayed in roman type and the part after the underscorigfdaged as a decimal subscript.

Examplesdeadbeef SIXTEEN dead.beef 16 37X8E2_12 3.243f6b_16
deadbeqf; dead.begf 37X8E2, 3.243f6hg
Otherwise, it is an identifier, and the rules for display aymplicated:

If a token ends with an underscore and has no other undessdbisedisplayed without the trailing underscore but in
roman type rather than italic. (This is typically used fontes of SI dimensional units. Here we see the reason for the
ad-hoc rule about the treatment of “mu” at the beginning oidemtifier ending with an underscore.)

Examplesm_s_ km_V_OMEGA_mu_s mu OMEGA _
m s km V Q us pf

Otherwise, the token is divided into components by its usclanes. If any component is empty except the first, then
the entire identifier is displayed in italics, underscored all. Otherwise, the components are displayed as follows.
If the first component is empty (that is, the identifier begiith a leading underscore), then the second component
is displayed in boldface and then any remaining componeptpracessed from left to right beginning with the third
component (this is typically used for vectors and matriees, for the square root of minus one); otherwise, if the first
component iscript , then the second component is displayed in a script faceterdany remaining components
are processed from left to right beginning with the third pament; otherwise the first component is displayed in
italics and remaining components are processed from leijid beginning with the second component. (However, as
the second or first component is displayed according to thaquis sentence, if the component consists of a sequence
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of letters followed by a sequence of digits, then the digits displayed as a subscript in italics.) The remaining
components are then processed according to the followieg:ru

e If a componentidar , then a bar is displayed above what has already been dishlaye
e If a componentiwvec, then a right-pointing arrow is displayed above what hasaaly been displayed.
e If a componentidat , then a hat is displayed above what has already been dishlaye

e If a component igdot , then a dot is displayed above what has already been dishléy if the preceding
component was alsdot , then the new dot is displayed appropriately relative tgatexious dot(s).

e Ifacomponentiprime , then a prime mark is displayed after what has already besgrhegied as a superscript.

e If a component isuper and another component follows, then that component isalispl as a superscript in
roman type, and enclosed in parentheses if it is all digits.

¢ |If the component is the last component, it is displayed adaaipt, in italics if it is all digits, and otherwise in
roman type.

e Otherwise, this component and all succeeding componeagisplayed in italics, each with a preceding under-
score.

Examplesv_vec _v_M vla dotp_prime pl3_prime T_max foo_bar

—

v v M vy a p Dy Tmax foo_bar
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Appendix D

Detailed Rules for Operator Precedence

In each of the character lists below, each line gives the dféccodepoint, the full Unicode name, an indication of
what the character looks like ingX (if possible), then any alternate names or ASCII rendeviiog the character.

D.1 Bracket Pairs for Enclosing Operators

Here are the bracket pairs that may be used as enclosingtoertlote that there are two groups of four brackets;
within such a group, either left bracket may be paired witheziright bracket to form an enclosing operator.

U+005B LEFT SQUARE BRACKET [
U+005D RIGHT SQUARE BRACKET ]
U+007B LEFT CURLY BRACKET {
U+007D RIGHT CURLY BRACKET }
U+00AB LEFT-POINTING DOUBLE ANGLE QUOTATION MARK

U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

U+2045 LEFT SQUARE BRACKET WITH QUILL

U+2046 RIGHT SQUARE BRACKET WITH QUILL

U+2308 LEFT CEILING [ LC
U+2309 RIGHT CEILING 1 RC
U+230A LEFT FLOOR | LF
U+230B RIGHT FLOOR | RF
U+27E6 MATHEMATICAL LEFT WHITE SQUARE BRACKET [
U+2985 LEFT WHITE PARENTHESIS {
U+2986 RIGHT WHITE PARENTHESIS )
U+27E7 MATHEMATICAL RIGHT WHITE SQUARE BRACKET 11
U+27E8 MATHEMATICAL LEFT ANGLE BRACKET ( <
U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET )y >
U+27EA MATHEMATICAL LEFT DOUBLE ANGLE BRACKET { <<|
U+27EB MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET ) |>>
U+2983 LEFT WHITE CURLY BRACKET {1
U+2984 RIGHT WHITE CURLY BRACKET Ik

125
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U+2987 z NOTATION LEFT IMAGE BRACKET
U+2988 z NOTATION RIGHT IMAGE BRACKET

U+2989 zZ NOTATION LEFT BINDING BRACKET
U+298A Z NOTATION RIGHT BINDING BRACKET

U+298B LEFT SQUARE BRACKET WITH UNDERBAR
U+298C RIGHT SQUARE BRACKET WITH UNDERBAR

U+298D LEFT SQUARE BRACKET WITH TICK IN TOP CORNER
U+298E RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER

U+298F LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
U+2990 RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER

U+2991 LEFT ANGLE BRACKET WITH DOT
U+2992 RIGHT ANGLE BRACKET WITH DOT

U+2993 LEFT ARC LESS-THAN BRACKET
U+2994 RIGHT ARC GREATER-THAN BRACKET

U+2995 DOUBLE LEFT ARC GREATER-THAN BRACKET
U+2996 DOUBLE RIGHT ARC LESS-THAN BRACKET

U+2997 LEFT BLACK TORTOISE SHELL BRACKET [*
U+2998 RIGHT BLACK TORTOISE SHELL BRACKET *]

U+29D8 LEFT WIGGLY FENCE
U+29D9 RIGHT WIGGLY FENCE

U+29DA LEFT DOUBLE WIGGLY FENCE
U+29DB RIGHT DOUBLE WIGGLY FENCE

U+29FC LEFT-POINTING CURVED ANGLE BRACKET
U+29FD RIGHT-POINTING CURVED ANGLE BRACKET

U+300C LEFT CORNER BRACKET o</
U+300D RIGHT CORNER BRACKET 0>
U+300E LEFT WHITE CORNER BRACKET <</
U+300F RIGHT WHITE CORNER BRACKET >>
U+3010 LEFT BLACK LENTICULAR BRACKET {*
U+3011 RIGHT BLACK LENTICULAR BRACKET *}
U+3018 LEFT WHITE TORTOISE SHELL BRACKET [/
U+3014 LEFT TORTOISE SHELL BRACKET (/
U+3015 RIGHT TORTOISE SHELL BRACKET N
U+3019 RIGHT WHITE TORTOISE SHELL BRACKET /]
U+3016 LEFT WHITE LENTICULAR BRACKET {/
U+3017 RIGHT WHITE LENTICULAR BRACKET I}

In addition, each of these operators may be paired wittf itsébrm an enclosing operator pair (see Section 2.8):
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D.2 Arithmetic Operators

D.2.1 Multiplication and Division

The following four operators have the same precedence agpdenmixed. Note thasOLIDUSandDIVISION SLASH
must be used loose for this purpose, because when usedhighfiorm tight fractions; therefore, when multiplication
and division operators in this group are to be mixed, theytralibe loose.

The following are multiplication operators. Note th&TERISK OPERATORs always a multiplication operator;
ASTERISK s treated as a synonym falISTERISK OPERATORhere appropriate, b#STERISK also has other uses,
for example in the ASCII bracket encodings and*] and{* and+*} .

U+002A ASTERISK *

U+00B7 MIDDLE DOT - DOT
U+00D7 MULTIPLICATION SIGN x TIMES BY
U+2217 ASTERISK OPERATOR *

U+228D MULTISET MULTIPLICATION

U+2297 CIRCLED TIMES ® OTIMES
U+2299 CIRCLED DOT OPERATOR ® ODOT
U+229B CIRCLED ASTERISK OPERATOR ® CIRCLEDAST
U+22A0 SQUARED TIMES X BOXTIMES
U+22A1 SQUARED DOT OPERATOR = BOXDOT
U+22C5 DOT OPERATOR .

U+29C6 SQUARED ASTERISK BOXAST

U+29D4 TIMES WITH LEFT HALF BLACK

U+29D5 TIMES WITH RIGHT HALF BLACK

U+2A2F VECTOR OR CROSS PRODUCT x CROSS
U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE

U+2A31 MULTIPLICATION SIGN WITH UNDERBAR

U+2A34 MULTIPLICATION SIGN IN LEFT HALF CIRCLE

U+2A35 MULTIPLICATION SIGN IN RIGHT HALF CIRCLE

U+2A36 CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT

U+2A37 MULTIPLICATION SIGN IN DOUBLE CIRCLE

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following are division operators. Note tHavISION SLASH is always a multiplication operatog§OLIDUS is
treated as a synonym f@iVISION SLASH where appropriate, b®®OLIDUSalso has other uses, for example in the
ASCII bracket encodingé and/) and[/ and/] and{/ and/} .

