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CS 150-GT S23 PRINT your name =⇒

Quiz 0
Wed, 18 Jan 2023

1. What is your preferred name for in-class use?

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Michael, Professor Jahn, Prof Jahn, Prof, and Dr. Jahn, are all ok ♠♥♣♦

2. Interests (academic and non-):

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Many mathematical interests. Photography. ♠♥♣♦

3. Star Trek or Star Wars (circle one)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Class: Star Trek: 3, Star Wars: 22
Professor: Star Trek
Star Trek WINS !!! ♠♥♣♦

4. What is the best day(s) for Office Hours?

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All ok for me. ♠♥♣♦

5. Math background: If a graph G has 10 vertices, what is the max number of triangles in G?

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(10
3
)

= 120 ♠♥♣♦

6. Math background: What is the difference between a basis and a spanning set?

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Linear algebra) A basis is a linearly independent spanning set. Most spanning sets are not linearly
indep. ♠♥♣♦

7. Math background: What is your favorite equivalence relation in CS?

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1



CS 150-GT S23 Quiz 0 Spring 2023

It’s a toss up: Graph isomorphism or Turing equivalence of sets of integers
(both in the context of complexity theory, so somewhat theoretical-mathy computer science).

♠♥♣♦

8. Math background: If a non-technical person asks “what is a proof”, how would you answer?

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A mystical magical invocation of Thoth, meant only for the elect.
A logically airtight, logically complete, explanation (for why some mathematical claim is true)

♠♥♣♦

2



CS 150-GT S23 Graph Theory Spring 2023

Some standard named graphs

Path P5 Cycle C5 Complete K5

Star S6 = K1,5 Wheel W6 Complete bipartite K3,4

Circulant Circ8(3) Circulant Circ8(1, 3) Circulant Circ8(4)

Hypercube Q4 Petersen

For a list of more (and more “sophisticated”) examples, go to
https://en.wikipedia.org/wiki/Gallery_of_named_graphs.
And you can check the tkz-berge documentation.

1
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CS 150-GT S23 Graph Theory Spring 2023

Homework 1
Due: Fri, 27 Jan 2023

Key from text:
(−) = easier,
(+) = harder,
(!) = useful or
instructive,
(*) = uses optional
material

1. Problem 1.1.16. Determine whether the two graphs below are isomorphic.

Figure 1: Import screenshots Figure 2: Create images with tikz

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Put your solution here. Please make it be blue ,. You can also choose your delimeter: ♠ =“it is
what it is”, ♥ =“I love it”, ♣ =“it beat me up”, ♦ =“it’s a gem”. Note that they are not mutually
exclusive.

For this problem, the easiest way is to use tikz to autorender the complements. First draw a
complete graph in red, then draw the original on top of the K8 in white. This will leave only the
complement. We easily see the graphs are not isomorphic because their complements are not
(e.g. one is two 4-cycles, the other is a C8).

♠♥♣♦

2. Problem 1.1.22.(!) Determine which pairs of graphs below are iosomorphic, presenting the
proof by testing the smallest number of pairs.

3. Problem 1.1.23. In each class below, determine the smallest n such that there exist nonisomor-
phic n-vertex graphs having the same vertex degree sequence.

1



CS 150-GT S23 Homework 1 Spring 2023

(a) all graphs, (b) loopless graphs, (c) simple graphs

4. Problem 1.1.25. (!) Prove the Petersen graph has no cycle of length 7.

5. Problem 1.1.33. For n = 5, n = 7, and n = 9, decompose Kn into copies of Cn.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = 9 : Note that K9 decomposes into the four 9-cycles in several ways. Here is one different
from what the solution manual gives:

Circ9(1) ∪ Circ9(2) (0, 3, 7, 2, 6, 1, 4, 8, 5) ∪ (0, 4, 7, 1, 5, 2, 8, 3, 6)

Here’s another decompostition different from the solution manual.

Circ9(2) ∪ Circ9(4) (0, 3, 6, 7, 1, 4, 5, 2, 8, 0) ∪ (0, 1, 2, 3, 4, 7, 8, 5, 6)

Here’s yet another decompostition different from the solution manual.

Circ9(1) ∪ Circ9(4) (0, 3, 6, 8, 1, 4, 7, 5, 2, 0) ∪ (0, 7, 1, 3, 5, 8, 2, 4, 6, 0)

Note that all of these are symmetric about some axis. ♠♥♣♦

2



CS 150-GT S23 Homework 1 Spring 2023

6. Problem 1.1.35. (!) Prove that Kn decomposes into three pairwise-isomorphic subgraphs if and
only if n + 1 is not divisible by 3. (Hint: For the case where n is divisible by 3, split the vertices
into three sets of equal size.)

7. Problem 1.1.38. (!) Let G be a simple graph in which every vertex has degree 3. Prove that G
decomposes into claws if and only if G is bipartite.

3



CS 150-GT S23 PRINT your name =⇒

Quiz 1
Mon, 30 Jan 2023

1. Both of the following graphs decompose into a C7 and a P7. Are they isomorphic? Explain.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No, the first complement has a 4-cycle, the second does not. ♠♥♣♦

2. Prove or disprove: Any simple graph G that decomposes into claws (i.e., into copies of K1,3), is Circle which you are
doing. Then do it.bipartite.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Disprove with a counterexample (we need 3-regularity for the above to be true): This graph has
a 3-cycle, so is not bipartite.

