
JFP 16 (4&5): 415–449, 2006. c© 2006 Cambridge University Press

doi:10.1017/S0956796806005995 Printed in the United Kingdom

415

Making a fast curry: push/enter vs. eval/apply
for higher-order languages�

SIMON MARLOW and SIMON PEYTON JONES

Microsoft Research, Cambridge, UK

(e-mail: simonmar@microsoft.com)

Abstract

Higher-order languages that encourage currying are typically implemented using one of

two basic evaluation models: push/enter or eval/apply. Implementors use their intuition

and qualitative judgements to choose one model or the other. Our goal in this paper

is to provide, for the first time, a more substantial basis for this choice, based on our

qualitative and quantitative experience of implementing both models in a state-of-the-art

compiler for Haskell. Our conclusion is simple, and contradicts our initial intuition: compiled

implementations should use eval/apply.

Capsule Review

Language implementors are often faced with choices about how to implement a particular

language feature. Unfortunately, there is often little empirical evidence to guide us in

these choices and we must rely on our, often faulty, intuition. This paper examines the

choice between two different implementation techniques for curried function application and

provides important guidance to future implementors about this choice. The two techniques

are “push/enter,” where the callee is responsible for arity matching, and “eval/apply,” where

the caller is responsible for arity matching. While many people’s intuition might be that

“push/enter” is more efficient, and thus worth a more complex implementation, this paper

shows that, in fact, the two techniques have essentially the same performance on a wide

range of Haskell programs. Thus, one concludes that implementors should choose the simpler

approach: namely, eval/apply.

1 Introduction

There are two basic ways to implement curried function application in a higher-order

language, when the function is unknown: the push/enter model or the eval/apply

model (Peyton Jones, 1992). To illustrate the difference, consider the higher-order

function zipWith, which zips together two lists, using a function k to combine

� An earlier version of this paper appeared in the International Conference on Functional Programming
2004 (ICFP’04), pp. 4–15, ACM Press.

416 S. Marlow and S. Peyton Jones

corresponding list elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]

zipWith k [] [] = []

zipWith k (x:xs) (y:ys) = k x y : zipWith k xs ys

Here k is an unknown function, passed as an argument; global flow analysis aside, the

compiler does not know what function k is bound to. What code should the compiler

generate to execute the call k x y in the body of zipWith? It cannot blithely pass

two arguments to k, because k might in reality take just one argument and compute

for a while before returning a function that consumes the next argument; or k might

take three arguments, so that the result of the zipWith is a list of functions.

In the push/enter model, the call proceeds by pushing the arguments x and y on

the stack, and entering the code for k. Every function’s entry code is required to

check how many arguments are on the stack, and behave appropriately: if there are

too few arguments, the function must construct a partial application and return. If

there are too many arguments, then only the required arguments are consumed, the

rest of the arguments are left on the stack to be consumed later, presumably by the

function that will be the result of this call.

In the eval/apply approach, the caller first evaluates the function k, and then

applies it to the correct number of arguments. The latter step involves some run-

time case analysis, based on information extracted from the closure for k. If k takes

two arguments, we can call it straightforwardly. If it takes only one, we must call it

passing x, and then call the function it returns passing y; if it takes more than two,

we must build a closure for the partial application (k x y) and return that closure.

The crucial difference between push/enter and eval/apply is this. When a function

of statically-unknown arity is applied, two pieces of information come together at

run-time: the arity of the function and the number of arguments in the call. The

two models differ in whether they place responsibility for arity-matching with the

function itself, or with the caller:

Push/enter: the function, which statically knows its own arity, examines the stack

to figure out how many arguments it has been passed, and where they are. The

nearest analogy is C’s “varargs” calling convention.

Eval/apply: the caller, which statically knows what the arguments are, examines the

function closure, extracts its arity, and makes an exact call to the function.

Which of the two is best in practice? The trouble is that the evaluation model has

a pervasive effect on the implementation, so it is too much work to implement both

and pick the best. Historically, compilers for strict languages (using call-by-value)

have tended to use eval/apply, while those for lazy languages (using call-by-need)

have often used push/enter, but both approaches can work in either setting. In

practice, implementors choose one of the two approaches based on a qualitative

assessment of the trade-offs. In this paper we put the choice on a firmer basis:

• We explain precisely what the two models are, in a common notational

framework (Section 4). Surprisingly, this has not been done before.

Push/Enter vs. Eval/Apply for Higher-order Languages 417

• The choice of evaluation model affects many other design choices in subtle but

pervasive ways. We identify and discuss these effects in Sections 5 and 6, and

contrast them in Section 7. There are lots of nitty-gritty details here, for which

we make no apology – they were far from obvious to us, and articulating these

details is one of our main contributions.

In terms of its impact on compiler and run-time system complexity, eval/apply

seems decisively superior, principally because push/enter requires a stack like

no other: stack-walking is more difficult, and compiling to an intermediate

language like C or C-- is awkward or impossible.

• We give the first detailed quantitative measurements that contrast the two

approaches (Section 8), based on a credible, optimising compiler (the Glasgow

Haskell Compiler, GHC). We give both bottom-line results such as wall-clock

time, total instruction count and allocation, and also some more insightful

numbers such as breakdowns of call patterns.

Our experiments show that the execution costs of push/enter and eval/apply

are very similar, despite their pervasive differences. What you gain on the

swings you lose on the roundabouts.

Our conclusion is simple, and contradicts the abstract-machine heritage of the lazy

functional-language community: eval/apply is a clear win, at least for a compiled

implementation. We have now adopted eval/apply for GHC.

2 Background: efficient currying

The choice between push/enter and eval/apply is only important if the language

encourages currying. In a higher-order language one can write a multi-argument

function in two ways:

f :: (Int,Int) -> Int

f (x,y) = x*y

g :: Int -> Int -> Int

g x y = x*y

Here, f is un-curried. It takes a single argument that is a pair, unpacks the pair,

and multiplies its components. On the other hand, g is curried. Notionally at least,

g takes one argument, and returns a function that takes a second argument, and

multiplies the two. The type of g should be read right-associatively, thus:

g :: Int -> (Int -> Int)

Currying appeals to our sense of beauty, because multi-argument functions come

“for free”; one does not need data structures to support them.

We said that “notionally at least g takes one argument”, but suppose that, given

the above definition of g, the compiler is faced with the call (g 3 4). The call is

to a known function – one whose definition the compiler can “see”. It would be

ridiculous to follow the currying story literally. To do that, we would call g passing

one argument, 3, get a function closure in return, and then call that function, again

418 S. Marlow and S. Peyton Jones

passing one argument, 4. No, in this situation, any decent compiler must load the

arguments 3 and 4 into registers, or on the stack, and call the code for g directly,

and that is true whether the basic evaluation model is push/enter or eval/apply. In

the rest of this paper we will take it for granted that calls to “known” functions

are compiled using an efficient argument-passing convention (e.g. see Peyton Jones

(1992) and Appel (1992)). The push/enter and eval/apply models differ only in how

they handle calls to “unknown” functions.

In any higher-order language one can write curried functions, simply by writing

a function that returns a function, but languages differ in the degree to which their

syntax encourages it. For the purposes of this paper, we assume that currying is to

be regarded as the native way to define multi-argument functions, and that we wish

to make multi-argument curried functions as fast as possible. Our measurements

of Haskell programs show that on average around 20% of calls are to unknown

functions, and on average 40% of those calls (8% of all calls) have more than one

argument (Section 8), although these figures can vary significantly from program to

program.

3 Language

To make our discussion concrete we use a small, non-strict intermediate language

similar to that used inside the Glasgow Haskell Compiler. Its syntax is given in

Figure 1. In essence it is the STG language (Peyton Jones, 1992), but we have

adjusted some of the details for this paper.

The push/enter vs eval/apply choice applies equally to strict and non-strict

languages, provided the strict language is pure, or has unspecified argument-

evaluation order (e.g. Scheme), or specifies that arguments are evaluated right-to-left

(e.g. O’Caml). (A strict language that specifies left-to-right argument evaluation,

such as SML, pretty much has to use eval/apply.) In this paper, however, we

focus exclusively on a non-strict setting, because that is arguably the slightly more

complicated case, and because all our qualitative experience and quantitative data

is for Haskell.

The idea is that each syntactic construct in Figure 1 has a direct operational

reading. We give these operational intuitions here, and we will make them precise

in Section 4:

• A literal is an unboxed 32-bit integer, i, or 64-bit double-precision floating-

point number, d. We have more to say about unboxed values in Section 3.3.
• A call, fk a1 . . . an, applies the function f to the arguments a1 . . . an. Each

argument of an application is an atom (literal or variable), there is no argument

preparation to perform first. The superscript k describes the statically-known

information about the function’s arity. It takes two forms:

— fn, where n is an integer, indicates that the compiler statically knows the

arity of f, usually because there is a lexically-enclosing binding for f that

binds it to a FUN object with arity n.

— f• indicates that the compiler has no static information about f’s arity. It

would be safe to annotate every application with •.

Push/Enter vs. Eval/Apply for Higher-order Languages 419

Variables x, y, f, g

Constructors C Defined in data type declarations

Literals lit ::= i | d Unboxed integer or double

Atoms a, v ::= lit | x Function arguments are atomic

Function arity k ::= • Unknown arity

| n Known arity n � 1

Expressions e ::= a Atom

| fk a1 . . . an Function call (n � 1)

| ⊕ a1 . . . an Saturated primitive operation

(n � 1)

| let x = obj in e

| case e of {alt1; . . . ; altn} (n � 1)

Alternatives alt ::= C x1 . . . xn → e (n � 0)

| x → e Default alternative

Heap objects obj ::= FUN (x1 . . . xn → e) Function (arity = n � 1)

| PAP (f a1 . . . an) Partial application (f is

always a FUN with

arity(f) > n � 1)

| CON (C a1 . . . an) Saturated constructor (n � 0)

| THUNK e Thunk

| BLACKHOLE [only during evaluation]

Programs prog ::= f1 = obj1; . . . ; fn = objn

Fig. 1. Syntax.

There is no guarantee that the function’s arity (whether statically known or

not) matches the number of arguments supplied at the call site.

• A let expression (and only a let) allocates an object in the heap. We discuss

the forms of heap object in Section 3.1. In this paper we will only discuss

simple, non-recursive let expressions. GHC supports a mutually-recursive

letrec as well, of course, but recursive bindings do not affect the issues

discussed this paper, so we omit them to save clutter. The top-level definitions

of a program are recursive, however.

• A case evaluates a sub-expression, called the scrutinee, and optionally performs

case analysis on its value. More concretely, case saves any live variables

that are needed in the case alternatives, pushes a return address, and then

evaluates the scrutinee. At the return address, it performs case analysis on the

returned value. All case expressions are exhaustive: either there is a default

alternative as a catch-all, or the patterns cover all the possibilities in the data

420 S. Marlow and S. Peyton Jones

type. We often omit the curly braces in our informal examples, using layout

instead.