U+002F soLIbus /

U+00F7 DIVISION SIGN + DIV
U+2215 DIVISION SLASH /

U+2298 CIRCLED DIVISION SLASH @ OSLASH

U+29B8 CIRCLED REVERSE SOLIDUS

U+29BC CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN

U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29F5 REVERSE SOLIDUS OPERATOR \

U+29F8 BIG SOLIDUS /
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U+29F9 BIG REVERSE SOLIDUS
U+2A38 CIRCLED DIVISION SIGN OoDIv
U+2AFD DOUBLE SOLIDUS OPERATOR //

D.2.2 Addition and Subtraction

The following three operators have the same precedence apdemixed.

U+002B PLUS SIGN + +
U+002D HYPHEN-MINUS _ .
U+2212 MINUS SIGN —

They each have lower precedence than any of the followingjpfichtion and division operators:

U+002A ASTERISK *

U+002F soLIbus /

U+00B7 MIDDLE DOT - DOT
U+00D7 MULTIPLICATION SIGN x TIMES
U+00F7 DIVISION SIGN =+ DIV
U+2215 DIVISION SLASH /

U+2217 ASTERISK OPERATOR *

U+22C5 DOT OPERATOR

U+2A2F VECTOR OR CROSS PRODUCT x CROSS

The following two operators have the same precedence andeayxed.

U+2214 DOT PLUS
U+2238 DOT MINUS -

The following two operators have the same precedence andmayxed.

U+2A25 PLUS SIGN WITH DOT BELOW
U+2A2A MINUS SIGN WITH DOT BELOW

The following two operators have the same precedence andmayxed.

U+2A39 PLUS SIGN IN TRIANGLE
U+2A3A MINUS SIGN IN TRIANGLE

They each have lower precedence than this multiplicati@radpr:

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following two operators have the same precedence andmayxed.
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U+2295 CIRCLED PLUS
U+2296 CIRCLED MINUS

129

@ OPLUS
© OMINUS

They each have lower precedence than any of the followingjpfiohtion and division operators:

U+2297 CIRCLED TIMES

U+2298 CIRCLED DIVISION SLASH
U+2299 CIRCLED DOT OPERATOR
U+229B CIRCLED ASTERISK OPERATOR
U+2A38 CIRCLED DIVISION SIGN

The following two operators have the same precedence andmayxed.

U+229E SQUARED PLUS
U+229F SQUARED MINUS

They each have lower precedence than any of these multiplicar division operators:

U+22A0 SQUARED TIMES

U+22A1 SQUARED DOT OPERATOR
U+29C4 SQUARED RISING DIAGONAL SLASH
U+29C6 SQUARED ASTERISK

These are other miscellaneous addition and subtractiomtps:

U+00B1 PLUS-MINUS SIGN
U+2213 MINUS-OR-PLUS SIGN
U+2242 MINUS TILDE

U+2A22 PLUS SIGN WITH SMALL CIRCLE ABOVE
U+2A23 PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE

U+2A24 PLUS SIGN WITH TILDE ABOVE
U+2A26 PLUS SIGN WITH TILDE BELOW

U+2A27 PLUS SIGN WITH SUBSCRIPT TWO
U+2A28 PLUS SIGN WITH BLACK TRIANGLE
U+2A29 MINUS SIGN WITH COMMA ABOVE
U+2A2B MINUS SIGN WITH FALLING DOTS
U+2A2C MINUS SIGN WITH RISING DOTS
U+2A2D PLUS SIGN IN LEFT HALF CIRCLE
U+2A2E PLUS SIGN IN RIGHT HALF CIRCLE

D.2.3 Miscellaneous Arithmetic Operators

® OTIMES

@ OSLASH

® ODOT

® CIRCLEDAST
ODIVv

H BOXPLUS
H BOXMINUS

X BOXTIMES
o BOXDOT
BOXSLASH
BOXAST

+o+ +ebdo  H K

V)

The operatortMAXMIN, REMMODGCDHLCM andCHOOSHone of which corresponds to a single Unicode charac-
ter, are considered to be arithmetic operators, havinggnigrecedence than certain relational operators, as dedcri

in a later section.
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D.2.4 Set Intersection, Union, and Difference

The following are the set intersection operators:

CAP INTERSECT
CAPCAP

U+2229 INTERSECTION

U+22D2 DOUBLE INTERSECTION

U+2A40 INTERSECTION WITH DOT

U+2A43 INTERSECTION WITH OVERBAR

U+2A44 INTERSECTION WITH LOGICAL AND

U+2A4B INTERSECTION BESIDE AND JOINED WITH INTERSECTION
U+2A4D CLOSED INTERSECTION WITH SERIFS

U+2ADB TRANSVERSAL INTERSECTION

S D

Dl

The following are the set union operators:

U+222A UNION

U+228E MULTISET UNION

U+22D3 DOUBLE UNION

U+2A41 UNION WITH MINUS SIGN

U+2A42 UNION WITH OVERBAR

U+2A45 UNION WITH LOGICAL OR

U+2A4A UNION BESIDE AND JOINED WITH UNION

U+2A4C CLOSED UNION WITH SERIFS

U+2A50 CLOSED UNION WITH SERIFS AND SMASH PRODUCT

CUP UNION
UPLUS
CUPCUP

E & C

cl

They each have lower precedence than any of the set intersegterators.

This is a miscellaneous set operator:

U+2216 SET MINUS \ SETMINUS

D.2.5 Square Arithmetic Operators

The following are the square intersection operators:

U+2293 SQUARE CAP N SQCAP
U+2A4E DOUBLE SQUARE INTERSECTION SQCAPCAP

The following are the square union operators:

U+2294 SQUARE CUP L SQCUP
U+2A4F DOUBLE SQUARE UNION SQCUPCUP

They each have lower precedence than either of the squarséction operators.
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D.2.6 Curly Arithmetic Operators
The following is the curly intersection operator:
U+22CF CURLY LOGICAL AND A CURLYAND
The following is the curly union operator:
U+22CE CURLY LOGICAL OR Y CURLYOR

It has lower precedence than the curly intersection operato

D.3 Relational Operators

D.3.1 Equivalence and Inequivalence Operators

Every operator listed in this section has lower precedemae any operator listed in Section D.2.

The following are equivalence operators. They may be cldaiktoreover, they may be chained with any oher single
group of chainable relational operators, as describedén ections.

U+003D EQUALS SIGN = EQ

U+2243 ASYMPTOTICALLY EQUAL TO ~ SIMEQ
U+2245 APPROXIMATELY EQUAL TO o

U+2246 APPROXIMATELY BUT NOT ACTUALLY EQUAL TO

U+2247 NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO *

U+2248 ALMOST EQUAL TO ~ APPROX
U+224A ALMOST EQUAL OR EQUAL TO ~ APPROXEQ
U+224C ALL EQUAL TO

U+224D EQUIVALENT TO =

U+224E GEOMETRICALLY EQUIVALENT TO = BUMPEQV
U+2251 GEOMETRICALLY EQUAL TO = DOTEQDOT
U+2252 APPROXIMATELY EQUAL TO OR THE IMAGE OF =

U+2253 IMAGE OF OR APPROXIMATELY EQUAL TO =

U+2256 RING IN EQUAL TO = EQRING
U+2257 RING EQUAL TO = RINGEQ
U+225B STAR EQUALS

U+225C DELTA EQUAL TO £ EQDEL
U+225D EQUAL TO BY DEFINITION EQDEF
U+225F QUESTIONED EQUAL TO

U+2261 IDENTICAL TO = EQV

U+2263 STRICTLY EQUIVALENT TO

U+229C CIRCLED EQUALS

U+22CD REVERSED TILDE EQUALS

U+22D5 EQUAL AND PARALLEL TO

U+29E3 EQUALS SIGN AND SLANTED PARALLEL

U+29E4 EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE

IS
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U+29E5 IDENTICAL TO AND SLANTED PARALLEL
U+2A66 EQUALS SIGN WITH DOT BELOW

U+2A67 IDENTICAL WITH DOT ABOVE

U+2A6C SIMILAR MINUS SIMILAR

U+2A6E EQUALS WITH ASTERISK

U+2A6F ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT
U+2A70 APPROXIMATELY EQUAL OR EQUAL TO
U+2A71 EQUALS SIGN ABOVE PLUS SIGN

U+2A72 PLUS SIGN ABOVE EQUALS SIGN

U+2A73 EQUALS SIGN ABOVE TILDE OPERATOR
U+2A75 TWO CONSECUTIVE EQUALS SIGNS

U+2A76 THREE CONSECUTIVE EQUALS SIGNS

U+2A77 EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW
U+2A78 EQUIVALENT WITH FOUR DOTS ABOVE
U+2AAE EQUALS SIGN WITH BUMPY ABOVE

U+FE66 SMALL EQUALS SIGN

U+FF1D FULLWIDTH EQUALS SIGN

The following are inequivalence operators. They may nothzered.