♠♥♣♦

3. Give a simple graph G such that G � G, but G,G have the same degree sequence. Use as few
vertices as possible.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the HW you know |V| ≥ 5. Both graphs have degree sequence (1, 2, 2, 2, 3), are clearly
complements, and are nonisomorphic since one has a 3-cycle and the other does not.

♠♥♣♦

4. Let X = {1, 2, 3, 4, 5, 6, 7}. Suppose the vertices of G are the 3-element subsets of X, and that two
vertices are adjacent if they have empty intersection. Note that G is 4-regular, with |VG| = 35,
|EG| = 70. Does G have a 3-cycle? Explain.

1



CS 150-GT S23 Quiz 1 Spring 2023

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No, three subsets of size 3 from a 7-element set cannot be pairwise disjoint.

If you tried to build a labeling, it would require three vertices labeled with abc, def, xyz, where
{x, y, z} ⊂ {a, b, c, g}, and {x, y, z} ∩ {a, b, c} = ∅.

abc def xyz

♠♥♣♦

5. Prove or disprove: It is possible to decompose K8 into copies of C8.Circle which you are
doing. Then do it.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K2n will not decompose into cycles (of any size) because the degree of any vertex in K2n is odd,
but a decomposition into cycles would require even degree.

Alternately, you could notice that K8 has
(8
2
)

= 28 elements, which is not divisible by 8. ♠♥♣♦
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CS 150-GT S23 Graph Theory Spring 2023

Homework 2
Due: Fri, 3 Feb 2023

Key from text:
(−) = easier
(+) = harder
(!) = useful or

instructive
(*) = uses optional
material

1. Problem 1.2.17. (!) Let Gn be the graph whose vertices are the permutations of (1, . . . ,n), with
two permutations a1, . . . , an, and b1, . . . , bn, adjacent if they differ by interchanging a pair of
adjacent entries (G3 shown below). Prove that G is connected.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bubble sort, or insertion sort, or any sort that just uses adjacent swaps. ♠♥♣♦

231

213123

132

312 321

2. Problem 1.2.20. Let v be a cut-vertex of a simple graph G. Prove that G − v is connected.

3. Problem 1.2.27. Let Gn be the graph whose vertices are the permutations of (1, . . . ,n) with
two permutations (a1, . . . , an) and (b1, ..., bn) adjacent if they differ by switching two entries (G3
shown below). Prove that Gn is bipartite.

231

213123

132

312 321

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The easiest way is to know the mathematical fact: every permutation is either even or odd.
Then the bipartition is X = the set of even permutations, Y = the set of odd permutations. The
hard part would be to prove this fact about parity. Similarly, if you try to show there are no odd
cycles, the hard part is essentially to show that parity of permutation is well-defined. ♠♥♣♦

4. Problem 1.2.28. (!) In each graph below, find a bipartite subgraph with the maximum number Use the theory, not
brute force.of edges. Prove that this is the maximum, and determine whether this is the only bipartite

subgraph with this many edges.

5. Problem 1.2.29. (!) Let G be a connected simple graph not having P4 or C3 as an induced induced subgraph
defined on p.23subgraph. Prove that G is a biclique (complete bipartite graph).

1



CS 150-GT S23 Homework 2 Spring 2023

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, some examples. The graph has P4 as a subgraph, but it is not an induced

subgraph. The graph has both P4 and C3 as subgraphs, but neither is an induced

subgraph. Note that if a simple graph G has C3 as a subgraph, it is automatically an induced
subgraph. Note that if a simple graph G has Cn, n > 3, then this cycle has a “chord” (an edge
between to elements of the cycle) in G iff it is not induced.

Now, assume G is simple, connected, and has no induced P4 or C3. Then G can have no induced
Cn, for n ≥ 5, since that would give an induced P4. So any odd n-cycle, n ≥ 5, has a “chord”
connecting two elements of the cycle that splits the cycle into two cycles–one odd, one even.
Recursively, get no odd cycles. So we now know G is bipartite. Let the bipartition be X,Y.

To show G is complete, we argue the contrapositive. If G is not complete, fix x ∈ X, y ∈ Y that
are not adjacent. Since G is connected, there is an xy-path. Let P be a minimum length such
path. Clearly, it must have length ≥ 3, and if P is not induced, then it cannot be of minimum
length. So P is induced, and must contain an induced P4, so we are done. ♠♥♣♦

6. Problem 1.2.40. Let P and Q be paths of maximum length in a connected graph G. Prove that
P and Q have a common vertex.

Optional bonus question. Let P be the Petersen graph.The standard proof
of (c) uses
eigenvalues, but you
can do in an
“elementary”, but
slightly tedious,
way. Use the Kneser
labeling.

(a) Find a copy of C10 in the complement of P.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For the C10 to be in the complement of P, we must have labels that do intersect:

ab, ac, ad, ae, eb, ec, ed, db, dc, cb, ab ♠♥♣♦

(b) Is there a copy of P in the complement of P?