3.1 Heap objects

The language does not provide a syntactic form of expression for constructor

applications, or for anonymous lambdas; instead, they must be explicitly allocated

using let. In general, let performs heap allocation, and the right hand side of a

let is a heap object. There are exactly five kinds of heap objects:

FUN (x1 . . . xn → e) is a function closure, with arguments xi and body e (which may

have free variables other than the xi). The function is curried – that is, it may

be applied to fewer than n, or more than n, arguments – but it still has an

arity of n.

PAP (f a1 . . . an) represents a partial application of function f to arguments a1 . . . an.

Here, f is guaranteed to be FUN object, and the arity of that FUN is guaranteed

to be strictly greater than n.

CON (C a1 . . . an) is a data value, the saturated application of constructor C to

arguments a1 . . . an.

THUNK e represents a thunk, or suspension. When its value is needed, e is

evaluated, and the thunk overwritten with (an indirection to) the value of e.

BLACKHOLE is used only during evaluation of a thunk, never in a source program.

While a thunk is being evaluated, it is replaced by BLACKHOLE to avoid space

leaks and to catch certain forms of divergence (Jones, 1992).

Of these, FUN , PAP and CON objects are values, and cannot be evaluated any

further.

A top-level definition creates a statically-allocated object, at a fixed address,

whereas a let allocates a heap object dynamically.

3.2 Case expressions

The language offers conventional algebraic data type declarations, such as

data Tree a = Leaf a | Branch (Tree a) (Tree a)

data Bool = False | True

data List a = Nil | Cons a (List a)

Values of type Tree are built with the constructors Leaf and Branch, and can be

discriminated and taken apart with a case expression. The boolean type Bool is

just a regular algebraic data type, so that a conditional is implemented by a case

expression. Constructors are always saturated; unsaturated constructors can always

be saturated by eta expansion.

To give the idea, here is the Haskell definition of the map function:

map f [] = []

map f (x:xs) = f x : map f xs

Push/Enter vs. Eval/Apply for Higher-order Languages 421

and here is its rendition into our intermediate language:

nil = CON Nil

map = FUN (f xs ->

case xs of

Nil -> nil

Cons y ys -> let h = THUNK (f y)

t = THUNK (map f ys)

r = CON (Cons h t)

in r

)

The top-level definition of nil is automatically generated by GHC, so that there is

a value to hand for map to return in the Nil case alternative. A similar top-level

definition is generated for each nullary constructor.

The scrutinee of a case expression is an expression rather than an atom. This is

important, because it lets us write, for example, case (null xs) of ..., rather

than

let y = THUNK (null xs) in case y of ...

There is no need to construct a thunk!

3.3 Unboxed values

Another slightly unusual feature of our language is the use of unboxed values

(Peyton Jones & Launchbury, 1991). Supporting unboxed values is vital for

performance, but it has significant consequences for the implementation: both heap

objects and the stack may contain a mix of pointer and non-pointer values.

Most values are represented by a pointer to a heap object, including all data

structures, function closures, and thunks. Our intermediate language also supports

a handful of primitive, unboxed data types, of which we consider only Int# and

Double# here. An Int# is a 32-bit integer, in the native machine representation; it is

not a pointer. Similarly, a Double# is a 64-bit double-precision floating-point value

in IEEE representation. These unboxed values can be passed as a arguments to a

function, returned as results, stored in data structures, and so on. For example, here

is how the (boxed) type Int is defined, as an ordinary algebraic data type:

data Int = I# Int#

That is, an Int value is a heap-allocated data structure, built with the I# constructor,

containing an Int#.

Having explicit unboxed values allows us to make boxing and unboxing operations

explicit in our intermediate language. For example, here is how Int addition is

422 S. Marlow and S. Peyton Jones

defined:

plusInt :: Int -> Int -> Int

plusInt a b

= case a of { I# x ->

case b of { I# y ->

I# (x +# y)

}}

The first case expression evaluates the argument a (in case it is a thunk) and takes

it apart; the second case does the same to b; the (x +# y) adds the two unboxed

values using the primitive addition operator +#, while the final use of I# boxes the

result back into an Int.

4 The two evaluation models

It is now time to become precise about what we mean by a “push/enter” or

“eval/apply” model. We do so by giving an operational semantics that exposes

the key differences between these models, while still hiding some representation

details that only confuse the picture. Douence and Fradet give a completely

different, combinator-based, formalism that allows them to contrast push/enter with

eval/apply (Douence & Fradet, 1998), although their treatment only considers single-

argument functions whereas we are interested in how to perform multiple application

without building intermediate function closures. Furthermore, the semantics we

present here maps more directly to operational intuitions.

Figure 2 gives the operational semantics for both evaluation models, using a

small-step transition relation of the form

e1; s1; H1 ⇒ e2; s2; H2

The components of the program state are:

The code e, is the expression under evaluation, in the syntax of Figure 1.
The stack s, is a stack of continuations that says what to do when the current

expression is evaluated. We use the notation “:” to means cons in the context of

a stack.
The heap H , is a finite mapping from variables (which we treat as synonymous with

heap addresses) to heap objects. The latter have the syntax given in Figure 1. To

reduce clutter, we use the convention that no binding is ever removed from the

heap. For example, in rule casecon the heap H on the right-hand side of the rule

still has a binding for v.

The stack continuations, κ, take the following forms:

κ ::= case • of {alt1; . . . ; altn}
| Upd t • Update thunk t with returned

value

| (• a1 . . . an) Apply the returned function to

a1 . . . an [eval/apply only]

| Arg a Pending argument [push/enter

only]

Push/Enter vs. Eval/Apply for Higher-order Languages 423

Rules common to push/enter and eval/apply

let x = obj in e; s; H ⇒ e[x′/x]; s; H[x′ �→ obj] (let)

x′ fresh
case v of {. . . ;C x1 . . . xn → e; . . .}; s; H[v �→ CON (C a1 . . . an)]

⇒ e[a1/x1 . . . an/xn]; s; H (casecon)

case v of {. . . ; x → e}; s; H ⇒ e[v/x]; s; H (caseany)
if v is a literal or H[v] is a value, and does not match
any other case alternative

case e of {. . .}; s; H ⇒ e; case • of {. . .} : s; H (case)

v; case • of {. . .} : s; H ⇒ case v of {. . .}; s; H (ret)
if v is a literal or H[v] is a value

x; s; H[x �→ THUNK e] ⇒ e; Upd x • : s; H[x �→ BLACKHOLE] (thunk)

y; Upd x • : s; H ⇒ y; s; H[x �→ H[y]] (update)
if H[y] is a value

fn a1 . . . an; s; H[f �→ FUN (x1 . . . xn → e)]
⇒ e[a1/x1 . . . an/xn]; s; H (knowncall)

⊕ a1 . . . an; s; H ⇒ a; s; H (primop)
where a is the result of applying the primitive
operation ⊕ to arguments a1 . . . an

Rules for push/enter

fk a1 . . . am; s; H ⇒ f; Arg a1 : . . . : Arg am : s; H (push)

f; Arg a1 : . . . : Arg an : s; H[f �→ FUN (x1 . . . xn → e)]
⇒ e[a1/x1 . . . an/xn]; s; H (fenter)

f; Arg a1 : . . . : Arg am : s; H[f �→ FUN (x1 . . . xn → e)]
⇒ p; s; H[p �→ PAP (f a1 . . . am)] (pap1)
if m � 1; m < n; the top element of s is not of the
form Arg y; p fresh

f; Arg an+1 : s; H[f �→ PAP (g a1 . . . an)]
⇒ g; Arg a1 : . . . : Arg an : Arg an+1 : s; H (penter)

Rules for eval/apply

f• a1 . . . an; s; H[f �→ FUN (x1 . . . xn → e)]
⇒ e[a1/x1 . . . an/xn]; s; H (exact)

fk a1 . . . am; s; H[f �→ FUN (x1 . . . xn → e)]
⇒ e[a1/x1 . . . an/xn]; (• an+1 . . . am) : s; H (callk)
if m > n
⇒ p; s; H[p �→ PAP (f a1 . . . am)] (pap2)
if m < n, p fresh

f• a1 . . . am; s; H[f �→ THUNK e]
⇒ f; (• a1 . . . am) : s; H (tcall)

fk an+1 . . . am; s; H[f �→ PAP (g a1 . . . an)]
⇒ g• a1 . . . an an+1 . . . am; s; H (pcall)

f; (• a1 . . . an) : s; H ⇒ f• a1 . . . an; s; H (retfun)
H[f] is a FUN or PAP

Fig. 2. The evaluation rules.

424 S. Marlow and S. Peyton Jones

The meaning of these continuations should become clear as we discuss the evaluation

rules. The rules themselves are fairly dense, so the following subsections explain them

in some detail. After that, we sketch how the operational semantics is mapped onto

a real machine by the Glasgow Haskell Compiler.

4.1 Rules common to both models

The first block of evaluation rules in Figure 2 are common to both push/enter and

eval/apply.

The first rule, let, says what happens when the expression to be evaluated is a let

form. Following Launchbury (1993), we simply allocate the right-hand side obj in

the heap, using a fresh name x′, extend the heap thus H[x′ �→ obj]. The use of a fresh

name corresponds to allocating an unused address in the heap. Lastly, we substitute

x′ for x in e, the body of the let, before continuing. In a real implementation this

substitution would be managed by keeping a pointer to the new object in a register,

or accessing it by offset from the allocation pointer, but we do not need to model

those details here.

The next group of four rules deal with case expressions. Rule case, starts the

evaluation of a case expression by pushing a case continuation on the stack,

and evaluating the scrutinee, e. When evaluation is complete, a value v (either

a literal or a pointer to a heap value) is returned to the case continuation by

ret.

If v is (a pointer to) a constructor, rule casecon applies; it resumes the appropriate

branch of the case, binding the constructor arguments to xi. If the returned value

does not match any other case alternative, the default alternative is used (rule

caseany). These two rules precede case because they overlap it, and we use the

convention that the first applicable rule takes precedence.

The next two rules deal with thunks. If the expression to be evaluated is

a thunk, we push an update continuation (or update frame), Upd t •, which

points to the thunk to be updated (rule thunk). While the thunk t is being

evaluated we update the heap so that t points to a BLACKHOLE . No left-

hand sides match BLACKHOLE so evaluation will “get stuck” if we try to

evaluate a thunk during its own evaluation. This simple trick has been known

for a long time, and is also crucially important to avoid space leaks (Jones,

1992). When evaluation is complete, we overwrite the thunk with the value (rule

update).

The last two rules deal with saturated applications of known functions, either

primitive operations (primop) or user-defined ones (knowncall). Both are very

simple and can be compiled efficiently, with fast parameter-passing mechanisms.

Notice that the call to f is a tail call. No continuation is pushed; instead control is

simply transferred to f’s body.

The big remaining question is how function application is handled when the

function is unknown, or is applied to too many or too few arguments. And that is

the key point at which the two evaluation models differ, of course.

Push/Enter vs. Eval/Apply for Higher-order Languages 425

4.2 The push/enter model

The rules in the second block of Figure 2 are the ones specific to the push/enter

model. First consider rule push, which deals with function applications. It simply

pushes the arguments onto the stack, as pending arguments, using the Arg contin-

uation, and enters the function. The next three rules deal with what “entering the

function” means:

• First, the function f might turn out to be a FUN object of arity n, and there

might be n or more arguments on the stack. In that case (rule fenter), we can

proceed to evaluate the body of the function, binding the actual arguments to

the formal parameters as usual. Any excess pending arguments are left on the

stack, to be consumed by the function that e (presumably) evaluates to.