U+2244 NOT ASYMPTOTICALLY EQUAL TO % NSIMEQ
U+2249 NOT ALMOST EQUAL TO % NAPPROX
U+2260 NOT EQUAL TO # = NE
U+2262 NOT IDENTICAL TO % NEQV
U+226D NOT EQUIVALENT TO #

D.3.2 Plain Comparison Operators

Every operator listed in this section has lower precedemae &ny operator listed in Sections D.2.1, D.2.2, and D.2.3.

The following are less-than operators. They may be mixedchathed with each other and with equivalence operators
(see Section D.3.1).

U+003C LESS-THAN SIGN < LT
U+2264 LESS-THAN OR EQUAL TO < <= LE
U+2266 LESS-THAN OVER EQUAL TO <
U+2268 LESS-THAN BUT NOT EQUAL TO s
U+226A MUCH LESS-THAN < <<
U+2272 LESS-THAN OR EQUIVALENT TO <
U+22D6 LESS-THAN WITH DOT < DOTLT
U+22D8 VERY MUCH LESS-THAN K <<
U+22DC EQUAL TO OR LESS-THAN

U+22E6 LESS-THAN BUT NOT EQUIVALENT TO 3

U+29CO0 CIRCLED LESS-THAN

U+2A79 LESS-THAN WITH CIRCLE INSIDE

U+2A7B LESS-THAN WITH QUESTION MARK ABOVE

U+2A7D LESS-THAN OR SLANTED EQUAL TO

U+2A7F LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
U+2A81 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
U+2A83 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT
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U+2A85 LESS-THAN OR APPROXIMATE

U+2A87 LESS-THAN AND SINGLE-LINE NOT EQUAL TO
U+2A89 LESS-THAN AND NOT APPROXIMATE

U+2A8D LESS-THAN ABOVE SIMILAR OR EQUAL

U+2A95 SLANTED EQUAL TO OR LESS-THAN

U+2A97 SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE
U+2A99 DOUBLE-LINE EQUAL TO OR LESS-THAN

U+2A9B DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN
U+2A9D SIMILAR OR LESS-THAN

U+2A9F SIMILAR ABOVE LESS-THAN ABOVE EQUALS SIGN
U+2AA1l DOUBLE NESTED LESS-THAN

U+2AA3 DOUBLE NESTED LESS-THAN WITH UNDERBAR
U+2AA6 LESS-THAN CLOSED BY CURVE

U+2AA8 LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
U+2AF7 TRIPLE NESTED LESS-THAN

U+2AF9 DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO
U+FE64 SMALL LESS-THAN SIGN

U+FF1C FULLWIDTH LESS-THAN SIGN
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The following are greater-than operators. They may be mawd chained with each other and with equivalence

operators (see Section D.3.1).

U+003E GREATER-THAN SIGN

U+2265 GREATER-THAN OR EQUAL TO

U+2267 GREATER-THAN OVER EQUAL TO

U+2269 GREATER-THAN BUT NOT EQUAL TO

U+226B MUCH GREATER-THAN

U+2273 GREATER-THAN OR EQUIVALENT TO

U+22D7 GREATER-THAN WITH DOT

U+22D9 VERY MUCH GREATER-THAN

U+22DD EQUAL TO OR GREATER-THAN

U+22E7 GREATER-THAN BUT NOT EQUIVALENT TO

U+29C1 CIRCLED GREATER-THAN

U+2A7A GREATER-THAN WITH CIRCLE INSIDE

U+2A7C GREATER-THAN WITH QUESTION MARK ABOVE

U+2A7E GREATER-THAN OR SLANTED EQUAL TO

U+2A80 GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
U+2A82 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
U+2A84 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT
U+2A86 GREATER-THAN OR APPROXIMATE

U+2A88 GREATER-THAN AND SINGLE-LINE NOT EQUAL TO
U+2A8A GREATER-THAN AND NOT APPROXIMATE

U+2A8E GREATER-THAN ABOVE SIMILAR OR EQUAL

U+2A96 SLANTED EQUAL TO OR GREATER-THAN

U+2A98 SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE
U+2A9A DOUBLE-LINE EQUAL TO OR GREATER-THAN

U+2A9C DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN
U+2A9E SIMILAR OR GREATER-THAN

U+2AAQ SIMILAR ABOVE GREATER-THAN ABOVE EQUALS SIGN
U+2AA2 DOUBLE NESTED GREATER-THAN

U+2AA7 GREATER-THAN CLOSED BY CURVE

U+2AA9 GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
U+2AF8 TRIPLE NESTED GREATER-THAN

vV o
4
®
m
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U+2AFA DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO
U+FE6B5 SMALL GREATER-THAN SIGN
U+FF1E FULLWIDTH GREATER-THAN SIGN

The following are miscellaneous plain comparison opegsatbhey may not be mixed or chained.

U+226E NOT LESS-THAN < NLT
U+226F NOT GREATER-THAN # NGT
U+2270 NEITHER LESS-THAN NOR EQUAL TO f_ NLE

U+2271 NEITHER GREATER-THAN NOR EQUAL TO ;f
U+2274 NEITHER LESS-THAN NOR EQUIVALENT TO £
U+2275 NEITHER GREATER-THAN NOR EQUIVALENT TO Z
U+2276 LESS-THAN OR GREATER-THAN s
U+2277 GREATER-THAN OR LESS-THAN 2
U+2278 NEITHER LESS-THAN NOR GREATER-THAN

U+2279 NEITHER GREATER-THAN NOR LESS-THAN

U+22DA LESS-THAN EQUAL TO OR GREATER-THAN

U+22DB GREATER-THAN EQUAL TO OR LESS-THAN

U+2A8B LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN

U+2A8C GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN

U+2A8F LESS-THAN ABOVE SIMILAR ABOVE GREATER-THAN

U+2A90 GREATER-THAN ABOVE SIMILAR ABOVE LESS-THAN

U+2A91 LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL

U+2A92 GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL

U+2A93 LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVETE&EDA EQUAL
U+2A94 GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVETSDA EQUAL
U+2AA4 GREATER-THAN OVERLAPPING LESS-THAN

U+2AA5 GREATER-THAN BESIDE LESS-THAN

AIWIA

The following is not really a comparison operator, but itaseenient to list it here because it also has lower precezlenc
than any operator listed in Sections D.2.1, D.2.2, and D.2.3

U+003A COLON

D.3.3 Set Comparison Operators

Every operator listed in this section has lower precedemae &ny operator listed in Section D.2.4.

The following are subset comparison operators. They mayikechand chained with each other and with equivalence
operators (see Section D.3.1).

U+2282 SUBSET OF C SUBSET
U+2286 SUBSET OF OR EQUAL TO C SUBSETEQ
U+228A SUBSET OF WITH NOT EQUAL TO C SUBSETNEQ
U+22D0 DOUBLE SUBSET € SUBSUB

U+27C3 OPEN SUBSET

U+2ABD SUBSET WITH DOT

U+2ABF SUBSET WITH PLUS SIGN BELOW

U+2AC1 SUBSET WITH MULTIPLICATION SIGN BELOW
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U+2AC3 SUBSET OF OR EQUAL TO WITH DOT ABOVE
U+2AC5 SUBSET OF ABOVE EQUALS SIGN

U+2AC7 SUBSET OF ABOVE TILDE OPERATOR
U+2AC9 SUBSET OF ABOVE ALMOST EQUAL TO
U+2ACB SUBSET OF ABOVE NOT EQUAL TO
U+2ACF CLOSED SUBSET

U+2AD1 CLOSED SUBSET OR EQUAL TO

U+2AD5 SUBSET ABOVE SUBSET

The following are superset comparison operators. They mayiked and chained with each other and with equiva-
lence operators (see Section D.3.1).