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To ensure that our new P is in the complement of the first, we must have labels that do
intersect. What worked for me was to label the outer cycle first, but using each element
only twice. Probably there is a lemma to explain that. Anyone?

2



CS 150-GT S23 Homework 2 Spring 2023

ab

ac

dc

de

be

=⇒ ab

ac

dc

de

be

ae

bc
ad

ce
bd

So, YES, there is a Petersen, call it P′, in the complement of P. Note that there are many
edges in the complement of P we did not use, e.g. abO— bcO. We are only trying to find a copy
of P in the complement of the first P, so we are not obligated to add abO— bcO to our graph.
The edge abO— bcO is in the complement of P ∪ P′. ♠♥♣♦

(c) Are there two edge-disjoint copies of P in the complement of P?
N.B. Just counting edges tells us there are at most 2 such edge-disjoint copies of P.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Draw the complement of P ∪ P′ in red and tuftsblue to complete the decomposition

K10 = P ∪ P′ ∪ Circ10(1, 5),

not K10 = P ∪ P′ ∪ P′′. (Of course, once you see the red 10-cycle you already know the
answer to (c) is NO, assuming you know that P is not Hamiltonian.)

ab

ac

dc

de

be

ae

bc
ad

ce
bd

=⇒ ab

bc

dcce

be

ae

ac

ad de

bd

� ab

bc

beae

de

bd

dc

ce ac

ad

This is not a complete, general proof (why?), but we are well on our way. ♠♥♣♦

3



CS 150-GT S23 Graph Theory Spring 2023

Homework 3
Due: Fri, 10 Feb 2023

1. Problem 1.3.8. (−) Which of the following are graphic sequences? Provide a construction item
or a proof of impossibility for each.

(a) (5,5,4,3,2,2,2,1),
(b) (5,5,4,4,2,2,1,1),

(c) (5,5,5,3,2,2,1, 1),
(d) (5,5,5,4,2,1,1,1).

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

You can use the Havel-Hakimi algorithm to actually build the graph, if the sequence is indeed
graphic. But nobody showed this on their HW, so I will ask you to redo part (a) on HW 5, and
to show the steps for building the graph.

Hence, this problem won’t be on Q3. ♠

2. Problem 1.3.12. (!) Prove that an even graph has no cut-edge. For each k ≥ 1, construct a
(2k + 1)-regular simple graph having a cut-edge.
The solution manual gives 3 proofs: (contradiction), (construction/extremality), (prior results), and 3 different constructions.
See if you can generate more than one of these. But one is sufficient!

3. Problem 1.3.17. (!) Let G be a graph with at least two vertices. Prove or disprove:

(a) Deleting a vertex of degree ∆(G) cannot increase the average degree.

(b) Deleting a vertex of degree δ(G) cannot reduce the average degree.

4. Problem 1.3.20. (!) Count the cycles of length n in Kn, and the cycles of length 2n in Kn,n.
Easy to get wrong if you are not careful.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Fix an arbitrary vertex in the first position of the cycle. Then every cycle can be gotten by
(n − 1) choices for the remaining vertices. But every cycle is now counted twice since the
reverse order gives the same cycle, so the answer = (n − 1)!/2 .

(b) As above, fix an arbitrary vertex v in the first position of the cycle. Then we get every cycle
with the following choices, assuming v is in the red half of the bipartition:

(n)(n − 1)(n − 1)(n − 2)(n − 2) · · · (2)(1)(1)

As above, each cycle is counted twice, so the answer = n!(n − 1)!/2

1



CS 150-GT S23 Homework 3 Spring 2023

♠

5. Problem 1.3.36. Let G be a 4-vertex graph whose list of subgraphs obtained by deleting one
vertex appears below. Determine G.

6. Problem 1.3.37. Let H be a graph formed by deleting a vertex from a loopless regular graph G
with n(G) ≥ 3. Describe (and justify) a method for obtaining G from H.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that this is explicitly for non-simple graphs. Suppose the reconstruction deck for regular
loopless G is

Then |E = 4 · 4/(4 − 2) = 8, so 4d = 2 · 8, d = 4, so G is

♠

Bonus problems:

7. Problem 1.3.25. (!) (promoted/demoted to bonus question) Prove that every cycle of length 2r
in a hypercube is contained in a subcube of dimension at most r. Can a cycle of length 2r be
contained in a subcube of dimension less than r?

8. Problem 1.3.26. (!) Count the 6-cycles in Q3. Prove that every 6-cycle in Qk lies in exactly one
3-dimensional subcube. Use this to count the 6-cycles in Qk for k ≥ 3.

9. Problem 1.2.36. (+) Alternative characterization of Eulerian graphs.

(a) Prove that if G is Eulerian and G′ = G − uv, then G′ has an odd number of u,u-trails that
visit v only at the end. Prove also that the number of the trails in this list that are not paths
is even. (Toida [1973])

(b) Let u be a vertex of odd degree in a graph. For each edge e incident to v, let c(e) be the
number of cycles containing e. Use

∑
e c(e) to prove that c(e) is even for some e incident to

v. (McKee [1984])

(c) Use part (a) and part (b) to conclude that a nontrivial connected graph is Eulerian if and
only if every edge belongs to an odd number of cycles.