• What if there aren’t enough pending arguments on the stack? This could

happen either because a function-valued thunk pushed an update frame, or

because a case expression evaluated a function (see Section 3.2). In either

case, we must construct a value to return to the “caller” and that value is a

partial application, or PAP , as rule pap1 shows.

• What if f is a PAP and not a FUN ? In that case, we simply unpack the

PAP ’s arguments onto the stack, and enter the function (rule penter).

The three cases above do not exhaust the possible forms of f. It might also be a

THUNK , but we have already dealt with that case (rule thunk). It might be a

CON , in which case there cannot be any pending arguments on the stack, and rules

update or ret apply.

4.3 The eval/apply model

The last block of Figure 2 shows how the eval/apply model deals with function

application. The first three rules all deal with the case of a FUN applied to some

arguments:

• If there are exactly the right number of arguments, we behave exactly like rule

knowncall, by tail-calling the function. Rule exact is still necessary – and

indeed has a direct counterpart in the implementation – because the function

might not be statically known.

• If there are too many arguments, rule callk pushes a call continuation on the

stack, which captures the excess arguments. This is the essence of eval/apply.

Given an application f x y where f takes one argument, first call f x, and

then apply the resulting function to y.
• If there are too few arguments, we build a PAP (rule pap2), which becomes

the value of the expression.

These rules work by dynamically inspecting the arity of the function closure in the

heap, which works fine for both known and unknown calls; we could do better for

known calls, but rule knowncall has already dealt with the saturated known case,

and it is probably not worth the bother of treating under- and over-saturated known

calls specially because they are very uncommon (see Section 8).

426 S. Marlow and S. Peyton Jones

Info pointer

Info table

Entry code

Payload

Object type

Layout info

Type-specific
fields

Fig. 3. A heap object.

Another possibility is that the function in an application is a THUNK (rule

tcall). This case is very like the over-applied function of rule callk; we push a

call continuation and enter the thunk. (This in turn will push an update frame via

rule thunk.)

Finally, the function in an application might be a partial application of another

function g (rule pcall). In that case we unpack the PAP and apply g to its new

arguments. Since g is sure to be a FUN , this will take us back to one of the cases

in rules exact, callk or pap2.

That concludes the rules for function application. We need one last rule, retfun,

which returns a function value (PAP or FUN) to a call continuation, in the obvious

way. This rule re-activates a call continuation, exactly as rule ret re-activates a case

continuation.

4.4 Heap objects

To provide the context for our subsequent discussion, we now sketch briefly how

GHC maps the operational semantics onto a real machine. Figure 3 shows the layout

of a heap object. In GHC, the first word of every object is called the object’s info

pointer, and points to an immutable, statically-allocated info table (Peyton Jones,

1992). The remainder of the object is called the payload, and may consist of a

mixture of pointers and non-pointers. For example, the object CON (C a1 . . . an)

would be represented by an object whose info pointer represented the constructor

C and whose payload is the arguments a1 . . . an.

The info table contains:

• Executable code for the object. For example, a FUN object has code for the

function body.

• An object-type field, which distinguishes the various kinds of objects (FUN ,

PAP , CON etc) from each other.

• Layout information for garbage collection purposes, which describes the size

and layout of the payload. By “layout” we mean which fields contain pointers

Push/Enter vs. Eval/Apply for Higher-order Languages 427

and which contain non-pointers, information that is essential for accurate

garbage collection.

• Type-specific information, which varies depending on the object type. For

example, a FUN object contains its arity; a CON object contains its

constructor tag, a small integer that distinguishes the different constructors of

a data type; and so on.

In the case of a PAP , the size of the object is not fixed by its info table; instead, its

size is stored in the object itself. The layout of its fields (e.g. which are pointers) is

described by the (initial segment of) an argument-descriptor field in the info table

of the FUN object which is always the first field of a PAP . The other kinds of heap

object all have a size that is statically fixed by their info table.

A very common operation is to jump to the entry code for the object, so GHC

uses a slightly-optimised version of the representation in Figure 3. GHC places the

info table at the addresses immediately before the entry code, and reverses the order

of its fields, so that the info pointer is the entry-code pointer, and all the other fields

of the info table can be accessed by negative offsets from this pointer. This is a

somewhat delicate hack, because it involves juxtaposing code and data, but (sadly)

it does improve performance significantly (on the order of 5%). Again, however, is

not germane to this paper and we ignore it from now on.

4.5 The evaluation stack

In GHC, the evaluation stack s, in Section 4, is represented by a contiguous block

of memory1. The abstract stack of Section 4 is a stack of continuations, κ. These

continuations are each represented concretely by a stack frame. The stack frames for

the two continuations common to both push/enter and eval/apply are these:

• An update continuation Upd x • is represented by a small stack frame,

consisting of a return address and a pointer to the thunk to be updated, x. In

the push/enter model, an update frame must contain a second word, which

points to the next update frame down in the stack (see Section 5). Having a

return address in the update frame means that a value can simply return to

the topmost return address, without having to test whether the top frame is

an update continuation or a case continuation.

The return address for every update frame can be identical, though; it points

to a hand-written code fragment, part of the runtime system, that performs

the update, pops the update frame, and returns to the next frame.

• A case continuation case • of {alts} is represented by a return address,

together with the free variables of the alternatives alts, which must be saved

on the stack across the evaluation of the scrutinee. For example, consider this

1 In fact, GHC supports lightweight concurrency, so there are many threads. Each has its own stack, of
limited size. The compiler generates explicit stack-overflow tests, and grows the stack when necessary.
None of this is relevant to the discussion of this paper, so we do not discuss concurrency or stack
overflow any further.

428 S. Marlow and S. Peyton Jones

function:

f :: (Int,Int) -> (Bool,Int) -> Int

f x y = case h1 x of

(_,b) -> case h2 y of

w -> w+b

Across the call to h1 x, we must save y on the stack, because it is used later,

but we need not save x; then across the call to h2 y we must save b, but we

need not save y.

Unlike an update frame, the return address for each case expression is

different: it points to code for the case alternatives of that particular case

expression.

In both cases, the frame can be thought of as a stack-allocated function closure:

the return address is the info pointer, and the rest of the frame is the payload. The

return address “knows” the layout of the rest of the frame – that is, where the

pointers, non-pointers and (in the case of case continuations) dead slots are. In our

implementation, the stack grows downward, so the return address is at the lowest

address, and a stack frame looks exactly like Figure 3. A return address has an info

table that the garbage collector uses to navigate over the frame.

In the next sections we describe how the other two continuations are implemented:

the Arg continuation for push/enter (Section 5) and the (• a1 . . . an) continuation for

eval/apply (Section 6).

5 Implementing push/enter

The push/enter model uses the stack to store pending arguments, represented by

continuations of form Arg a. Unlike the other continuations, these have no return

address. When a function with arity n is entered, it begins work by grabbing the

top n arguments from the stack (rule fenter), not by returning to them! This is

precisely the difference alluded to in the Introduction: the function is in control.

How does the function know how many arguments are on the stack? It needs

to know this so that it can perform rule fenter or pap1 respectively. In GHC the

answer is this: we dedicate a register2, called Su (“u” for “update”), to point to the

topmost update frame or case frame, rather like the frame pointer in a conventional

compiler. Then the function can see if there are enough arguments by taking the

difference between the stack pointer and Su. (The function knows not only how

many arguments it is expecting, but how many words they occupy.) This is the

so-called argument satisfaction check.

Every function is compiled with two entry points. The fast entry point is used for

known calls; it expects its arguments in registers (plus some on the stack if there are

too many to fit in registers). The slow entry point expects all its arguments on the

stack, and begins by performing the argument-satisfaction check. If the argument-

satisfaction check fails, the slow entry point builds a PAP and returns to the return

2 or a memory location on register-starved architectures

Push/Enter vs. Eval/Apply for Higher-order Languages 429

address pointed to by Su; if it succeeds, the slow entry point loads the arguments

from the stack into registers and jumps (or falls through, in fact) to the fast entry

point.

5.1 Reducing the number of Su pushes

In conventional compilers, the frame pointer is really only needed to support

debugging, and some compilers provide a flag to omit it, thereby freeing up a

register. We cannot get rid of Su altogether, but when pushing a new frame it is

often unnecessary to save Su and make it point to the new frame. Consider:

case x of { (a,b) -> }

We know for sure that x will evaluate to a pair, not to a function! There is no need

to make Su point to the case frame during evaluation of x. The only time we need to

do so is when the scrutinee cannot statically be determined to be a non-function type.

The classic example is the polymorphic seq function:

seq :: a -> b -> b

seq a b = case a of { x -> b }

In some calls to seq, a will evaluate to a function, while in others it will not. In

the former case we must ensure that Su points to the case frame, so that rule pap1

applies.

In principle, the same idea would allow us to omit Su from many update frames,

but in practice there are several reasons that we want to walk the chain of update

frames (see Section 7) so GHC always saves Su in every update frame.

To avoid that some case frames have a saved Su and some do not, we instead

never save Su in a case frame. Instead, in the (rare) situation of a non-data-typed

case, we push two continuations, a regular case continuation, and, on top of it, a

seq frame containing Su. A seq frame is like an update frame with no update: it

serves only to restore Su before returning to the case frame underneath.

5.2 Accurate stack walking

The most painful aspect of the push/enter model is the problem of representing Arg

continuations, which hold pending arguments. Consider these functions:

g :: Int -> Int -> Int# -> Double# -> Int

g x =

f :: Int -> Int

f x = g x x 3 4.5

Under the push/enter model, we push the pending arguments x (a pointer), 3 (a 32-

bit unboxed value), and 4.5 (a 64-bit unboxed float) onto the stack before making

the tail call g x. The function g might compute for a very long time before returning

a function that consumes the pending arguments. During this period, the pending

arguments simply sit on the stack waiting to be consumed.

430 S. Marlow and S. Peyton Jones

Pending arguments

Regular frame, with return address

Fig. 4. Stack layout for push/enter.

An accurate garbage collector must be able to identify every pointer in the

stack. The push/enter model leads to stack layout that looks like Figure 4. Update

and case continuations, whose representation was discussed in Section 4.5, are

represented by “regular” stack frames, consisting of a return address (shown black)

on top of a block of data (shown white) whose exact layout is “known” to the return

address. The garbage collector can use the return address to access the info table for

the return address (Section 4.5 again), just as it does for a heap-allocated closure.

The info table describes the layout of the stack frame, including exactly where in the

frame the (live) pointers are stored, so that the garbage collector can follow them; it

also gives the size of the frame, so that the garbage collector knows where to start

looking for the next frame.

These regular stack frames are the easy (and well-understood) part. However,

between each regular stack frame are zero or more Arg continuations, or pending

arguments (shown grey). The difficulty is that there is no description of their number

or layout in the stack data structure. The function that pushed them “knows” what

they are, and the function that consumes them knows too – but an arbitrarily long

period may elapse between push and consumption, and during that time the garbage

collector must somehow deal with them. There are two sub-problems:

• Identifying which are pointers and which are non-pointers; as the example

above showed, there may be a mixture.