U+2283 SUPERSET OF D SUPSET
U+2287 SUPERSET OF OR EQUAL TO D SUPSETEQ
U+228B SUPERSET OF WITH NOT EQUAL TO 2 SUPSETNEQ
U+22D1 DOUBLE SUPERSET 5 SUPSUP

U+27C4 OPEN SUPERSET

U+2ABE SUPERSET WITH DOT

U+2ACO SUPERSET WITH PLUS SIGN BELOW

U+2AC2 SUPERSET WITH MULTIPLICATION SIGN BELOW
U+2AC4 SUPERSET OF OR EQUAL TO WITH DOT ABOVE
U+2AC6 SUPERSET OF ABOVE EQUALS SIGN

U+2AC8 SUPERSET OF ABOVE TILDE OPERATOR
U+2ACA SUPERSET OF ABOVE ALMOST EQUAL TO
U+2ACC SUPERSET OF ABOVE NOT EQUAL TO
U+2ADO0 CLOSED SUPERSET

U+2AD2 CLOSED SUPERSET OR EQUAL TO

U+2AD6 SUPERSET ABOVE SUPERSET

The following are miscellaneous set comparison operaidgrsy may not be mixed or chained.

U+2284 NOT A SUBSET OF ¢ NSUBSET
U+2285 NOT A SUPERSET OF 2 NSUPSET
U+2288 NEITHER A SUBSET OF NOR EQUAL TO gz NSUBSETEQ
U+2289 NEITHER A SUPERSET OF NOR EQUAL TO 2 NSUPSETEQ

U+2AD3 SUBSET ABOVE SUPERSET
U+2AD4 SUPERSET ABOVE SUBSET
U+2AD7 SUPERSET BESIDE SUBSET
U+2AD8 SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET

D.3.4 Square Comparison Operators

Every operator listed in this section has lower precedemae any operator listed in Section D.2.5.

The following are square “image of” comparison operatotseeyimay be mixed and chained with each other and with
equivalence operators (see Section D.3.1).

U+228F SQUARE IMAGE OF C SQSUBSET
U+2291 SQUARE IMAGE OF OR EQUAL TO C SQSUBSETEQ
U+22E4 SQUARE IMAGE OF OR NOT EQUAL TO
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The following are square “original of” comparison operatofhey may be mixed and chained with each other and
with equivalence operators (see Section D.3.1).

U+2290 SQUARE ORIGINAL OF
U+2292 SQUARE ORIGINAL OF OR EQUAL TO
U+22E5 SQUARE ORIGINAL OF OR NOT EQUAL TO

3
=

SQSUPSET
SQSUPSETEQ

The following are miscellaneous square comparison opexaithey may not be mixed or chained.

U+22E2 NOT SQUARE IMAGE OF OR EQUAL TO
U+22E3 NOT SQUARE ORIGINAL OF OR EQUAL TO

D.3.5 Curly Comparison Operators

Every operator listed in this section has lower precedemae any operator listed in Section D.2.6.

The following are curly “precedes” comparison operatoriseymay be mixed and chained with each other and with
equivalence operators (see Section D.3.1).

U+227A PRECEDES
U+227C PRECEDES
U+227E PRECEDES
U+22B0 PRECEDES
U+22DE EQUAL TO
U+22E8 PRECEDES
U+2AAF PRECEDES
U+2AB1 PRECEDES
U+2AB3 PRECEDES
U+2AB5 PRECEDES
U+2AB7 PRECEDES
U+2AB9 PRECEDES

OR EQUAL TO

OR EQUIVALENT TO

UNDER RELATION

OR PRECEDES

BUT NOT EQUIVALENT TO

ABOVE SINGLE-LINE EQUALS SIGN
ABOVE SINGLE-LINE NOT EQUAL TO
ABOVE EQUALS SIGN

ABOVE NOT EQUAL TO

ABOVE ALMOST EQUAL TO
ABOVE NOT ALMOST EQUAL TO

U+2ABB DOUBLE PRECEDES

IO NN

AN

PREC
PRECEQ
PRECSIM

EQPREC
PRECNSIM

The following are curly “succeeds” comparison operatotseyimay be mixed and chained with each other and with
equivalence operators (see Section D.3.1).

U+227B SUCCEEDS
U+227D SUCCEEDS
U+227F SUCCEEDS
U+22B1 SUCCEEDS
U+22DF EQUAL TO
U+22E9 SUCCEEDS
U+2AB0 SUCCEEDS
U+2AB2 SUCCEEDS
U+2AB4 SUCCEEDS
U+2AB6 SUCCEEDS
U+2AB8 SUCCEEDS
U+2ABA SUCCEEDS

OR EQUAL TO

OR EQUIVALENT TO

UNDER RELATION

OR SUCCEEDS

BUT NOT EQUIVALENT TO

ABOVE SINGLE-LINE EQUALS SIGN
ABOVE SINGLE-LINE NOT EQUAL TO
ABOVE EQUALS SIGN

ABOVE NOT EQUAL TO

ABOVE ALMOST EQUAL TO
ABOVE NOT ALMOST EQUAL TO

U+2ABC DOUBLE SUCCEEDS

XYY Y

RY Y

succ
SUCCEQ
sSuUCCSIM

EQSUCC
SUCCNSIM
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The following are miscellaneous curly comparison opegtdhey may not be mixed or chained.

U+2280 DOES NOT PRECEDE 4 NPREC
U+2281 DOES NOT SUCCEED # NSUCC
U+22EO0 DOES NOT PRECEDE OR EQUAL £
U+22E1 DOES NOT SUCCEED OR EQUAL ¥

D.3.6 Triangular Comparison Operators

The following are triangular “subgroup” comparison operat They may be mixed and chained with each other and
with equivalence operators (see Section D.3.1).

U+22B2 NORMAL SUBGROUP OF <
U+22B4 NORMAL SUBGROUP OF OR EQUAL TO <

The following are triangular “contains as subgroup” conmgaar operators. They may be mixed and chained with each
other and with equivalence operators (see Section D.3.1).

U+22B3 CONTAINS AS NORMAL SUBGROUP
U+22B5 CONTAINS AS NORMAL SUBGROUP OR EQUAL TO

vV v

The following are miscellaneous triangular comparisorragmes. They may not be mixed or chained.

U+22EA NOT NORMAL SUBGROUP OF

U+22EB DOES NOT CONTAIN AS NORMAL SUBGROUP

U+22EC NOT NORMAL SUBGROUP OF OR EQUAL TO

U+22ED DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL

TA KA

D.3.7 Chickenfoot Comparison Operators

The following are chickenfoot “smaller than” comparisoreagtors. They may be mixed and chained with each other
and with equivalence operators (see Section D.3.1).

U+2AAA SMALLER THAN < SMALLER
U+2AAC SMALLER THAN OR EQUAL TO < SMALLEREQ

The following are chickenfoot “larger than” comparison mgers. They may be mixed and chained with each other
and with equivalence operators (see Section D.3.1).

U+2AAB LARGER THAN > LARGER
U+2AAD LARGER THAN OR EQUAL TO > LARGEREQ

D.3.8 Miscellaneous Relational Operators

The following operators are considered to be relationakatpes, having higher precedence than certain boolean
operators, as described in a later section.



138 APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

U+2208 ELEMENT OF € IN

U+2209 NOT AN ELEMENT OF ¢ NOTIN
U+220A SMALL ELEMENT OF €

U+220B CONTAINS AS MEMBER > CONTAINS
U+220C DOES NOT CONTAIN AS MEMBER %

U+220D SMALL CONTAINS AS MEMBER

U+22F2 ELEMENT OF WITH LONG HORIZONTAL STROKE

U+22F3 ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
U+22F4 SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL SHEROK
U+22F5 ELEMENT OF WITH DOT ABOVE

U+22F6 ELEMENT OF WITH OVERBAR

U+22F7 SMALL ELEMENT OF WITH OVERBAR

U+22F8 ELEMENT OF WITH UNDERBAR

U+22F9 ELEMENT OF WITH TWO HORIZONTAL STROKES

U+22FA CONTAINS WITH LONG HORIZONTAL STROKE

U+22FB CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
U+22FC SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
U+22FD CONTAINS WITH OVERBAR

U+22FE SMALL CONTAINS WITH OVERBAR

U+22FF zZ NOTATION BAG MEMBERSHIP

Im M m| M-

Wl Wi

D.4 Boolean Operators

Every operator listed in this section has lower precedemae &ny operator listed in Section D.3.