2
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10. Problem 1.3.16. (+) For k ≥ 2 and g ≥ 2, prove that there exists a k-regular graph with girth g.
(Hint: To construct such a graph inductively, make use of a (k − 1)-regular graph H with girth
g and a graph with girth dg/2e that is n(H)-regular. (Comment: Such a graph with minimum
order is a (k, g)-cage.) (Erdös-Sachs [1963])
See https://en.wikipedia.org/wiki/Cage_(graph_theory).

3
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CS 150-GT S23 PRINT your name =⇒

Quiz 2
Wed, 8 Feb 2023

Hint: There are two to “prove” and two to “disprove”.

1. Prove or disprove (circle one, then do it.): Let G be simple. If G is not connected, then G must be
connected.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose G is not connected, with components G1, . . . , Gk. Then every vertex in Gi is adjacent

in G to every vertex in G j, if i , j. So every pair of vertices is connected by a path of length at
most 2. ♦

2. Prove or disprove (circle one, then do it.): Two maximal paths P, Q in a connected simple graph
G must share a vertex.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Counterexample: the paths (u, v,w) and (a, b, c) are both maximal, but not of maximum length.

a b c

u v w

♦

3. Prove or disprove (circle one, then do it.): Let Gn be the graph whose vertices are the permutations
of {1, . . . ,n}, with two vertices a = (a1, . . . , an), b = (b1, . . . , bn) adjacent if b can be gotten from a
by swapping a1 with some a j, j > 1. Then G connected.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G is connected since any number j > 1 can be put in the jth place with at most 2 swaps. Hence,
any vertex is connected to (1, 2, . . . ,n) by a path of length < 2n. ♦

4. Prove or disprove (circle one, then do it.): Suppose G is connected bipartite with bipartition A, X.
Let a ∈ A, x ∈ X such that a, x are not adjacent, but they are connected via the ax-path P. Then P
contains an induced P4.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Counterexample: the red path (a, y, c, z, b, x) does not contain an induced P4.

a b c

x y z

♦

1
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Homework 4
Due: Fri, 17 Feb 2023

• Take a look, but do not turn in:
1.3.38 Let G be a graph with at least 3 vertices. Prove that G is connected if and only if at
least two of the subgraphs obtained by deleting one vertex of G are connected. (Hint: Use
Proposition 1.2.29.)

This problem is potentially confusing: give an incorrect interpretation that could easily be made under
exam stress. Then note: (⇒) is easy using the hint, and (⇐) is not hard, but has a subtlety (a special
case easy to miss).

1. Problem 1.3.40. (!) Let G be an n-vertex simple graph, where n ≥ 2. Determine the maximum
possible number of edges in G under each of the following conditions.

(a) G has an independent set of size a.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly, we must have
(n

2
)
−

(a
2
)

edges. Let G = Kn and let H � Ka be a subgraph of G.
Let M be the subgraph of G with VM = VG, EM = EG − EH. Then VH is an indep set of
size a in M, and M has the desired size. ♠

(b) G has exactly k components.
The issue here is whether you should have few large Kis or many smaller Kis.

(c) skip G is disconnected.

2. Problem 1.3.46. Prove or disprove: Whenever the algorithm of Theorem 1.3.19 is applied to a
bipartite graph, it finds the bipartite subgraph with the most edges (the full graph).

We did Theorem 1.3.19 in class, but there was some confusion about why/how you could switch a vertex v
from one side of the bipartition to the other in order to increase deg(v). The algorithm does this operation
until it achieves e(H) ≥ e(G)/2 (where H is the bipartite subgraph we are building).
At any rate, make sure you understand this algorithm (future-quiz threat ,).

3. In class I gave the characterization of trees: Let T be a graph with n vertices. Then the following
statements are equivalent.

1. T is a tree.

2. T contains no cycles and has n − 1 edges.

3. T is connected and has n − 1 edges.

4. T is connected, and every edge is a cut-edge.

1
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5. Any two vertices of T are connected by exactly one path.

6. T contains no cycles, and for any new edge e, the graph T + e has exactly one cycle.

Prove (5)⇒ (6).

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T contains no cycles since any two vertices on a cycle have two different paths between them,
consisting of the opposite routes around the cycle.

Furthermore, the addition of any new edge e to T will create a cycle, since the endpoints of e,
say u and v, are already connected by a path in T.

To show that this cycle is unique, suppose two cycles were created. They both would contain
edge e, and the long way around each of these cycles would then be two different uv-paths in
T, contradicting the assumption. ♠

4. Problem 2.1.4. (−) Prove or disprove: Every graph with fewer edges than vertices has a
component that is a tree.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If |EG| < |VG| then G has a component H with |EH| < |VH|. |EH| = n − 1 we know H is a tree and
we are done.