• Distinguishing the last pending argument from the next return address on the

stack, which heralds a new stack frame.

One alternative is to have a separate stack for pending arguments, which solves the

second of these sub-problems, but not the first. Or, the separate stack could be for

pending non-pointer arguments only, which solves the first sub-problem, but not

the second. However, a separate stack carries heavy costs of its own, to allocate it,

maintain a pointer to the stack top, and check for overflow. We do not consider this

alternative further.

Another alternative is to use a conservative garbage collector, but there are a

number of problems with this approach. Firstly, to plug space leaks we would then

have to use extra memory writes to stub off dead pointers, something the frame

layout maps deal with automatically; this turns out to be very important in practice.

Second, there are other reasons that GHC’s runtime system has to walk the stack

Push/Enter vs. Eval/Apply for Higher-order Languages 431

accurately: to black-hole thunks under evaluation, and to raise exceptions. Third,

stacks may have to move in order to grow; a stack can only be moved if it has

no internal pointers (we can’t find the internal pointers, because this is conservative

GC), so instead of pushing Su on the stack we would have to push an offset (Su-Sp).

Failing these alternatives, the obvious approach is to add a tag word to each Arg

continuation. The tag word distinguishes pointer-carrying from non-pointer-carrying

Arg continuations, specifies the size of latter kind, and can be distinguished from

the return address that heralds the next regular stack frame. Easy enough, but

inefficient. In the following two sections we describe two optimisations that GHC

uses to reduce the tagging cost.

5.2.1 Omitting tags on pointers

Our first optimisation is to not to tag pointer arguments at all. This is attractive

because pointer arguments dominate (see Section 8). Furthermore it looks relatively

easy to distinguish a heap pointer from the return address that heralds the next stack

frame, whereas non-pointer arguments, which can hold any bit-pattern whatsoever,

cannot be distinguished in general. We were wrong to think it was easy, though: the

problem of distinguishing heap pointers from return addresses is much trickier than

it looks, as we now discuss.

GHC allocates some heap objects statically, compiling them directly into the

binary. So an address on the stack may belong to one of three classes:

R: pointers to return addresses

D: pointers to dynamic heap objects

S: pointers to a static objects

When traversing the stack, we want to identify pointers in R, an apparently simple

task:

1. In a simple setup, R is a contiguous region starting at zero, so a simple

boundary test suffices. Unfortunately, we found no platform-independent way

to identify the end of region R, so the test became platform-specific.

2. The simple upper-boundary test failed in later versions of Linux, which

sometimes placed D below R, although R was still contiguous, and S always

followed R. One would think that two boundary tests would suffice, but we

found no way (not even a platform-specific way) to identify the beginning of

R reliably. We finessed this problem by first distinguishing D – we know the

address ranges occupied by the dynamically-allocated heap – instead of using

a boundary test at the low end of R. That is, an address is in R if (a) it is

not in D and (b) it is a lower address than the upper boundary of R. On a

32-bit architecture, the address map for D can be held as an efficient bit-map,

because D is allocated in aligned one-megabyte chunks, so 212 bits suffices to

cover the whole address space.

3. Even test (2) fails in the presence of dynamic linking, which leads to multiple,

discontiguous R regions, intermingled with D and S. However, our dynamic

loader can tell us the exact address ranges of all the R-regions except the first,

432 S. Marlow and S. Peyton Jones

statically-linked one, so we refined the test further: an address is in R if it is

in one of the dynamically-loaded regions of R, or if it satisfies test (2) above.

Alas, maintaining and searching the address map for R is inefficient; we have

none of the size and alignment guarantees that we have for D.

All of this is tiresomely complicated, and involves tricky interactions with the

platform. We explored another more portable alternative: keep an address map for

D, and put a zero word before every static heap object in S. Now an address is in

R if (a) it is not in D, and (b) it is not preceded by a zero word (return addresses

are never preceded by a zero word). The problem with this is that the test involves

de-referencing the pointer, which increases memory traffic. A reviewer suggested yet

another somewhat-similar idea, that we have not tried: arrange that objects in S are

16-byte aligned, and return addresses never are.

The problem of distinguishing pointers from return addresses also could be solved

in an entirely different way: by saving Su in a known place in every regular frame,

as well as every update frame. Then the stack-walker could rely on an Su chain

linking every regular frame, so it would always know where the next regular frame

began. However, building a chain of all frames would impose a non-trivial run-time

cost by increasing memory traffic. We have not quantified this effect in isolation, but

the results of Section 8 indicate that removing Su from update frames contributes

to a worthwhile reduction in memory traffic. Adding Su to regular frames would do

exactly the opposite.

Our conclusion is this: leaving pending-argument pointers un-tagged seems

attractive, but we found no way to walk the resulting stack that was simple,

portable, and efficient. Our efforts to gain efficiency led to a swamp of complexity

and platform-specific code, and one that was all the more annoying because of the

apparent triviality of the goal.

5.2.2 Lazy tagging

Tagging non-pointer pending arguments carries only a modest run-time cost, because

(in Haskell at least) it is rare to call a function that returns a function that consumes

non-pointer arguments. The push/enter version of GHC therefore tags non-pointer

Arg continuations straightforwardly, with a tag word pushed on top of the non-

pointer argument, containing the length in words of the non-pointer argument

(usually 1 or 2). A tag can always be distinguished from a pointer argument,

because pointer arguments never point to very low addresses.

Even tagging non-pointers is tiresome. When calling the fast entry point of a

function, we can pass some arguments in registers, but when there are too many we

pass them on the stack. It would make sense for the stack layout of these overflow

parameters to be the same as the latter part of the stack layout expected by the

slow entry point (which takes all its arguments on the stack). The latter has tagged

slots for non-pointers, so the former had better do so too. But we do not want to

take the instructions to explicitly tag the slots when making a fast call – fast calls to

functions taking non-pointer arguments are not at all rare – so we allocate space for

the tags but do not fill the tags in. However, in a call to a known function when too

Push/Enter vs. Eval/Apply for Higher-order Languages 433

many arguments are supplied, we must generate code to tag the “extra” arguments

but not the “known” ones.

So the invariant at the fast entry point is that there is space for the tags of

the non-pointer arguments passed on the stack, but these slots are not necessarily

initialised. The fast entry point typically starts with a heap-overflow check; if it

fails, it must remember to fill in the tags, so that the top frame of the stack is

self-describing.

The exact details are unimportant here. The point is that, while tagging non-

pointers in the stack is feasible and reasonably efficient, it imposes a significant

complexity burden on both code generator and the the run-time system.

5.3 Generating C--

Some compilers generate native code directly, but a very popular alternative route

is to generate code in C, or a portable assembly language such as C-- (Peyton Jones

et al., 1999), leaving to another compiler the tasks of instruction selection, register

allocation, instruction scheduling, and so on. A significant disadvantage of the

push/enter model is that it makes this attractive route much harder, or at least

much less efficient.

The problem, again, is the pending arguments. Suppose that we want to generate

C. We plainly cannot push the pending arguments onto the C stack, because C

controls its own stack layout. There is just no way to have C stack frames separated

by chunks of pending arguments.

The only way out of this is to maintain a separate stack for pending arguments.

In fact, GHC uses C as a code generator, and it keeps everything on the separately-

maintained stack: pending arguments, saved variables, return addresses, and so on.

Indeed, GHC does not use the C stack at all, so we only have to maintain a single

stack.

Unfortunately, we thereby give up much of the benefit of the portable assembly

language. If we do not use the C stack, we cannot use C’s parameter-passing

mechanisms. Instead, we pass arguments either in global variables that are explicitly

allocated in registers (using a gcc directive) or on the explicit stack. We have to

perform our own liveness analysis to figure out what variables are live across a call,

and generate code to save them to to the explicit stack. In short, we only use C to

compile basic blocks, managing the entire call/return interface manually.

There are other reasons why we could not use C’s stack, however. There is no

easy way to check for stack overflow, or to move stacks around (both important in

our concurrent Haskell system). C may save live variables across a call, but does not

generate stack descriptors for the garbage collector (Section 5.2). Portable exception

handing is tricky. And so on.

C--, on the other hand, is a portable assembly language designed specifically to act

as a back end for high-level-language compilers. It provides explicit and very general

support for tail calls, garbage collection, exception handling, and concurrency, and

so addresses many of C’s deficiencies. Yet, we have found no general or clean way

to extend C--’s design to incorporate pending arguments. So, like C, C-- provides no

434 S. Marlow and S. Peyton Jones

way to push an arbitrary number of words on the stack that should persist beyond

the end of the current call.

The bottom line is this. The pending arguments required by the push/enter model

are incompatible with any portable assembly language known to us, except by using

that language in a way that vitiates many of its advantages. We count this as a

serious strike against the push/enter model.

6 Implementing eval/apply

Next, we turn our attention to the implementation details for eval/apply. The

eval/apply model uses call continuations, of form (• a1 . . . an), which are represented

by a stack frame consisting of a return address, together with the arguments a1 . . . an.

This return address is entered when a function has evaluated to a value (FUN or

PAP), and returns. This is the moment when the complicated rules (exact, callk,

pap2, and so on) are needed, and that involves quite a lot of code. So we do not

generate a fresh batch of code for each call site; instead, we pre-generate a range of

call-continuation return addresses, for 1, 2, 3, . . . N arguments.

What if we need to push a call continuation for more than N arguments? Then

we push a succession of call continuations, each for as many arguments as possible,

given the range of pre-generated return addresses. In effect, this reverts to something

more like the argument-at-a-time function application process, except that we deal

with the arguments N at a time. We can measure how often this happens, and

arrange to pre-generate enough call continuations to cover 99.9% of the cases

(Section 8). The remainder are handled by pushing multiple call continuations.

An important complication is that we need different call continuations when

some of the arguments are unboxed. Why? Because: (a) the calling convention

for the function that the continuation will call may depend on the types of its

arguments (e.g. a floating-point argument might be passed in a floating-point

register); and (b) the call-continuation return address must (like any return address)

have layout information to guide the garbage collector. So cannot get away with just

N continuations, but (in principle) we need 3N . The “3” comes from the three basic

cases we deal with: pointer, 32-bit non-pointer and 64-bit non-pointer. There might

well be more if, for example, a 32-bit float was passed in a different register than

a 32-bit integer. Hence the importance of measurements, to identify the common

cases.

6.1 Generic application in more detail

To be more concrete, we will imagine that we compile Haskell into C-- (Peyton Jones

et al., 1999). We will introduce any unusual features of C-- as we go along. Here is

the code that the call f 3 x, where f is an unknown function, might generate:

jump stgApplyNP(f, 3, x)

This transfers control – the “jump” indicates a tail call – to a pre-generated piece

of run-time system code, stgApplyNP, where the “NP” suffix means “one 32-bit

Push/Enter vs. Eval/Apply for Higher-order Languages 435

non-pointer, and one pointer”. The first parameter is the address of the closure

for f. It’s just as if the original Haskell call had been (stgApplyNP f 3 x), where

stgApplyNP is a known function, so we make a fast call to it.