The following are the Boolean conjunction operators:

U+2227 LOGICAL AND A AND
U+27D1 AND WITH DOT

U+2A51 LOGICAL AND WITH DOT ABOVE A
U+2A53 DOUBLE LOGICAL AND

U+2A55 TWO INTERSECTING LOGICAL AND M

U+2A5A LOGICAL AND WITH MIDDLE STEM
U+2A5C LOGICAL AND WITH HORIZONTAL DASH
U+2A5E LOGICAL AND WITH DOUBLE OVERBAR
U+2A60 LOGICAL AND WITH DOUBLE UNDERBAR

The following are the Boolean disjunction operators:

U+2228 LOGICAL OR v OR
U+2A52 LOGICAL OR WITH DOT ABOVE v
U+2A54 DOUBLE LOGICAL OR

U+2A56 TWO INTERSECTING LOGICAL OR W

U+2A5B LOGICAL OR WITH MIDDLE STEM
U+2A5D LOGICAL OR WITH HORIZONTAL DASH
U+2A62 LOGICAL OR WITH DOUBLE OVERBAR
U+2A63 LOGICAL OR WITH DOUBLE UNDERBAR

They each have lower precedence than any of the Boooleaaraign operators.
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The following are miscellaneous Boolean operators:

U+2192 RIGHTWARDS ARROW
U+2194 LEFT RIGHT ARROW
U+22BB XOR

U+22BC NAND

U+22BD NOR/

D.5 Other Operators

Each of the following operators has no defined precedenatiaeships to any of the other operators listed in this

appendix.

U+0021 EXCLAMATION MARK

U+0023 NUMBER SIGN

U+0024 DOLLAR SIGN

U+0025 PERCENT SIGN

U+003F QUESTION MARK

U+0040 COMMERCIAL AT

U+005E CIRCUMFLEX

U+007C VERTICAL LINE

U+007E TILDE

U+00A1l INVERTED EXCLAMATION MARK
U+00A2 CENT SIGN

U+00A3 POUND SIGN

U+00A4 CURRENCY SIGN

U+00A5 YEN SIGN

U+00A6 BROKEN BAR

U+00AC NOT SIGN

U+00B0 DEGREE SIGN

U+00BF INVERTED QUESTION MARK
U+2016 DOUBLE VERTICAL LINE

U+203C DOUBLE EXCLAMATION MARK
U+2190 LEFTWARDS ARROW

U+2191 UPWARDS ARROW

U+2193 DOWNWARDS ARROW

U+2195 UP DOWN ARROW

U+2196 NORTH WEST ARROW

U+2197 NORTH EAST ARROW

U+2198 SOUTH EAST ARROW

U+2199 SOUTH WEST ARROW

U+219A LEFTWARDS ARROW WITH STROKE
U+219B RIGHTWARDS ARROW WITH STROKE
U+219C LEFTWARDS WAVE ARROW
U+219D RIGHTWARDS WAVE ARROW
U+219E LEFTWARDS TWO HEADED ARROW
U+219F UPWARDS TWO HEADED ARROW
U+21A0 RIGHTWARDS TWO HEADED ARROW
U+21A1 DOWNWARDS TWO HEADED ARROW
U+21A2 LEFTWARDS ARROW WITH TAIL
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U+21A3 RIGHTWARDS ARROW WITH TAIL

U+21A4 LEFTWARDS ARROW FROM BAR

U+21A5 UPWARDS ARROW FROM BAR

U+21A6 RIGHTWARDS ARROW FROM BAR

U+21A7 DOWNWARDS ARROW FROM BAR

U+21A8 UP DOWN ARROW WITH BASE

U+21A9 LEFTWARDS ARROW WITH HOOK

U+21AA RIGHTWARDS ARROW WITH HOOK

U+21AB LEFTWARDS ARROW WITH LOOP

U+21AC RIGHTWARDS ARROW WITH LOOP

U+21AD LEFT RIGHT WAVE ARROW

U+21AE LEFT RIGHT ARROW WITH STROKE

U+21AF DOWNWARDS ZIGZAG ARROW

U+21B0 UPWARDS ARROW WITH TIP LEFTWARDS
U+21B1 UPWARDS ARROW WITH TIP RIGHTWARDS
U+21B2 DOWNWARDS ARROW WITH TIP LEFTWARDS
U+21B3 DOWNWARDS ARROW WITH TIP RIGHTWARDS
U+21B4 RIGHTWARDS ARROW WITH CORNER DOWNWARDS
U+21B5 DOWNWARDS ARROW WITH CORNER LEFTWARDS
U+21B6 ANTICLOCKWISE TOP SEMICIRCLE ARROW
U+21B7 CLOCKWISE TOP SEMICIRCLE ARROW
U+21B8 NORTH WEST ARROW TO LONG BAR

U+21B9 LEFTWARDS ARROW TO BAR OVER RIGHTWARDS ARROW TO BAR

U+21BA ANTICLOCKWISE OPEN CIRCLE ARROW

U+21BB CLOCKWISE OPEN CIRCLE ARROW

U+21BC LEFTWARDS HARPOON WITH BARB UPWARDS
U+21BD LEFTWARDS HARPOON WITH BARB DOWNWARDS
U+21BE UPWARDS HARPOON WITH BARB RIGHTWARDS
U+21BF UPWARDS HARPOON WITH BARB LEFTWARDS
U+21C0O RIGHTWARDS HARPOON WITH BARB UPWARDS
U+21C1 RIGHTWARDS HARPOON WITH BARB DOWNWARDS
U+21C2 DOWNWARDS HARPOON WITH BARB RIGHTWARDS
U+21C3 DOWNWARDS HARPOON WITH BARB LEFTWARDS
U+21C4 RIGHTWARDS ARROW OVER LEFTWARDS ARROW

U+21C5 UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW

U+21C6 LEFTWARDS ARROW OVER RIGHTWARDS ARROW
U+21C7 LEFTWARDS PAIRED ARROWS

U+21C8 UPWARDS PAIRED ARROWS

U+21C9 RIGHTWARDS PAIRED ARROWS

U+21CA DOWNWARDS PAIRED ARROWS

U+21CB LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON
U+21CC RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
U+21CD LEFTWARDS DOUBLE ARROW WITH STROKE
U+21CE LEFT RIGHT DOUBLE ARROW WITH STROKE
U+21CF RIGHTWARDS DOUBLE ARROW WITH STROKE
U+21D0 LEFTWARDS DOUBLE ARROW

U+21D1 UPWARDS DOUBLE ARROW

U+21D2 RIGHTWARDS DOUBLE ARROW

U+21D3 DOWNWARDS DOUBLE ARROW

U+21D4 LEFT RIGHT DOUBLE ARROW

U+21D5 uP DOWN DOUBLE ARROW

U+21D6 NORTH WEST DOUBLE ARROW

U+21D7 NORTH EAST DOUBLE ARROW

— MAPSTO |->

~— LEFTHARPOONUP

— LEFTHARPOONDOWN
I UPHARPOONRIGHT

1 UPHARPOONLEFT

— RIGHTHARPOONUP

— RIGHTHARPOONDOWN
| DOWNHARPOONRIGHT
| DOWNHARPOONLEFT
= RIGHTLEFTARROWS

LEFTRIGHTARROWS
LEFTLEFTARROWS
UPUPARROWS
RIGHTRIGHTARROWS
DOWNDOWNARROWS

si=mnh

RIGHTLEFTHARPOONS

<=>

Sz e 41
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U+21D8
U+21D9

SOUTH EAST DOUBLE ARROW
SOUTH WEST DOUBLE ARROW

U+21DA LEFTWARDS TRIPLE ARROW

U+21DB RIGHTWARDS TRIPLE ARROW

U+21DC LEFTWARDS SQUIGGLE ARROW

U+21DD RIGHTWARDS SQUIGGLE ARROW
U+21DE UPWARDS ARROW WITH DOUBLE STROKE

U+21DF
U+21EO0
U+21E1
U+21E2
U+21E3
U+21E4
U+21E5
U+21E6
U+21E7
U+21E8
U+21E9

DOWNWARDS ARROW WITH DOUBLE STROKE
LEFTWARDS DASHED ARROW
UPWARDS DASHED ARROW
RIGHTWARDS DASHED ARROW
DOWNWARDS DASHED ARROW
LEFTWARDS ARROW TO BAR
RIGHTWARDS ARROW TO BAR
LEFTWARDS WHITE ARROW
UPWARDS WHITE ARROW
RIGHTWARDS WHITE ARROW
DOWNWARDS WHITE ARROW