Now, for a contradiction, assume |EH| = k < n − 1. Then add (n − 1) − k new edges to H to get
H′. Then |EH′ | = n − 1 (and H′ is still connected), so H′ is a tree, and each edge is a cut edge. So
when we remove the new edges to get back to H we have a disconnected graph, contradiction.
So H has n − 1 edges, and must be a tree. ♠

5. Problem 2.1.18. (!) Prove that every tree with maximum degree ∆ > 1 has at least ∆ vertices of
degree 1. Show that this is best possible by constructing an n-vertex tree with exactly ∆ leaves,
for each choice of n, ∆, with n > ∆ ≥ 2.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following has an error. Can you find it?

Let deg(v) = ∆. Then for each u ∈ N(v) there is a maximal subtree Tu not containing v, and these
are pairwise disjoint. Inductively, each contains at least one leaf, and any leaf of Tu is a leaf of
T, so T has at least ∆ leaves. ♠

Bonus problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. 1.3.52. Prove that every n-vertex triangle-free simple graph with the maximum number of edges
is isomorphic to Kbn/2c,dn/2e. (Hint: Strengthen the proof of Theorem 1.3.23.)

We talked about 1.3.23 in class, so you would need to understand that proof in order to follow the hint.

2
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7. Code up the algorithm for Prüfer encoding and decoding. You can use whatever data structure
you want to represent trees: edge list, adjacency matrix, . . .

3
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Quiz 3
Wed, 15 Feb 2023

1. Let G be gotten by adding a new vertex v to Kn, and making v be adjacent to exactly one vertex
u ∈ Kn (so that deg(v) = 1). Count the paths of maximal length in G.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly, a maximal path in G must go through u. Every cycle in Kn gives two maximal paths (in
Kn) through ending in u, and each can be extended in a unique way to a maximal path in G that
includes v. So the number is (n − 1)! . ♥

2. Suppose that G is a regular loopless graph with the following reconstruction deck. Find G.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|E| = 5 · 4/(4 − 2) = 10, so 4d = 2|E|, d = 5. So G is

� �

Note: Almost everyone got this correct, but showed no work. You should have computed the
degree first. Reconstructing the graph is trivial once you have that. ♥

1
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Homework 5
Due: Fri, 24 Feb 2023

1. Problem 1.3.8. Redo part (a) of this one from HW 3, but generate the graph using the interme-
diate steps from the Havel-Hakimi algorithm. Of course, show your steps.

2. Problem 2.1.49. Let G be a simple graph. Prove that rad(G) ≥ 3⇒ rad(G) ≤ 2.

3. Problem 2.2.1. (–) Determine which trees have Prüfer codes that

(a) contain only one value,
(b) contain exactly two values, or
(c) have distinct values in all positions.

4. Problem 2.2.24. Of the nn−2 trees graphs with vertex set {0, ..,n − 1} that have n − 1 edges, how Correction as
suggested by West
in the Soln. Manual.many are gracefully labeled by their vertex names?

5. Problem 2.3.29. (–) The game of Scrabble has 100 tiles as listed below. This does not agree with
English; ”S” is less frequent here, for example, to improve the game. Pretend that these are the
relative frequencies in English, and compute a prefix-free code of minimum expected length
for transmitting messages. Give the answer by listing the relative frequency for each length of
codeword. Compute the expected length of the code (per text character). (Comment: ASCII
coding uses five bits per letter; this code will beat that. Of course, ASCII suffers the handicap
of including codes for punctuation.)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ∅

9 2 2 4 12 2 3 2 9 1 1 4 2 6 8 2 1 6 4 6 4 2 2 1 2 1 2

Bonus Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Problem 2.2.23. (!) Prove that if the Graceful Tree Conjecture is true and T is a tree with m
edges, then K2m decomposes into 2m − 1 copies of T. (Hint: Apply the cyclically invariant
decomposition of K2m−1 for trees with m − 1 edges from the proof of Theorem 2.2.16.)
Note: We did not do Theorem 2.2.16 in class, so you have to read and understand that one first.

7. Problem 2.3.30. Consider n messages occurring with probabilities p1, . . . , pn, such that each pi
is a power of 1/2 (each pi ≥ 0 and

∑
pi = 1).

(a) Prove that the two least likely messages have equal probability.
(b) Prove that the expected message length of the Huffman code for this distribution is
−

∑
pi lg pi.

1
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Practice Quiz on HW 4/5
Thu, 23 Feb 2023

From HW 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. A tree is defined as a connected acyclic graph. Prove that a tree with n vertices has exactly n− 1
edges. State explicitly any lemma you need to use (but you don’t need to prove it).

I will not typically ask you to simply reproduce a proof we have done, but this one is pretty basic and important, so . . .

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof by induction (on n).

base case: n = 1, 2 easy.

induction step: Suppose T has n + 1 vertices.
Then by the lemma below, T has a leaf v.
Let T′ = T − v.
Since T′ is still connected (and acyclic), T′ is a tree.
Clearly, |V(T′)| = n, and since degT(v) = 1, we have |E(T′)| = |E(T)| − 1.
Inductively, |E(T′)| = n − 1, so |E(T)| = n, as desired.

Need: Lemma. Any tree with at least one edge has at least two leaves. ♣O

2. Let G be an n-vertex simple graph, where n ≥ 2, and fix positive integers a > k. Determine the
maximum possible number of edges in G if G has an independent set of size a and k components.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that [k] viewed as a graph is just k isolated vertices.