The run-time system provides a whole bunch of stgApply functions, for various

argument combinations. Indeed, we generate them by feeding the desired argument

combinations to a generator program.

What do we do with an unknown call for which there is no pre-generated

stgApplyX function? Answer, we just split it into two (or more) chunks. For

example, suppose we only had stgApplyX functions for a single argument. Then

our call f 3 x would compile to:

f1 = stgApplyN(f, 3);

jump stgApplyP(f1, x);

Of course, the C-- implementation must arrange to save x across the call to

stgApplyN.

6.2 The run-time stgApply functions

Figure 5 shows (approximately) the code we generate for stgApplyNP. In this code

we assume that TYPE(f) is a macro that gets the type field from the info table of

heap object f, ARITY(f) gets the arity from the info table of a FUN object, and

so on. CODE(f) gets the fast entry point of the function, which takes the function

arguments in registers (plus stack if necessary).

First, the function might be a THUNK; in that case, we evaluate it (by calling its

entry point, passing the thunk itself as an argument), before looping around to

stgApplyNP again.

Next, consider the FUN case, which begins by switching on the arity of the function:

• case 2: if it takes exactly two arguments, we just jump to the function’s code,

passing the arguments a and b. We also pass a pointer to f, the function

closure itself, because the free variables of the function are stored therein.

Note that if we end up taking this route, then the function arguments might

not even hit the stack: a and b can be passed in registers to stgApplyNP, and

passed again in registers when performing the final call. This is an improvement

over push/enter, where arguments to unknown function calls are always stored

on the stack.

• case 1: if the function takes fewer arguments than the number required

by f – in this case there is just one such branch – we must save the

excess arguments, make the call, and then apply the resulting function to

the remaining arguments. The code for an N-ary stgApply must have a case

for each i < N. So we get a quadratic number of cases, but since it’s all

generated mechanically, and the smaller arities cover almost all cases, this is

not much of a problem in practice.

• other: otherwise the function is applied to too few arguments, so we should

build a partial application in the heap.

436 S. Marlow and S. Peyton Jones

stgApplyNP(f, a, b) {

/* Apply f to arguments a and b */

switch TYPE(f) {

case THUNK:

fun_code = CODE(f) ;

f = fun_code(f);

/* a,b saved across this call */

jump stgApplyNP(f, a, b)

case FUN:

switch ARITY(f) {

case 1: /* Too many args */

fun_code = CODE(f) ;

f = fun_code(f, a);

/* b saved across this call */

jump stgApplyP(f, b);

case 2: /* Exactly right! */

fun_code = CODE(f) ;

jump fun_code(f, a, b);

other: /* Too few args */

...check for enough heap

space to allocate PAP...

r = ...build PAP for (f a b)...

return(r)

}

case PAP:

switch PAP_ARITY(f) {

case 1: /* Too many args */

f = applyPapN(f, a) ;

jump stgApplyP(f, b);

case 2: /* Just right */

jump applyPapNP(f, a, b)

other: /* Too few args */

...check for enough heap...

r = ...build PAP for (f a b)...

return(r)

} }

Fig. 5. The generic apply function StgApplyNP.

The third case is that f might be a partial application. The three cases are similar to

those for a FUN, but they make use of an auxiliary family of functions applyPapX etc

which apply a saturated PAP. This apply operation is not entirely straightforward,

because PAP contains a statically-unknown number of arguments. One solution is to

copy the argument block from the PAP, followed by the argument(s) to applyPapX

Push/Enter vs. Eval/Apply for Higher-order Languages 437

to a temporary chunk of memory, and call a separate entry point for the function

that expects its arguments in a contiguous chunk of memory. The advantage of

this approach is that it requires no knowledge of the calling convention. Another

solution (currently used by GHC) is to exploit knowledge of the calling convention

to make a generic call; in GHC’s case we just copy the arguments onto the stack.

6.3 Variations on the theme

There are several opportunities for optimisation. First, we can have specialised FUN

types for functions of small arity (1, 2, 3, say); that way we could combine the

node-type and arity tests. Second, a top level function has no (non-constant) free

variables, so there is no need to pass its function closure as its first argument. We

would need another FUN node type to distinguish this case. At the time of writing,

GHC does not implement either of these optimisations.

In the FUN case of Figure 5 we used a macro CODE(f) to extract the fast entry

point of a function closure f. Since this is a very common operation, we use this

fast-entry code as the info pointer of the closure (see Figure 3), so that we can get

the fast-entry code with a single memory reference. There is a down-side to this

choice, however: functions are no longer self-evaluating. Under push/enter, we had

the convention that jumping to the code for a closure would always evaluate the

closure or, in the case of a function, apply the function to the available arguments

on the stack and return the result. Hence to evaluate a closure to head normal form

we could just enter the closure’s code with no arguments on the stack (Su==Sp).

If we use the fast-entry code of a function as its closure’s info pointer, we cannot

evaluate an arbitrary closure to head normal form simply by entering it. Instead, we

must first check the type of the closure: if it is a function we can return the result

immediately, otherwise we enter the closure. Fortunately evaluating an arbitrary

closure is rare; most of the time the code generator knows the type of the closure

being entered, and can generate the right kind of eval sequence. The classic function

that does require the polymorphic eval code is seq, which evaluates its first argument

without knowing its type.

An alternative approach would be to give every function closure an info pointer

that returns immediately, and have a separate entry point in a function’s info table

(accessed by CODE(f)) for calling the function. This would make polymorphic eval

code simpler, but would would result in larger info tables and an extra indirection

when calling an unknown function.

7 A qualitative comparison

Having described the two implementations, we now summarise the main differences.

In favour of eval/apply:

• When calling an unknown function with the right number of arguments, the

arguments can be passed in registers rather than on the stack. For a register-

rich architecture, this may be the strongest single reason for using eval/apply;

438 S. Marlow and S. Peyton Jones

the push/enter approach pretty much forces arguments to unknown functions

to be passed on the stack.

• Much easier to map to a portable assembly language, such as C-- or C.

• No need to distinguish return addresses from heap pointers. This is a big win

(Section 5.2.1).

• No tagging for non-pointers; this reduces complexity and makes stack frames

and PAPs a little smaller.

• No need for the Su pointer, perhaps saving a register; and update frames

become one word smaller, because there is no need to save Su.

• Because the arity-matching burden is on the caller, not the callee, run-time

system support functions, callable from Haskell, become more convenient to

write.

In favour of push/enter:

• Appears to be a natural fit with currying.

• Eliminates some PAP allocations compared to eval/apply.

• The payload of a PAP object can be self-describing because the arguments are

tagged. In contrast, an eval/apply PAP object relies on its FUN to describe the

layout of the payload; this results in some extra complication in the garbage

collector, and an extra global invariant: a PAP must contain a FUN, it cannot

contain another PAP3.

Plain differences:

• Push/enter requires a slow entry point for each function, incorporating the

argument-satisfaction check. Eval/apply does not need this, but (in some

renditions) may require an entry point in which the arguments are in a

contiguous memory block.

• The Su pointer saved in each update frame makes it easy to walk the chain of

update frames. That is useful for two reasons. First, at garbage collection time

we want to black-hole any thunks that are under evaluation (Jones, 1992).

Second, a useful optimisation is to collapse sequences of adjacent update

frames into a single frame, by choosing one of the objects to be updated and

making all the others be indirections to it. Under eval/apply, however, one

can still find the update frames by a single stack walk; but it may take a

little longer because the stack-walk must examine other frames on the stack

in order to hop over them. Notice, though, that there is nothing to stop us

adding an Su register, pointing to the topmost update frame, to the eval/apply

model, if that turned out to be faster for the reasons just described. We have

not tried this.

3 This restriction might not apply in general, but in GHC’s case it is forced by an invariant of the
compacting GC algorithm used, which requires that the layout of any object be determined by its info
table and other objects reachable by at most one pointer indirection. In any case, having to traverse
a chain of objects to determine the layout of a PAP adds another linear component to the worst-case
performance in the GC.

Push/Enter vs. Eval/Apply for Higher-order Languages 439

From this list we conclude two things. First, it is essentially impossible to come to

a rational conclusion about performance based on these differences. The only way

is to build both both models and measure the difference. Second, the eval/apply

model seems to have decisive advantages in terms of complexity. Yes, the stgApplyX

generator is a new component, but it is well isolated, and not too large (it amounts

to some 580 lines of Haskell including comments). The big wins are that complexity

elsewhere is reduced, and it is easier to map the code to a portable assembly

language.

The bottom line is this: if eval/apply is no more expensive than push/enter, it is

definitely to be preferred.

8 Measurements

Our measurements are made on the Glasgow Haskell Compiler version 5.04

(approximately; it does not correspond exactly to any released version). We made

measurements across the entire nofib benchmark suite of 88 programs (Partain,

1992), and our tables will give minimum, maximum and mean figures across the

whole suite. However, for reasons of presentation we couldn’t include detailed results

for all 88 programs in the tables, so we have left out some of the programs with

less interesting results (but the aggregate results were still calculated using the whole

suite). Outlying results, many of which are discussed in the text, are highlighted in

a grey box.

The nofib benchmark suite contains programs ranging from micro-benchmarks

(tak, rfib) to larger programs solving “real” problems: for example, cacheprof

is a program for automatically translating assembly code to insert instructions for

dynamic cache profiling, compress is an implementation of LZW compression,

prolog is a Prolog interpreter, and hidden is a program for hidden-line removal in

3D rendering. We make no apology for including the micro-benchmarks: in practice

even the larger programs often have small inner loops, and the micro-benchmarks

are useful for illustrating the boundary cases.

Where appropriate, we will attempt to explain any unusual or extreme results. We

investigated individual programs using the following tools:

• GHC has a lightweight profiling system called “ticky-ticky” profiling, which

counts the occurrence of certain events during a program run. The events

include global counts such as the number of allocations of various kinds and

the number of updates, but also per-function counts of the number of calls

and allocations within each function. The latter are particularly useful for

identifying inner loops for further investigation.

• Cachegrind (part of Valgrind (Seward, n.d.)), the tool we use for counting

instructions and memory references, can also give these counts at the

granularity of a labelled code block. We found it particularly helpful to

compare these results between the push/enter and eval/apply versions of a

program, to quickly identify sections of code that were performing a different

number of operations – most blocks remained the same or close between the

440 S. Marlow and S. Peyton Jones

two models. Of course instruction counts and memory references are only a

rough indicator of real performance, though.

8.1 The anatomy of calls

First of all, we present data on the dynamic frequency of the different categories of

function call. These figures are independent of evaluation model; they are simply

facts about programs in our benchmark suite, as compiled by GHC.

Figure 6 shows the relative dynamic frequency of:

• Calls to an unknown (lambda-bound or case-bound) function which turned

out to be unevaluated (as a percentage of the total calls),

• Calls to unknown functions with (a) too few arguments, (b) exactly the right

number of arguments, and (c) too many arguments (each as a percentage of

the total calls),

• Calls to a known (let-bound) function with (a) too few arguments, (b) exactly

the right number of arguments, and (c) too many arguments (again, each as a

percentage of the total calls).