U+21EA UPWARDS WHITE
U+21EB UPWARDS WHITE
U+21EC UPWARDS WHITE
U+21ED UPWARDS WHITE
U+21EE UPWARDS WHITE
U+21EF UPWARDS WHITE

ARROW FROM BAR

ARROW ON PEDESTAL

ARROW ON PEDESTAL WITH HORIZONTAL BAR
ARROW ON PEDESTAL WITH VERTICAL BAR
DOUBLE ARROW

DOUBLE ARROW ON PEDESTAL

U+21F0 RIGHTWARDS WHITE ARROW FROM WALL

U+21F1 NORTH WEST ARROW TO CORNER

U+21F2 SOUTH EAST ARROW TO CORNER

U+21F3 uUP DOWN WHITE ARROW

U+21F4 RIGHT ARROW WITH SMALL CIRCLE

U+21F5 DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW
U+21F6 THREE RIGHTWARDS ARROWS

U+21F7
U+21F8
U+21F9

LEFTWARDS ARROW WITH VERTICAL STROKE
RIGHTWARDS ARROW WITH VERTICAL STROKE
LEFT RIGHT ARROW WITH VERTICAL STROKE

U+21FA LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FB RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE
U+21FC LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE

U+21FD LEFTWARDS OPEN-HEADED ARROW

U+21FE RIGHTWARDS OPEN-HEADED ARROW

U+21FF LEFT RIGHT OPEN-HEADED ARROW

U+2201 COMPLEMENT

U+2202 PARTIAL DIFFERENTIAL
U+2204 THERE DOES NOT EXIST

U+2206 INCREMENT
U+220F N-ARY PRODUCT

U+2210 N-ARY COPRODUCT
U+2211 N-ARY SUMMATION

U+2218 RING OPERATOR

U+2219 BULLET OPERATOR

U+221A SQUARE ROOT
U+221B CUBE ROOT
U+221C FOURTH ROOT

U+221D PROPORTIONAL TO
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U+2223 DIVIDES

U+2224 DOES NOT DIVIDE
U+2225 PARALLEL TO

U+2226 NOT PARALLEL TO
U+222B INTEGRAL

U+222C DOUBLE INTEGRAL
U+222D TRIPLE INTEGRAL
U+222E CONTOUR INTEGRAL
U+222F SURFACE INTEGRAL
U+2230 VOLUME INTEGRAL
U+2231 CLOCKWISE INTEGRAL
U+2232 CLOCKWISE CONTOUR INTEGRAL
U+2233 ANTICLOCKWISE CONTOUR INTEGRAL
U+2234 THEREFORE

U+2235 BECAUSE

U+2236 RATIO

U+2237 PROPORTION

U+2239 EXCESS

U+223A GEOMETRIC PROPORTION
U+223B HOMOTHETIC

U+223C TILDE OPERATOR
U+223D REVERSED TILDE
U+223E INVERTED LAZY S
U+223F SINE WAVE

U+2240 WREATH PRODUCT
U+2241 NOT TILDE

U+224B TRIPLE TILDE

U+224F DIFFERENCE BETWEEN
U+2250 APPROACHES THE LIMIT
U+2254 COLON EQUALS

U+2255 EQUALS COLON

U+2258 CORRESPONDS TO
U+2259 ESTIMATES

U+225A EQUIANGULAR TO
U+225E MEASURED BY

U+226C BETWEEN

U+228C MULTISET

U+229A CIRCLED RING OPERATOR
U+229D CIRCLED DASH

U+22A2 RIGHT TACK

U+22A3 LEFT TACK

U+22A4 DOWN TACK

U+22A5 UP TACK

U+22A6 ASSERTION

U+22A7 MODELS

U+22A8 TRUE

U+22A9 FORCES

U+22AA TRIPLE VERTICAL BAR RIGHT TURNSTILE
U+22AB DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
U+22AC DOES NOT PROVE
U+22AD NOT TRUE

U+22AE DOES NOT FORCE
U+22AF NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE

| DIVIDES

| PARALLEL
# NPARALLEL

J

! WREATH

<

BUMPEQ
DOTEQ

o

0

® CIRCLEDRING

©

F VDASH TURNSTILE
4 DASHV

T TOP

1 PERP BOTTOM

l_

E

I+
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U+22B6 ORIGINAL OF

U+22B7 IMAGE OF

U+22B8 MULTIMAP

U+22B9 HERMITIAN CONJUGATE MATRIX
U+22BA INTERCALATE

U+22BE RIGHT ANGLE WITH ARC
U+22BF RIGHT TRIANGLE

U+22C0 N-ARY LOGICAL AND

U+22C1 N-ARY LOGICAL OR

U+22C2 N-ARY INTERSECTION

U+22C3 N-ARY UNION

U+22C4 DIAMOND OPERATOR

U+22C6 STAR OPERATOR

U+22C7 DIVISION TIMES

U+22C8 BOWTIE

U+22C9 LEFT NORMAL FACTOR SEMIDIRECT PRODUCT
U+22CA RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT
U+22CB LEFT SEMIDIRECT PRODUCT
U+22CC RIGHT SEMIDIRECT PRODUCT
U+22D4 PITCHFORK

U+22EE VERTICAL ELLIPSIS

U+22EF MIDLINE HORIZONTAL ELLIPSIS
U+22F0 UP RIGHT DIAGONAL ELLIPSIS
U+22F1 DOWN RIGHT DIAGONAL ELLIPSIS
U+27C0 THREE DIMENSIONAL ANGLE

U+27C1 WHITE TRIANGLE CONTAINING SMALL WHITE TRIANGLE

U+27C2 PERPENDICULAR

U+27D0 WHITE DIAMOND WITH CENTRED DOT
U+27D2 ELEMENT OF OPENING UPWARDS
U+27D3 LOWER RIGHT CORNER WITH DOT
U+27D4 UPPER LEFT CORNER WITH DOT
U+27D5 LEFT OUTER JOIN

U+27D6 RIGHT OUTER JOIN

U+27D7 FULL OUTER JOIN

U+27D8 LARGE UP TACK

U+27D9 LARGE DOWN TACK

U+27DA LEFT AND RIGHT DOUBLE TURNSTILE
U+27DB LEFT AND RIGHT TACK

U+27DC LEFT MULTIMAP

U+27DD LONG RIGHT TACK

U+27DE LONG LEFT TACK

U+27DF UP TACK WITH CIRCLE ABOVE
U+27EO0 LOZENGE DIVIDED BY HORIZONTAL RULE
U+27E1 WHITE CONCAVE-SIDED DIAMOND

U+27E2 WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
U+27E3 WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK

U+27E4 WHITE SQUARE WITH LEFTWARDS TICK
U+27E5 WHITE SQUARE WITH RIGHTWARDS TICK
U+27F0 UPWARDS QUADRUPLE ARROW

U+27F1 DOWNWARDS QUADRUPLE ARROW
U+27F2 ANTICLOCKWISE GAPPED CIRCLE ARROW
U+27F3 CLOCKWISE GAPPED CIRCLE ARROW
U+27F4 RIGHT ARROW WITH CIRCLED PLUS
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U+27F5 LONG LEFTWARDS ARROW

U+27F6 LONG RIGHTWARDS ARROW

U+27F7 LONG LEFT RIGHT ARROW

U+27F8 LONG LEFTWARDS DOUBLE ARROW

U+27F9 LONG RIGHTWARDS DOUBLE ARROW

U+27FA LONG LEFT RIGHT DOUBLE ARROW

U+27FB LONG LEFTWARDS ARROW FROM BAR

U+27FC LONG RIGHTWARDS ARROW FROM BAR

U+27FD LONG LEFTWARDS DOUBLE ARROW FROM BAR

U+27FE LONG RIGHTWARDS DOUBLE ARROW FROM BAR
U+27FF LONG RIGHTWARDS SQUIGGLE ARROW

U+2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE
U+2901 RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE
U+2902 LEFTWARDS DOUBLE ARROW WITH VERTICAL STROKE
U+2903 RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE
U+2904 LEFT RIGHT DOUBLE ARROW WITH VERTICAL STROKE
U+2905 RIGHTWARDS TWO-HEADED ARROW FROM BAR