G = (Kn−k+1−a ∨ [a]) + [k − 1].

♣O

3. Prove or disprove: Suppose G is bipartite with bipartition A,B, and suppose b ∈ B. Let
A′ = A ∪ {b}, B′ = B − {b}, so this “incorrect” bipartition is off by only one vertex.

If we apply the algorithm of Theorem 1.3.19 to G with the initial bipartition A′,B′, then it finds
the bipartite subgraph with the most edges (the full graph).

4. Draw the tree with Prüfer sequence (1, 2, 3, 4, 5).

From HW 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
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5. Give a family of graphs Gn with rad(Gn) < diam(Gn), showing that the average eccentricity can
be arbitrarily close to the radius (the min eccentricity).

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C2n plus one new vertex adjacent to exactly on vertex of C2n.

Alternatively: Kn − e. ♣O

6. Give a family of graphs Gn with rad(Gn) < diam(Gn), showing that the average eccentricity can
be arbitrarily close to the diameter (the max eccentricity).

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The star graphs Sn. ♣O

7. Suppose we are given the symbol probabilities: p(a) = 0.2, p(b) = 0.05, p(c) = 0.1, p(d) = 0.1,
p(e) = 0.25, p( f ) = 0.15, p(g) = 0.15. If we build a Huffman code using the algorithm from class,
do we always get the same codeword lengths, even if we make different choices to break ties
(for equal minimal probabilities) at each step?

8. Prove or disprove: If G is a simple graph with rad(G) ≥ 4, then rad(G) ≤ 3.

2
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Exam 1 Hints

The exam is on Mon, 27 Feb 2023 in class. No notes or books, but I will supply any definitions you
ask for. When building the exam, I will be looking at

1. quizzes

2. homework

3. problems in the text marked with (–), i.e., the easy ones

problems from quizzes might show up on the exam without modification,
problems from the assigned hw will typically not (usually too hard without modification).

1
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Exam 1
Mon, 27 Feb 2023

Name on every leaf. Please print your name 3 times (once on each leaf).

Use the answer boxes.

Show your work.

All problems worth 10 points. All parts of a problem are of equal value.

Work exactly 10 of the problems.

On the two problems that you don’t work place a large visible star ?O. You can only assign
a ?O to an entire problem, not just a part. You must assign two ?O’s.

1. A difficult problem . . .

?O
2. An easy problem . . .

Good luck!

1. (a) Both of the following graphs decompose into a C7 and P7. Determine if they are
isomorphic. Explain.

6�

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Not isomorphic. One complement has a 3-cycle, the other doesn’t. ♥

(b) Determine if the graphs below are isomorphic. Explain.
Note: It’s not obvious since they have the same degree sequence, they both have 3-, 4-, 5-,
6, and (at least two) 7-cycles, and the complements don’t really seem to help here.

Hint: Consider the subgraphs induced by the vertices of a particular degree.

1
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?
�

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that the complements don’t make the answer obvious.

In fact, these graphs are NOT isomorphic. In both graphs there are 4 vertices of
degree 3. Consider the subgraph induced by these degree-3 vertices. In the first
graph this is a P4, while in the second it is P2 + P2. Alternatively, you could look at
the subgraphs induced by the degree-4 vertices: you get a 3-cycle and a P3.

♥

2. Prove: If G is simple, connected, r-regular, with n = |V| odd, then G has an Eulerian
circuit.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
deg(vi) = 2|E|∑
deg(vi) = rn

}
⇒ r even.

Hence, G is a connected even graph, so it has an Eulerian circuit. ♥

3. The graph below is 3-regular with 10 vertices. Is it the Petersen graph?
Hint: Kneser labeling. No need to show any work beyond the labeling if it succeeds. If it fails,
explain where/how it fails.

YES / NO (circle one)

12

34 35 45

1525 14 24 23 13

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2
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YES, it is Petersen since the labeling is possible. ♥

4. Prove: If G is simple and not connected, then G must be connected.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose G is not connected, with components G1, . . . , Gk. Then every vertex in Gi is

adjacent in G to every vertex in G j, if i , j. So every pair of vertices is connected by a
path of length at most 2. ♥

5. Let G =

(a) The number of odd cycles in G = 8 (just brute force it).

They come in vertically symmetric pairs. Draw ONE of each such pair. There are
more templates below than you need.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FWIW: This graph is isomorphic to the one from the HW:

The 8 odd cycles are those above and their reflections about the vertical. ♥

(b) The number of edges in the largest bipartite subgraph of G = 10 .

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All the odd cycles share the top central edge, so we only need to remove that one
edge. Hence, the largest bipartite subgraph of G has 10 edges.

♥

(c) Is is possible for the algorithm of Theorem 1.3.19* to give this largest subgraph if it *Start with
any partition
X0,X1 of
V(G).

If v ∈ Xi is
adjacent to
more vertices
in X1−i than
to vertices in
Xi ,

then move
v to X1−i

3
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starts on an “incorrect” bipartition? Explain.
Hint: Consider the next-to-last step of this process, i.e., the last bipartition before moving
a vertex to get the correct partition.