The last six columns of the table together cover all calls, and add up to 100%.

Note that “known” simply means that a let(rec) binding for the function is statically

visible at the call site; the function may be bound at top level, or may be nested. GHC

propagates arity information across module boundaries, which greatly increases the

number of known calls. Also notice that every over-saturated application of a

known or unknown function gives rise to a subsequent call to the unknown function

returned as its result; these unknown calls are included in one of the “unknown

calls” columns. For example, each execution of the call id f x would count as

one call to a known function (id) with too many arguments, and one call to the

unknown function returned by id.

These numbers lead to three immediate conclusions. First, known calls are

common, and often dominate, but unknown calls can be the majority in some

programs (e.g. x2n1, mandel). Unknown calls must be handled efficiently. Second,

known calls are almost always saturated; the efficiency of handling under- or over-

saturated known calls is not important, and they can be treated like unknown calls

(c.f. Section 4.3). Third, even unknown calls are almost always to an evaluated

function with the correct number of arguments, so it is worth optimising this

case. For example, we can pass the arguments to the generic apply function in

registers, in the hope that it can just pass them directly to the function (our current

implementation does not currently perform this optimisation, however, as we explain

in more detail in Section 8.3). Conversely, if under- or over-saturated unknown calls

are expensive, this is unlikely to affect the final runtime significantly; and in fact it

is in these cases that eval/apply can be more expensive than push/enter.

Another thing to note from these results is the wide variety of behaviours; even

amongst the larger programs there is significant variation in the proportion of

unknown calls made: bspt with 2141 lines makes only 1.9% unknown calls, but

fluid with 2401 lines makes 48.3% unknown calls. One might perhaps guess that

Push/Enter vs. Eval/Apply for Higher-order Languages 441

Uneval Unknown (%) Known (%)
Program Lines Calls (%) < = > < = >

anna 9561 4047084 0.8 0.0 25.5 0.0 0.6 73.8 0.0
atom 188 10237920 0.0 0.0 5.2 0.0 0.0 94.8 0.0
boyer2 723 295984 0.0 0.0 0.0 0.0 0.0 100.0 0.0
boyer 1014 1387158 0.5 0.0 10.5 0.0 0.5 88.9 0.0
bspt 2141 273402 0.0 0.0 1.9 0.0 0.0 98.1 0.0
cacheprof 2151 19597901 0.3 0.0 25.2 0.0 0.2 74.5 0.0
cichelli 244 5790007 0.0 0.0 19.3 0.0 0.0 80.7 0.0
circsim 668 30421443 0.0 0.0 14.5 0.0 0.0 85.5 0.0
clausify 179 2186312 0.0 0.0 1.7 0.0 0.0 98.3 0.0
comp lab zift 884 8581682 0.0 0.0 20.9 0.0 0.0 79.1 0.0
compress2 199 1721537 0.0 0.0 2.6 0.0 0.0 97.4 0.0
compress 736 7816380 0.0 0.0 1.6 0.0 0.0 98.4 0.0
cse 464 24878 1.4 0.4 7.4 0.0 0.2 91.7 0.3
exp3 8 93 8079893 0.0 0.0 0.0 0.0 0.0 100.0 0.0
expert 525 10755 0.3 0.2 19.6 0.0 0.1 80.1 0.1
fem 1286 1440406 0.0 0.0 5.4 0.0 0.0 94.6 0.0
fibheaps 296 1548796 5.1 5.8 8.3 0.0 0.0 85.3 0.6
fluid 2401 392664 2.4 0.0 48.3 0.0 0.1 50.4 1.2
fulsom 1397 4333456 0.4 0.0 25.0 0.0 0.2 74.8 0.0
gamteb 701 2239319 0.0 0.0 7.1 0.0 0.1 91.2 1.6
genfft 502 1587626 0.0 0.0 7.2 0.0 0.0 92.8 0.0
gg 812 397004 0.0 0.0 23.5 0.0 0.1 76.4 0.1
grep 356 102 4.9 4.9 27.5 0.0 3.9 62.7 1.0
hidden 521 36030177 0.1 0.0 13.8 0.0 0.0 86.1 0.1
hpg 2067 2470202 5.3 3.0 21.1 1.1 2.0 72.7 0.1
infer 594 1823681 0.1 0.0 18.8 0.0 0.1 81.1 0.0
integer 68 125287103 0.0 0.0 49.3 0.0 0.0 50.7 0.0
knights 887 233593 0.0 0.1 40.1 0.0 0.0 59.8 0.0
lcss 60 4155607 0.0 0.0 49.0 0.0 0.0 51.0 0.0
life 53 8395883 0.0 0.0 8.2 0.0 0.0 91.8 0.0
lift 2033 21173 18.7 0.5 31.5 0.3 3.6 63.9 0.1
listcopy 527 6372584 0.0 0.0 1.8 0.0 0.0 98.2 0.0
maillist 175 629501 9.5 8.3 35.3 0.0 1.9 53.9 0.5
mandel 498 8396707 0.3 0.0 62.9 0.0 0.0 37.1 0.0
mkhprog 803 59097 0.4 0.3 2.9 0.0 0.0 96.8 0.0
nucleic2 3391 870440 0.0 0.0 10.1 0.0 0.0 89.9 0.0
para 1781 30122407 0.0 0.0 45.0 0.0 0.0 55.0 0.0
paraffins 91 1254290 0.0 0.0 49.5 0.0 0.0 50.5 0.0
parser 3139 865802 0.6 0.0 37.4 0.2 0.0 62.4 0.0
parstof 1280 184871 0.2 0.0 52.9 0.0 0.0 47.1 0.0
pic 527 168978 1.3 0.0 14.8 0.0 0.0 85.0 0.1
pretty 265 1562 3.6 3.6 9.2 0.0 0.1 87.1 0.1
prolog 641 64723 2.1 0.1 24.9 0.1 2.0 73.0 0.0
puzzle 170 7936980 0.0 0.0 31.8 0.0 0.0 68.2 0.0
reptile 1522 359506 0.2 0.1 4.6 0.0 0.0 95.2 0.1
rsa 74 369801 0.0 0.0 0.0 0.0 0.0 100.0 0.0
scc 100 629 1.1 1.0 49.1 0.0 0.2 49.8 0.0
sched 555 856125 0.0 0.0 0.0 0.0 0.0 100.0 0.0
scs 585 28431366 0.5 0.0 17.3 0.0 0.0 82.5 0.2
simple 1129 14398577 0.0 0.0 49.2 0.0 0.0 50.8 0.0
sorting 162 40322 0.0 0.0 22.3 0.0 0.0 77.7 0.0
symalg 1146 80079 0.1 0.0 1.2 0.0 0.0 98.7 0.1
tak 16 2494307 0.0 0.0 0.0 0.0 0.0 100.0 0.0
treejoin 121 3604474 0.0 0.0 10.5 0.0 0.0 89.5 0.0
typecheck 658 18043268 0.5 0.0 27.3 0.0 0.5 72.2 0.0
veritas 11124 21133 1.9 0.4 6.9 0.0 0.1 92.4 0.2
wang 357 1325827 0.0 0.0 4.8 0.0 0.0 95.2 0.0
x2n1 35 1289082 0.0 0.0 78.8 0.0 0.0 21.2 0.0

Min 0.0 0.0 0.0 0.0 0.0 21.2 0.0
Max 18.7 8.3 78.8 1.1 3.9 100.0 1.6
Average 1.0 0.4 20.3 0.0 0.2 79.0 0.1

Fig. 6. Anatomy of calls.

442 S. Marlow and S. Peyton Jones

larger programs would exhibit “average” behaviour, but this is not reliably the case;

execution is often dominated by a handful of inner loops.

There are few remarkable results in Table 6. An extreme out-lier is x2n1, which

has the highest proportion of unknown function calls (78.8%). The x2n1 program is

micro-benchmark characterised by lots of floating point operations. The inner loop

contains this function:

f :: Int -> Complex Double

f n = mkPolar 1 ((2*pi)/fromIntegral n) ^ n

The function mkPolar ends up fully inlined and reduced to a constructor

application and a couple of primitive floating point operations, similarly the division

and fromIntegral are reduced to primitives.

The exponentiation operator, (ˆ), unfortunately remains overloaded. It is defined

in the Prelude, and makes calls to overloaded functions on each iteration; and

by definition each call to an overloaded function will be unknown at the call site.

Overloading is a plentiful source of unknown function calls. Other optimisations

(such as specialisation) could improve the quality of the code here, but that is an

orthogonal issue as far as this paper is concerned.

8.2 Argument patterns

Figure 7 classifies the unknown calls of Figure 6, by their argument patterns. This

data is helpful in deciding how many different versions of stgApply to generate.

Only the unknown calls are included: we don’t care about known functions because

we generate inline code for their calls. The column headings use one character per

argument to indicate the pattern, with the key: p = pointer, v = void. pp, for

example, means a call with two pointer arguments.

A “void” argument is an argument of size zero; such arguments are used for the

“state token” used in the implementation of the IO and ST monads. The state token

is always passed as the last argument, which is why we need ppv but not pvp and

vpp, for example.

The table has columns for the nine most popular argument patterns, and a single

column (OTHER) which covers all the other patterns. The general conclusion is clear:

9 argument patterns is enough to cope with 99.99% of all situations. Unknown calls

involving unboxed arguments (integers, floats etc.) turn out to be very rare: they

all end up in the OTHER column, which at most accounted for 0.1% of the total

unknown calls.

Some programs have unusual results:

• fibheaps has an unusually large number of pv calls. A simple inspection of

the program shows that it contains a lot of code in the ST monad, which

accounts for the high use of the pv pattern.

• maillist does a lot of file manipulation work in the IO monad. This accounts

for its use of the ppv pattern.