U+2906 LEFTWARDS DOUBLE ARROW FROM BAR

U+2907 RIGHTWARDS DOUBLE ARROW FROM BAR

U+2908 DOWNWARDS ARROW WITH HORIZONTAL STROKE
U+2909 UPWARDS ARROW WITH HORIZONTAL STROKE

U+290A UPWARDS TRIPLE ARROW

U+290B DOWNWARDS TRIPLE ARROW

U+290C LEFTWARDS DOUBLE DASH ARROW

U+290D RIGHTWARDS DOUBLE DASH ARROW

U+290E LEFTWARDS TRIPLE DASH ARROW

U+290F RIGHTWARDS TRIPLE DASH ARROW

U+2910 RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW
U+2911 RIGHTWARDS ARROW WITH DOTTED STEM

U+2912 UPWARDS ARROW TO BAR

U+2913 DOWNWARDS ARROW TO BAR

U+2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE
U+2915 RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE
U+2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL

U+2917 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE
U+2918 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTTRDKE
U+2919 LEFTWARDS ARROW-TAIL

U+291A RIGHTWARDS ARROW-TAIL

U+291B LEFTWARDS DOUBLE ARROW-TAIL

U+291C RIGHTWARDS DOUBLE ARROW-TAIL

U+291D LEFTWARDS ARROW TO BLACK DIAMOND

U+291E RIGHTWARDS ARROW TO BLACK DIAMOND

U+291F LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND
U+2920 RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND
U+2921 NORTH WEST AND SOUTH EAST ARROW

U+2922 NORTH EAST AND SOUTH WEST ARROW

U+2923 NORTH WEST ARROW WITH HOOK

U+2924 NORTH EAST ARROW WITH HOOK

U+2925 SOUTH EAST ARROW WITH HOOK

U+2926 SOUTH WEST ARROW WITH HOOK

U+2927 NORTH WEST ARROW AND NORTH EAST ARROW
U+2928 NORTH EAST ARROW AND SOUTH EAST ARROW
U+2929 SOUTH EAST ARROW AND SOUTH WEST ARROW
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U+292A
U+292B
U+292C
U+292D
U+292E
U+292F
U+2930
U+2931
U+2932
U+2933
U+2934
U+2935
U+2936
U+2937
U+2938
U+2939
U+293A
U+293B
U+293C
U+293D
U+293E
U+293F
U+2940
U+2941
U+2942
U+2943
U+2944
U+2945
U+2946
U+2947
U+2948
U+2949
U+294A
U+294B
U+294C
U+294D
U+294E
U+294F
U+2950
U+2951
U+2952
U+2953
U+2954
U+2955
U+2956
U+2957
U+2958
U+2959
U+295A
U+295B
U+295C
U+295D
U+295E

SOUTH WEST ARROW AND NORTH WEST ARROW
RISING DIAGONAL CROSSING FALLING DIAGONAL
FALLING DIAGONAL CROSSING RISING DIAGONAL
SOUTH EAST ARROW CROSSING NORTH EAST ARROW
NORTH EAST ARROW CROSSING SOUTH EAST ARROW
FALLING DIAGONAL CROSSING NORTH EAST ARROW
RISING DIAGONAL CROSSING SOUTH EAST ARROW
NORTH EAST ARROW CROSSING NORTH WEST ARROW
NORTH WEST ARROW CROSSING NORTH EAST ARROW
WAVE ARROW POINTING DIRECTLY RIGHT

ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS

ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS
ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS
ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS

RIGHT-SIDE ARC CLOCKWISE ARROW

LEFT-SIDE ARC ANTICLOCKWISE ARROW

TOP ARC ANTICLOCKWISE ARROW

BOTTOM ARC ANTICLOCKWISE ARROW

TOP ARC CLOCKWISE ARROW WITH MINUS

TOP ARC ANTICLOCKWISE ARROW WITH PLUS

LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW
LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW
ANTICLOCKWISE CLOSED CIRCLE ARROW

CLOCKWISE CLOSED CIRCLE ARROW

RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW
LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW
SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW
RIGHTWARDS ARROW WITH PLUS BELOW

LEFTWARDS ARROW WITH PLUS BELOW

RIGHTWARDS ARROW THROUGH X

LEFT RIGHT ARROW THROUGH SMALL CIRCLE
UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE
LEFT BARB UP RIGHT BARB DOWN HARPOON

LEFT BARB DOWN RIGHT BARB UP HARPOON

UP BARB RIGHT DOWN BARB LEFT HARPOON

UP BARB LEFT DOWN BARB RIGHT HARPOON

LEFT BARB UP RIGHT BARB UP HARPOON

UP BARB RIGHT DOWN BARB RIGHT HARPOON

LEFT BARB DOWN RIGHT BARB DOWN HARPOON

UP BARB LEFT DOWN BARB LEFT HARPOON
LEFTWARDS HARPOON WITH BARB UP TO BAR
RIGHTWARDS HARPOON WITH BARB UP TO BAR
UPWARDS HARPOON WITH BARB RIGHT TO BAR
DOWNWARDS HARPOON WITH BARB RIGHT TO BAR
LEFTWARDS HARPOON WITH BARB DOWN TO BAR
RIGHTWARDS HARPOON WITH BARB DOWN TO BAR
UPWARDS HARPOON WITH BARB LEFT TO BAR
DOWNWARDS HARPOON WITH BARB LEFT TO BAR
LEFTWARDS HARPOON WITH BARB UP FROM BAR
RIGHTWARDS HARPOON WITH BARB UP FROM BAR
UPWARDS HARPOON WITH BARB RIGHT FROM BAR
DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR
LEFTWARDS HARPOON WITH BARB DOWN FROM BAR
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U+295F
U+2960
U+2961
U+2962
U+2963
U+2964
U+2965
U+2966
U+2967
U+2968
U+2969
U+296A
U+296B
U+296C
U+296D
U+296E
U+296F
U+2970
U+2971
U+2972
U+2973
U+2974
U+2975
U+2976
U+2977
U+2978
U+2979
U+297A
U+297B
U+297C
U+297D
U+297E
U+297F
U+2980
U+2981
U+2982
U+2999
U+299A
U+299B
U+299C
U+299D
U+299E
U+299F
U+29A0
U+29A1
U+29A2
U+29A3
U+29A4
U+29A5
U+29A6
U+29A7
U+29A8
U+29A9

APPENDIX D. DETAILED RULES FOR OPERATOR PRECEDENCE

RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR

UPWARDS HARPOON WITH BARB LEFT FROM BAR

DOWNWARDS HARPOON WITH BARB LEFT FROM BAR

LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOOBARBTBOWN
UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOONAWRBHRIBHT
RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARABOBARB DOWN
DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARP@ARBVRIGHT
LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPGORARMBT UP
LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARROBARBY DOWN
RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPGORARBT UP
RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOBARBY DOWN
LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPBMARBTRIGHT
DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPBGARBTRIGHT
RIGHT DOUBLE ARROW WITH ROUNDED HEAD

EQUALS SIGN ABOVE RIGHTWARDS ARROW

TILDE OPERATOR ABOVE RIGHTWARDS ARROW

LEFTWARDS ARROW ABOVE TILDE OPERATOR

RIGHTWARDS ARROW ABOVE TILDE OPERATOR

RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO

LESS-THAN ABOVE LEFTWARDS ARROW

LEFTWARDS ARROW THROUGH LESS-THAN

GREATER-THAN ABOVE RIGHTWARDS ARROW

SUBSET ABOVE RIGHTWARDS ARROW

LEFTWARDS ARROW THROUGH SUBSET

SUPERSET ABOVE LEFTWARDS ARROW

LEFT FISH TAIL

RIGHT FISH TAIL

UP FISH TAIL

DOWN FISH TAIL

TRIPLE VERTICAL BAR DELIMITER

Z NOTATION SPOT

Z NOTATION TYPE COLON

DOTTED FENCE

VERTICAL ZIGZAG LINE

MEASURED ANGLE OPENING LEFT

RIGHT ANGLE VARIANT WITH SQUARE

MEASURED RIGHT ANGLE WITH DOT

ANGLE WITH S INSIDE

ACUTE ANGLE

SPHERICAL ANGLE OPENING LEFT

SPHERICAL ANGLE OPENING UP

TURNED ANGLE

REVERSED ANGLE

ANGLE WITH UNDERBAR

REVERSED ANGLE WITH UNDERBAR

OBLIQUE ANGLE OPENING UP

OBLIQUE ANGLE OPENING DOWN

MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UPIBND R
MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UPEMID L
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U+29AA MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWRIGHT
U+29AB MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWNERN
U+29AC MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RISHTUR
U+29AD MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LHFTURN
U+29AE MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RISHTDOWN
U+29AF MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LHFTDAMN
U+29B0 REVERSED EMPTY SET