YES / NO (circle one)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No. It is easy to see that moving any one vertex from one side of the correct
partition to the other still gives a bipartite graph that has at least 5 edges, so the
algorithm would terminate at this next-to-last bipartition. ♥

6. (a) Determine if the degree sequence (5, 5, 5, 4, 2, 1, 1, 1) is graphic (and show a graph
if it is).

YES / NO (circle one)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55542111→ 4431011 = 4431110→ 320010 = 321000→ 10(−1)00 is NOT graphic.♥

(b) Prove: For a simple graph G, two vertices must have the same degree.
Hint: Keep in mind the possible degrees for the n vertices.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The possible degrees are {0, 1, . . . ,n − 1}. So the only degree sequence (of length n) has
all these degrees. But then deg(vn) = n − 1 and deg(v1) = 0 are not compatible. ♥

7. Suppose V(Kn) = {v1, . . . , vn} and let Un = {u1, . . . ,un} be new vertices. Define the graph
Gn = Kn + U+ the edges {uivi : 1 ≤ i ≤ n}. G7 is pictured:

(a) The number of maximal length paths of Gn =
n!
2

.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The maximal length paths in Kn and Gn are in bijection, so there are
n!
2

such paths.
N.B. In Kn a maximal path is a maximal length path. But in Gn there are maximal
paths of length k + 2, for all k = 1, . . . ,n. ♥

4
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(b) The number of maximal paths of minimal length in Gn =

(
n
2

)
.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

They are length 3, and there are
(
n
2

)
such paths. ♥

8. Suppose G is a regular loopless graph with the following reconstruction deck. Find G.

Draw your reconstruction using these nodes:

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly, |V| = 5. Each edge appears in n − 2 cards in the deck, so |E| = 5 · 6/(5 − 2) = 10.
Then by the Handshaking Lemma,

∑
deg(v) = 2 · 10.

But also,
∑

deg(v) = 5r, so 5r = 20, and hence, r = 4 .

Then G can be reconstructed from any card in the deck by adding edges to the missing
vertex to ensure 4-regularity. ♥

9. Let T be a tree with n vertices, with average degree a. Solve for n in terms of a.

n =
2

2 − a

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a =

∑
v deg v

n
=

2|E|
n

=
2(n − 1)

n
. Solve for n: n =

2
2 − a

. ♥

5
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10. (a) Among all labeled graphs on n vertices, the fraction that are trees =
nn−2

2(n
2)

.⇐ No work
required.
Just give
the formula.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of labeled trees
number of labeled graphs

=
nn−2

2(n
2)

♥

(b) The Prüfer sequence for the full binary tree shown is 〈2, 2, 1, 3, 3〉 .

1

2 3

4 5 6 7

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

remove 4, write down 2
remove 5, write down 2
remove 2, write down 1
remove 1, write down 3
remove 6, write down 3 ♥

(c) Draw the tree for the Prüfer sequence 〈1, 2, 2, 3, 3〉 as a subgraph of the full binary tree
shown.

1

4 2

5 3

6 7

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L = 1234567
P = 12233
add edge 14, remove 4 from L, remove 1 from P

L = 123567
P = 2233
add edge 21

6
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L = 23567
P = 233
add edge 25

L = 2367
P = 33
add edge 32

L = 367
P = 3
add edge 36

L = 37
P =
add edge 37 ♥

11. Recall: In a connected graph G,

◦ d(u, v) = the minimum length of a uv-path,
◦ ε(v) = maxu{d(v,u)},
◦ diam(G) = maxv{ε(v)}
◦ rad(G) = minv{ε(v)}
◦ center(G) = G[{v : ε(v) = rad(G)}] = subgraph induced by vertices with min ε(v).

Note: Let V(P2n) = {v1, . . . , v2n}, so that |V| = 2n, |V| , n.

(a) diam(P2n) = 2n − 1 For work,
just draw a
picture.

(b) rad(P2n) = n

(c) center(P2n) is induced by
{

vn, vn+1

}
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

center(P2n) � P2, with vertices vn, vn+1 ♥

12. Suppose symbols {a, b, c, d} have probabilities p(a) = p(b) = 1/8, p(c) = 1/4, p(d) = 1/2.

(a) Draw the Huffman tree as a subtree of the binary tree below.

7
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d
c

a b

0 1

0 1

0 1

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

merge a and b. merge (a, b) and c. merge ((a, b), c) and d.

♥

(b) The expected length (in bits) of a message with 100 symbols = 175 .

Note: If we used a full binary tree rather than Huffman, this message would be exactly 200
bits long.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

expected codeword length = 3 · 1
8 + 3 · 1

8 + 2 · 1
4 + 1 · 1

2 = 1.75, so expected message
length = 175. ♥

8
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Midsem Student Reviews
Wed, 1 Mar 2023

1. Is there something the instructor should KEEP about the course to support your learning
this semester? Explain briefly.

2. Is there something the instructor should QUIT doing in the course to better support
your learning this semester? Explain briefly.