• boyer2, grep and sched appeared to perform a high proportion of v calls,

but in fact these programs performed a very low number of unknown calls in

Push/Enter vs. Eval/Apply for Higher-order Languages 443

Argument pattern (% of all unknown calls)
Program v p pv pp ppv ppp pppv pppp ppppp OTHER

anna 0.0 29.6 0.0 69.3 0.0 1.1 0.0 0.0 0.0 0.0
atom 0.0 4.8 0.0 0.6 0.0 94.6 0.0 0.0 0.0 0.0
boyer2 58.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
boyer 0.0 92.8 0.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0
bspt 0.5 70.2 0.0 6.2 0.0 11.8 0.0 11.3 0.0 0.0
cacheprof 0.0 91.6 0.0 8.1 0.0 0.3 0.0 0.0 0.0 0.0
cichelli 0.0 10.4 0.0 89.6 0.0 0.0 0.0 0.0 0.0 0.0
circsim 0.0 70.2 0.0 8.6 0.0 21.2 0.0 0.0 0.0 0.0
clausify 0.0 0.4 0.0 99.6 0.0 0.0 0.0 0.0 0.0 0.0
comp lab zift 0.0 3.4 0.0 96.6 0.0 0.0 0.0 0.0 0.0 0.0
compress2 1.1 98.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
compress 0.4 73.9 0.0 12.9 0.0 12.7 0.0 0.0 0.0 0.0
cse 0.4 59.2 0.0 9.9 0.0 30.6 0.0 0.0 0.0 0.0
exp3 8 5.6 59.3 0.0 34.5 0.6 0.0 0.0 0.0 0.0 0.0
expert 2.5 62.6 0.1 32.4 0.4 2.0 0.0 0.0 0.0 0.0
fem 0.0 91.3 0.0 8.1 0.0 0.6 0.0 0.0 0.0 0.0
fibheaps 0.0 43.2 13.7 43.1 0.0 0.0 0.0 0.0 0.0 0.0
fluid 0.0 61.9 0.0 34.2 0.0 3.9 0.0 0.0 0.0 0.0
fulsom 0.0 17.5 0.0 82.5 0.0 0.0 0.0 0.0 0.0 0.0
gamteb 0.1 96.4 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0
genfft 0.0 1.6 0.0 98.4 0.0 0.0 0.0 0.0 0.0 0.0
gg 0.0 53.7 0.0 46.3 0.0 0.0 0.0 0.0 0.0 0.0
grep 58.6 34.5 3.4 0.0 3.4 0.0 0.0 0.0 0.0 0.0
hidden 0.2 48.7 0.0 14.3 0.0 36.8 0.0 0.0 0.0 0.0
hpg 24.1 55.2 0.0 10.4 2.7 1.4 6.2 0.0 0.0 0.0
infer 0.0 51.8 0.0 48.1 0.0 0.1 0.0 0.0 0.0 0.0
integer 0.0 50.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0
knights 0.0 4.1 0.0 95.9 0.0 0.0 0.0 0.0 0.0 0.0
lcss 0.0 1.1 0.0 0.0 0.0 98.9 0.0 0.0 0.0 0.0
life 0.0 3.3 0.0 0.2 0.0 96.5 0.0 0.0 0.0 0.0
lift 0.1 57.9 0.0 40.4 0.0 1.6 0.0 0.0 0.0 0.0
listcopy 0.2 28.5 0.0 71.3 0.0 0.0 0.0 0.0 0.0 0.0
maillist 31.8 35.1 1.1 1.1 15.5 14.4 1.1 0.0 0.0 0.0
mandel 0.0 13.4 0.0 86.6 0.0 0.0 0.0 0.0 0.0 0.0
mkhprog 12.2 48.7 2.1 31.5 3.7 1.9 0.0 0.0 0.0 0.0
nucleic2 0.0 56.0 0.0 44.0 0.0 0.0 0.0 0.0 0.0 0.0
para 0.0 22.5 0.0 77.4 0.0 0.0 0.0 0.0 0.0 0.0
paraffins 0.0 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
parser 0.0 11.5 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0
parstof 0.0 94.3 0.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0
pic 8.7 75.8 0.0 15.4 0.0 0.0 0.1 0.0 0.0 0.0
pretty 3.6 2.6 0.0 93.9 0.0 0.0 0.0 0.0 0.0 0.0
prolog 0.4 78.2 0.0 21.3 0.0 0.0 0.0 0.0 0.0 0.0
puzzle 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
reptile 0.2 72.1 0.0 26.9 0.0 0.9 0.0 0.0 0.0 0.0
rsa 29.1 69.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
scc 2.9 12.8 0.0 84.3 0.0 0.0 0.0 0.0 0.0 0.0
sched 58.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
scs 1.4 19.6 0.0 79.0 0.0 0.0 0.0 0.0 0.0 0.0
simple 0.0 20.1 0.0 79.9 0.0 0.0 0.0 0.0 0.0 0.0
sorting 0.3 66.5 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0
symalg 8.3 55.0 0.0 36.8 0.0 0.0 0.0 0.0 0.0 0.0
tak 1.9 61.8 0.0 35.7 0.6 0.0 0.0 0.0 0.0 0.0
treejoin 0.2 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
typecheck 0.0 89.5 0.0 10.5 0.0 0.0 0.0 0.0 0.0 0.0
veritas 1.2 47.3 0.0 50.2 0.0 1.1 0.0 0.0 0.3 0.0
wang 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
x2n1 0.0 17.6 0.0 82.4 0.0 0.0 0.0 0.0 0.0 0.0

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 58.6 100.0 13.7 100.0 15.5 98.9 6.2 11.3 0.3 0.1
Average 5.2 54.4 0.3 34.4 0.3 5.2 0.1 0.1 0.0 0.0

Fig. 7. Argument patterns.

444 S. Marlow and S. Peyton Jones

total (26 for grep, and 12 for boyer2 and sched). It just so happened that the

small amount of IO monad code at the top level of the program accounted

for many of those unknown calls.

Several of the programs appear to have a preference for one or two of the argument

patterns. For example, wang performs almost exclusively pp calls. Investigating the

program reveals why: these calls all come from a local copy of the foldr function

(this benchmark is automatically generated code):

f_foldr::(t1 -> t2 -> t2) -> t2 -> [t1] -> t2;

f_foldr a_op a_r []=a_r;

f_foldr a_op a_r (a_a:a_x)=a_op a_a (f_foldr a_op a_r a_x);

Calls to the unknown function a op in the body of f foldr are pp calls, and by

looking back at Figure 6 we can see that they were all in fact calls to functions of

two arguments.

The other programs which have a high proportion of one particular argument

pattern are similar: there is often a single unknown call in the inner loop of the

program.

8.3 The bottom line

What really matters in the end is time and space. Figure 8 shows the percentage

change we measured in moving from push/enter to eval/apply. The runtime figures

are wall-clock times, averaged over five runs, discounting any programs that ran

for less than 0.5 seconds on our 1GHz Pentium III (around half of the suite). The

machine was otherwise unloaded at the time of the test.

Somewhat to our surprise, there is only a small difference between the two models,

with eval/apply edging out push/enter by around 2-3% of runtime on average. We

discuss the runtime differences in more detail in the rest of this section.

The table also gives differences in code size, heap allocations, instructions executed

and memory read/write references. Code size differences are due to two main factors:

• Increased size of the runtime due to the addition of the stgApply functions.

• Reduction of the size of individual compiled modules, due to the removal of

the per-function slow entry code.

In small programs, the increased size of the runtime outweighs the per-module

reduction, and we see a small overall increase in code size. On larger programs (e.g.

anna, veritas) the per-module reduction starts to win out, and we see a reduction

in code size.

Heap allocation is largely unaffected by the change from push/enter to eval/apply,

as can be seen in the “Alloc” column of Figure 8. The small change in allocation is

the difference between two factors pulling in opposite directions. Firstly, eval/apply

will allocate a PAP when returning a function applied to too few arguments, whereas

push/enter may get away without heap allocation because the function can find its

missing arguments on the stack. Hence eval/apply will allocate more PAPs. Secondly,

Push/Enter vs. Eval/Apply for Higher-order Languages 445

Eval/apply change (∆%)

Code Heap Memory
Program size Alloc Instrs reads writes Runtime

anna -5.1 +1.7 +2.0 +2.6 -3.3 -0.8
atom -0.8 +0.0 -7.4 -5.2 -12.0 -5.5
boyer +4.1 +0.5 -2.5 -1.3 -10.5 -
boyer2 +4.0 +0.0 -2.7 -0.1 -3.2 -
bspt -0.8 -0.0 -6.1 -3.6 -8.3 -
cacheprof -4.0 +0.4 +10.8 +10.3 +0.3 +4.1
cichelli +2.9 -0.0 -1.8 +0.4 -6.1 -2.4
circsim +0.3 -0.0 +0.3 +1.1 -9.5 -4.7
clausify +6.1 -0.0 -1.5 +2.0 +0.8 -
comp lab zift +3.3 -0.0 -1.3 +0.2 -9.6 -7.5
compress +2.2 -0.0 +1.8 +3.2 +3.7 +1.8
compress2 +3.0 -0.0 -0.7 -0.4 -0.3 -1.9
cse +5.0 -0.0 -5.9 -4.3 -8.8 -
exp3 8 +1.5 +0.0 -2.5 +1.6 -9.8 -23.2
expert +1.3 -2.4 +0.6 +1.7 -6.3 -
fem -0.9 +0.0 -5.6 -3.3 -7.8 -
fibheaps +1.1 +0.9 +3.4 +4.5 -3.1 -
fluid -2.8 +0.1 +5.8 +5.9 -4.9 -
fulsom -2.2 +0.1 -2.5 -2.4 -8.0 -3.7
gamteb -0.8 +0.1 -0.5 +0.8 -0.8 +2.2
genfft +5.8 -0.0 -8.1 -6.3 -11.0 -
gg -2.6 +0.1 -0.8 +0.5 -5.1 -
grep +1.8 +0.1 -0.0 +0.0 -0.5 -
hidden -2.4 +0.0 +3.3 +4.0 -6.1 +2.1
hpg -2.8 +0.2 +4.0 +5.4 -4.6 -5.6
infer -1.6 +0.2 +2.5 +2.4 -1.0 +0.0
integer +2.0 +0.0 +3.8 +3.5 -13.7 -0.8
knights +2.7 -0.2 +7.5 +6.1 -0.5 -
lcss +1.4 -0.0 +1.8 +0.4 -6.9 -0.4
life +6.5 +0.0 -5.0 -3.5 -9.3 -5.4
lift +2.5 -0.1 -2.2 -1.2 -8.9 -
listcopy +5.6 +0.0 -10.2 -8.1 -11.3 -2.4
maillist +3.4 +0.0 +3.8 +3.4 -3.6 -
mandel -0.6 +0.0 +4.4 +3.4 -5.2 +3.3
mkhprog +2.5 +0.0 -6.8 -4.4 -8.4 -
nucleic2 +0.6 -0.0 -4.3 -3.3 -7.1 -8.6
para +2.2 -0.0 +6.2 +5.6 -8.8 +6.9
paraffins +0.7 -0.0 +1.0 +0.8 -1.9 +1.1
parser -1.1 -0.0 +1.8 +2.6 -4.3 -
parstof -0.3 +0.0 +11.6 +9.4 -3.6 -
pic -0.8 -0.0 +0.2 +0.7 -1.1 -
pretty +0.8 -0.0 -1.3 -0.8 -5.9 -
prolog +1.5 +2.8 +5.2 +5.4 -1.2 -
puzzle +5.3 -0.0 +1.2 +1.1 -5.9 -12.1
reptile -1.9 -0.0 -7.7 -4.9 -8.8 -
rsa +0.5 -0.0 +1.3 +1.6 +1.5 +0.0
scc +7.7 +0.1 +1.2 +1.2 -1.0 -
sched +6.2 -0.0 -1.2 +0.2 -7.6 -
scs -2.4 +0.0 +0.7 +1.4 -2.4 -3.6
simple -1.8 +0.0 +3.5 +2.5 -4.7 +1.5
sorting +3.9 -0.0 +1.8 +2.6 -5.3 -
symalg -1.9 +0.0 +0.0 +0.1 +0.2 -3.1
tak +1.9 +0.4 +9.1 +20.8 +21.4 -
treejoin +3.6 +0.0 -2.7 -1.6 -5.7 -0.9
typecheck +4.6 +1.2 +6.8 +6.7 -4.8 +3.1
veritas -5.2 -0.7 -4.6 -3.5 -8.0 -
wang +0.8 -0.0 -1.9 -1.6 -4.7 -3.0
x2n1 -0.4 -0.0 +5.5 +3.9 -5.9 -20.5

Min -5.2 -2.4 -10.2 -8.1 -13.7 -23.2
Max +7.7 +2.8 +11.6 +20.8 +21.4 +6.9
Geometric Mean +1.8 +0.1 +0.0 +1.1 -4.9 -2.8

Fig. 8. Space and time.