U+29B1 EMPTY SET WITH OVERBAR

U+29B2 EMPTY SET WITH SMALL CIRCLE ABOVE

U+29B3 EMPTY SET WITH RIGHT ARROW ABOVE

U+29B4 EMPTY SET WITH LEFT ARROW ABOVE

U+29B5 CIRCLE WITH HORIZONTAL BAR

U+29B6 CIRCLED VERTICAL BAR

U+29B7 CIRCLED PARALLEL

U+29B9 CIRCLED PERPENDICULAR

U+29BA CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VHEBAL BAR
U+29BB CIRCLE WITH SUPERIMPOSED X

U+29BD UP ARROW THROUGH CIRCLE

U+29BE CIRCLED WHITE BULLET

U+29BF CIRCLED BULLET

U+29C2 CIRCLE WITH SMALL CIRCLE TO THE RIGHT

U+29C3 CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT

U+29C5 SQUARED FALLING DIAGONAL SLASH

U+29C7 SQUARED SMALL CIRCLE

U+29C8 SQUARED SQUARE

U+29C9 TWO JOINED SQUARES

U+29CA TRIANGLE WITH DOT ABOVE

U+29CB TRIANGLE WITH UNDERBAR

U+29CC s IN TRIANGLE

U+29CD TRIANGLE WITH SERIFS AT BOTTOM

U+29CE RIGHT TRIANGLE ABOVE LEFT TRIANGLE

U+29CF LEFT TRIANGLE BESIDE VERTICAL BAR

U+29D0 VERTICAL BAR BESIDE RIGHT TRIANGLE

U+29D1 BOWTIE WITH LEFT HALF BLACK

U+29D2 BOWTIE WITH RIGHT HALF BLACK

U+29D3 BLACK BOWTIE

U+29D6 WHITE HOURGLASS

U+29D7 BLACK HOURGLASS

U+29DC INCOMPLETE INFINITY

U+29DD TIE OVER INFINITY

U+29DE INFINITY NEGATED WITH VERTICAL BAR

U+29DF DOUBLE-ENDED MULTIMAP

U+29EO0 SQUARE WITH CONTOURED OUTLINE

U+29E1 INCREASES AS

U+29E2 SHUFFLE PRODUCT

U+29E6 GLEICH STARK

U+29E7 THERMODYNAMIC

U+29E8 DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK

U+29E9 DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK

U+29EA BLACK DIAMOND WITH DOWN ARROW

U+29EB BLACK LOZENGE

U+29EC WHITE CIRCLE WITH DOWN ARROW

U+29ED BLACK CIRCLE WITH DOWN ARROW
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U+29EE ERROR-BARRED WHITE SQUARE
U+29EF ERROR-BARRED BLACK SQUARE
U+29F0 ERROR-BARRED WHITE DIAMOND
U+29F1 ERROR-BARRED BLACK DIAMOND
U+29F2 ERROR-BARRED WHITE CIRCLE
U+29F3 ERROR-BARRED BLACK CIRCLE
U+29F4 RULE-DELAYED

U+29F6 SOLIDUS WITH OVERBAR
U+29F7 REVERSE SOLIDUS WITH HORIZONTAL STROKE
U+29FA DOUBLE PLUS

U+29FB TRIPLE PLUS

U+29FE TINY

U+29FF MINY

U+2A00 N-ARY CIRCLED DOT OPERATOR ® BIGODOT
U+2A01 N-ARY CIRCLED PLUS OPERATOR & BIGOPLUS
U+2A02 N-ARY CIRCLED TIMES OPERATOR & BIGOTIMES
U+2A03 N-ARY UNION OPERATOR WITH DOT BIGUDOT
U+2A04 N-ARY UNION OPERATOR WITH PLUS BIGUPLUS
U+2A05 N-ARY SQUARE INTERSECTION OPERATOR BIGSQCAP
U+2A06 N-ARY SQUARE UNION OPERATOR BIGSQCUP

U+2A07 TWO LOGICAL AND OPERATOR

U+2A08 TWO LOGICAL OR OPERATOR

U+2A09 N-ARY TIMES OPERATOR BIGTIMES
U+2A0A MODULO TWO SUM

U+2A10 CIRCULATION FUNCTION

U+2A11 ANTICLOCKWISE INTEGRATION

U+2A12 LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE
U+2A13 LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE
U+2A14 LINE INTEGRATION NOT INCLUDING THE POLE

U+2A1D JOIN x JOIN
U+2A1E LARGE LEFT TRIANGLE OPERATOR

U+2A1F Z NOTATION SCHEMA COMPOSITION

U+2A20 zZ NOTATION SCHEMA PIPING

U+2A21 7z NOTATION SCHEMA PROJECTION

U+2A32 SEMIDIRECT PRODUCT WITH BOTTOM CLOSED

U+2A33 SMASH PRODUCT

U+2A3C INTERIOR PRODUCT

U+2A3D RIGHTHAND INTERIOR PRODUCT

U+2A3E Z NOTATION RELATIONAL COMPOSITION

U+2A3F AMALGAMATION OR COPRODUCT

U+2A57 SLOPING LARGE OR

U+2A58 SLOPING LARGE AND

U+2A61 SMALL VEE WITH UNDERBAR

U+2A64 zZ NOTATION DOMAIN ANTIRESTRICTION

U+2A65 zZ NOTATION RANGE ANTIRESTRICTION

U+2A68 TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE
U+2A69 TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE
U+2A6A TILDE OPERATOR WITH DOT ABOVE

U+2A6B TILDE OPERATOR WITH RISING DOTS

U+2A6D CONGRUENT WITH DOT ABOVE

U+2ACD SQUARE LEFT OPEN BOX OPERATOR

U+2ACE SQUARE RIGHT OPEN BOX OPERATOR

U+2AD9 ELEMENT OF OPENING DOWNWARDS
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U+2ADA PITCHFORK WITH TEE TOP

U+2ADC FORKING

U+2ADD NONFORKING

U+2ADE SHORT LEFT TACK

U+2ADF SHORT DOWN TACK

U+2AEQ SHORT UP TACK

U+2AE1 PERPENDICULAR WITH S

U+2AE2 VERTICAL BAR TRIPLE RIGHT TURNSTILE
U+2AE3 DOUBLE VERTICAL BAR LEFT TURNSTILE
U+2AE4 VERTICAL BAR DOUBLE LEFT TURNSTILE
U+2AES5 DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE
U+2AE6 LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL
U+2AE7 SHORT DOWN TACK WITH OVERBAR

U+2AE8 SHORT UP TACK WITH UNDERBAR

U+2AE9 SHORT UP TACK ABOVE SHORT DOWN TACK
U+2AEA DOUBLE DOWN TACK

U+2AEB DOUBLE UP TACK

U+2AEC DOUBLE STROKE NOT SIGN

U+2AED REVERSED DOUBLE STROKE NOT SIGN

U+2AEE DOES NOT DIVIDE WITH REVERSED NEGATION SLASH
U+2AEF VERTICAL LINE WITH CIRCLE ABOVE

U+2AFO0 VERTICAL LINE WITH CIRCLE BELOW

U+2AF1 DOWN TACK WITH CIRCLE BELOW

U+2AF2 PARALLEL WITH HORIZONTAL STROKE

U+2AF3 PARALLEL WITH TILDE OPERATOR

U+2AF4 TRIPLE VERTICAL BAR BINARY RELATION 11
U+2AF5 TRIPLE VERTICAL BAR WITH HORIZONTAL STROKE
U+2AF6 TRIPLE COLON OPERATOR

U+2AFB TRIPLE SOLIDUS BINARY RELATION

U+2AFC LARGE TRIPLE VERTICAL BAR OPERATOR
U+2AFE WHITE VERTICAL BAR

U+2AFF N-ARY WHITE VERTICAL BAR
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