446 S. Marlow and S. Peyton Jones

however, the PAPs in eval/apply may be slightly smaller than those for push/enter,

because there is no need to tag their non-pointer components (Section 4.4).

Instructions and memory references were measured using the Cachegrind tool,

which is a part of the Valgrind dynamic program analysis tool-set. Cachegrind has

the ability to produce per-function instruction and memory reference counts, which

we used to try to narrow down and explain differences in real-time performance.

When examining programs in this way, we found that differences between the

push/enter and eval/apply versions of programs fell into the following categories:

• Updates. Under eval/apply, update frames are one word smaller than under

push/enter (2 words instead of 3), because there is no Su register to save in the

frame. Furthermore, in the x86 implementation on which these results were

taken, the Su “register” was actually stored in a memory location due to the

lack of real machine registers. Both of these factors lead to reduced memory

traffic when Su is eliminated (Figure 8).

• Walking the chain of update frames. The benefit due to the reduction in the

size of update frames is balanced to some extent by the extra work that has to

be done when traversing the chain of update frames on the stack, as described

in Section 7.

• Unknown call overhead. The difference in unknown call behaviour shows

up as a high instruction count in the stgApply routines for eval/apply,

compared to instructions spread out amongst the slow entry points of the

functions being called in push/enter. An unknown call in eval/apply will be

slightly more expensive because the generic apply code needs to extract the

arity of the function from the function’s info table, whereas in push/enter a

function statically knows its own arity. Comparing the totals gives instruction

counts that are roughly the same, with eval/apply perhaps taking a few more

instructions in unknown call overhead. However, we expect there to be a

performance benefit due to the extra code locality in the eval/apply version.

• Calling conventions. In general, when calling a function, our code generator

dedicates one register to pass the address of the function closure. This is

unnecessary in the case of a top-level function, which has no free variables, so

in principle it would be possible to re-use the function-pointer register as an

argument register for calls to top-level functions.

For push/enter we implemented this optimisation, so that top-level functions

have a different calling convention than non-top-level ones. However, under

eval/apply we found that a consistent calling convention for both top-level

and non-top-level functions avoided a lot of complexity in the stgApply

functions. Moreover, if the calling convention for all functions is the same,

we can adopt that same calling convention for the stgApply functions, and

hence optimise the common case where the function is evaluated and has the

correct arity, and stgApply is just transferring control directly to the function.

In practical terms, this means we can pass arguments in registers to stgApply,

and stgApply can simply jump to the entry code for the function.

Push/Enter vs. Eval/Apply for Higher-order Languages 447

On the x86 architecture, in fact there are no registers available for parameter

passing, although we do have a machine register for passing the address of the

function closure. This means that with eval/apply, no arguments to top-level

functions are passed in registers, compared to one argument with push/enter.

We do not have measurements that isolate the effect of this difference taken

by itself, but we believe it to have little real effect on run-times. In some of

the programs we investigated we saw some small savings in push/enter due

to the argument register, and we also saw cases where it made the code worse

(because the register had to be immediately saved on the stack on entry to the

function, perhaps requiring an extra stack check).

• Entry convention. In Section 6.3 we discussed the fact that we chose to make

the info pointer of a function closure into its fast-entry code, at the cost of

extra tests in polymorphic eval code. This decision affects the para benchmark,

as we discuss below.

We can now offer some explanation for some of the programs with outlying

results in Figure 8, in terms of the factors outlined above:

• exp3_8 was 23.2% faster. This is largely due to the fact that exp3_8 spends

most of its time doing updates. In this case, the extra memory reads when

traversing the update frame chain balance out the memory reads saved by the

smaller size of update frames, but the difference in writes is much greater.

• x2n1 was 20.5% faster. These savings again appear to be mostly due to

improvements in the update code: the heaviest-hit basic block in x2n1 is the

update routine. There are lots of small changes in instruction counts for basic

blocks across this program however, so this is probably not the whole story.

This program performs a lot of unknown calls, and so we see a lot of activity

in the stgApply routines in the eval/apply version, compared with activity

spread across the slow entry points for various functions in the push/enter

case, as we would expect. We also noticed some differences due to calling

conventions.

• puzzle was 12.1% faster. Again, updates dominate the runtime, and

eval/apply consequently gains a bonus.

• para was 6.9% slower with eval/apply. There are some savings in the update

code as usual, but there are some losses in the unknown call code. There are

some further losses due to having to check closure types for an eval in the

runtime (see entry conventions above). Interestingly, while investigating this

program we discovered one place in the eval/apply version of the runtime

which was checking the closure type for an eval unnecessarily; fixing that

reduced the difference in instructions for this test from +6.2% to +3.2%, but

did not have any effect on runtime4.

On a register-rich architecture, a major benefit of the eval/apply approach is that

it becomes possible to use registers for argument-passing in a call to an unknown

4 We did not re-run the entire testsuite with this change.

448 S. Marlow and S. Peyton Jones

functions, by using registers to pass arguments to the stgApply family of functions.

Doing this is pretty much impossible under push/enter.

We are unable to quantify this effect, however, because our current implementation

does not take advantage of this optimisation. The trouble is that on x86, our primary

implementation architecture, there are very few registers in the first place, and this

shortage is exacerbated by our use of C as a target language. The few registers that

we can use exclusively (by using C compiler extensions) already have important roles

in our execution model – the stack pointer and heap pointer, for example – so there

are no registers left for argument passing. This restriction would not apply to a C--

implementation, because C-- has complete control over the calling convention, and

hence is free to use general-purpose registers for argument passing.

In short, on a register-rich architecture we believe that eval/apply would

outperform push/enter by a significantly greater margin than on x86. It would

be interesting further work to quantify this margin.

9 Related work

Two of the most popular and influential abstract machines for lazy languages, the

G-machine (Johnsson, 1984) and the Three Instruction Machine (TIM) (Fairbairn &

Wray, 1987), both use push/enter. As a result, many compilers for lazy languages,

including GHC and hbc, use push/enter.

However Faxén’s OCP compiler for the lazy language Plain uses eval/apply

(Faxén, 1997). Rather than have generic stgApplyXX application procedures, OCP

creates specialised function entry points. For each function f of arity n, and for

each i < n, j <= n − i, OCP makes an entry point f_ij that expects to find i

arguments in a PAP object, and j extra arguments passed in registers. That looks

like an awful lot of entry points, but a global flow analysis allows OCP to prune

many entry points that cannot be used. The possibility of such specialisation is

an additional benefit of eval/apply (Boquist (1999) describes an extreme version).

Eager Haskell, an unusual implementation of Haskell based on eager evaluation,

also uses eval/apply (Maessen, 2002).

Caml, a call-by-value language, uses push/enter for the interpreter (Leroy, 1990),

but eval/apply for the compiler, largely for the reasons outlined in Section 7.

10 Conclusions

Our main conclusion is easy to state: for a high-performance, compiled

implementation of a higher order language, use eval/apply! There is not much

to choose between the two models on performance grounds, and eval/apply makes

it noticeably easier to manage the complexity of a compiler and runtime system

for a higher order language, as Section 7 explained. We are confident of this result

for a non-strict language, and we speculate that the benefit is likely to be more

pronounced for a strict one. Our measurements were based on a stack-based calling

convention, but we expect that using registers for argument passing would result in

greater gains for eval/apply, because the majority of unknown calls are to evaluated

functions with the correct arity.

Push/Enter vs. Eval/Apply for Higher-order Languages 449

Many of the complexities of push/enter are caused by efficiency hacks. For an

interpreter, where performance is not such an issue, these hacks are not important,

and push/enter may well be a more elegant solution.

Acknowledgements

Many thanks to Robert Ennals, Karl-Filip Faxén, Xavier Leroy, Jan-Willem

Maessen, Greg Morrisett, Alan Mycroft, Norman Ramsey, and Keith Wansbrough

for giving the paper a careful read.

References

Appel, A. W. (1992) Compiling with continuations. Cambridge: Cambridge University Press.

Boquist, Urban. (1999) Code optimisation techniques for lazy functional languages. PhD thesis,

Chalmers University of Technology, Sweden.

Douence, Rémi & Fradet, Pascal (1998) A systematic study of functional language

implementations. Acm Transactions on Programming Languages and Systems, 20(2), 344–

387.

Fairbairn, Jon & Wray, Stuart (1987) TIM – a simple lazy abstract machine to execute

supercombinators. Pages 34–45 of: Kahn, G (ed), Proc IFIP Conference on Functional

Programming Languages and Computer Architecture, Portland. Springer Verlag LNCS 274.

Faxén, Karl-Filip (1997) Analysing, transforming and compiling lazy functional programs. PhD

thesis, Department of Teleinformatics, Royal Institute of Technology.

Johnsson, Thomas (1984) Efficient compilation of lazy evaluation. Proc. SIGPLAN Symposium

on Compiler Construction, Montreal. ACM.

Jones, R. (1992) Tail recursion without space leaks. Journal of Functional Programming, 2(1),

73–80.

Launchbury, J. (1993) A natural semantics for lazy evaluation. Pages 144–154 of: 20th ACM

Symposium on Principles of Programming Languages (POPL’93). ACM.

Leroy, X. (1990) The Zinc experiment: an economical implementation of the ML language.

Tr 117, inria-rocquencourt. INRIA.

Maessen, Jan-Willem (2002) Hybrid eager and lazy evaluation for efficient compilation of

haskell. PhD thesis, Massachusetts Institute of Technology.

Partain, W. D. (1992) The nofib benchmark suite of Haskell programs. Pages 195–202

of: Launchbury, J. and Sansom, P. M. (eds.), Functional Programming, Glasgow 1992.

Workshops in Computing. Springer Verlag.

Peyton Jones, Simon, Ramsey, Norman & Reig, Fermin (1999) C--: a portable assembly

language that supports garbage collection. Pages 1–28 of: Nadathur, G (ed.), International

Conference on Principles and Practice of Declarative Programming. Lecture Notes in

Computer Science, no. 1702. Berlin: Springer.

Peyton Jones, Simon L. (1992) Implementing lazy functional languages on stock hardware:

The spineless tagless G-machine. Journal of Functional Programming, 2(2), 127–202.

Peyton Jones, S. L. (1992) Implementing lazy functional languages on stock hardware: The

spineless tagless G-machine. Journal of Functional Programming, 2(2), 127–202.

Peyton Jones, S. L. & Launchbury, J. (1991) Unboxed values as first class citizens. Pages 636–

666 of: Hughes, R. J. M. (ed.), ACM Conference on Functional Programming and Computer

Architecture (FPCA’91). Lecture Notes in Computer Science, vol. 523. Boston: Springer

Verlag.

Seward, Julian. (n.d.) Valgrind. http://valgrind.kde.org.