Student responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

maybe one hw problem not from the textbook, . . . an easier supplemental problem to
get at the basics
Perhaps. You can always take a look at a couple of the “easy” problems in the text,
those marked with (–), for quiz / exam prep, etc. And come to OH for discussion of the
basics.

quizzes don’t help understand . . . either too close to hw or too different
Hopefully it gets cleared up when you see the solutions(?)

inconsistent notation VG vs V(G)
“In the wild” you will see many variations, so my idea is to use these mildly different
notations often enough that you become indifferent to them.

lecture gets slowed down by entertaining too many questions
Yes, but a difficult call. Different students will prefer different approaches. If I can
detect a consensus I will try to follow that.

too long on a theorem if it isn’t essential

don’t just say ”trivial” or ”obvious”
Acknowledged, but a difficult call, i.e., it’s difficult to know what the audience needs.
Absolutely no problem if you just ask for clarification if it’s not really “obvious” (and
you won’t be the only one).

sometimes proofs in lecture are incomplete
Just for the sake of saving time. Please ask after class, or in OH, for more discus-
sion/details if you want.

stop using maximal length, use maximum length
Same as “notation” comment above. You WILL see both, and you need to know when
“maximal” and “maximum” are the same or different. (For “length” they are the same
becaue R is well-ordered.)

1
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3. Is there something the instructor could START doing in the course to better support
your learning this semester? Explain briefly.

Student responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

collaborative, group work
Nice idea, but not sure if we can implement it here. We can discuss in class if you bring
it up.

more counterexamples, explore how theorems break down (when hypotheses are re-
laxed)
Great idea. Ideally you should do this with every theorem, in order to get full under-
standing. For us, it’s always just a question of time. . .

review more proof techniques
Mostly the standard proof techniques you would learn in cs61. The rest are typically
bespoke ideas particular to graph theory, or a particular problem in graph theory. All
we can do is learn them as they come up.

sometimes students raise their hands or want to participate and aren’t noticed
♥ ♥ ♥

This is the number one question I want to respond to. Please don’t let this happen!
Just voice out, or if you see someone is not getting noticed, voice out on their behalf.
Lecture is informal and you are encouraged to interupt and participate.

♥ ♥ ♥

either more lecture content (answer fewer questions), or easier hw

slides or notes from lecture
Maybe Adam can take photos of the boards and post?

one easy question at start of quizzes
Ok, good idea ,

color code boardwork, organize with a clear direction for the day’s lecture

give intuition for theorems not proved
Ok. also, just ask in class, or in OH.

other resources (texts)?
Other texts I have taught this class from:

(a) Graph Theory and Its Applications 3e, by Gross, Yellen, Anderson (the 2e is even
better in some ways)

(b) Introduction to Graph Theory 5e, by Wilson

pictures of the board from class
Maybe Adam can take photos and post?

2
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4. Do you have any other comments, concerns, or anything else to add?

Student responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . the potential of required attendance at Friday OH, but I have a class . . .
This comment was in jest—I meant you really should come to OH, and would like
to require it. I don’t have the right to demand any specific time of you outside of
scheduled class (nor do any of your other professors).

text not beginner friendly
Yes. I was following the previous two faculty here who have taught this class. I might
choose Gross & Yellen, or Wilson, if I had to choose again.

break quizzes into an easier in-class part, then harder collaborative take-home
Interesting idea. Not sure we can do this, but interesting . . .

5. Compared to other similar courses (e.g., 3-credit 150-level CS courses), is this course
easier, harder, or about the same? (Circle one) Explain briefly.

6. Compared to other similar courses (e.g., 3-credit 150-level CS courses), do you feel you
are learning more, less, or about the same? (Circle one) Explain briefly.

7. Please rate how each element of the class contributes to your learning

Low contribution moderate contribution strong contribution
homework
textbook
exams
lectures

3
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Homework 6
Due: Fri, 10 Mar 2023

1. Problem 5.1.31. (!) Prove that a graph G is m-colorable if and only if α(G�Km) ≥ n(G).
(Berge [1973, 379-80])

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(⇒) Fix an m-coloring c : VG → [m]. For a fixed color i, define Xi ⊆ V(G�Km) to be
Xi = {(v, i) : c(v) = i}. Note that Xi is an independent set, and that Xi,X j are disjoint if
i , j. Now define X = ∪iXi. Then X is an independent set, and |X| = n.

(⇐) Assume X is an independent set in G�Km, and |X| = n. Note that X cannot contain
two vertices (g, i), (g, j) that use the same element of G, so all elements of G get used
in some vertex of X. Define Gi = {g : (g, i) ∈ X}, for 1 ≤ i ≤ m, and note that Gi is an
independent set in G. Hence, the function c(g) = i, if g ∈ Gi, is an m-coloring of G. ♠

2. Problem 5.1.34. (!) For all k ∈ N, construct a tree Tk with maximum degree k and an
ordering σ of V(Tk) such that greedy coloring relative to the ordering σ uses k +1 colors.
(Hint: Use induction and construct the tree and ordering simultaneously. Comment:
This result shows that the performance ratio of greedy coloring to optimal coloring can
be as bad as (∆(G) + 1)/2). (Bean [1976])

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to force the color k + 1 on a node, it must have k neighbors using all the colors
1, . . . , k. For each color i, recursively define a tree-and-ordering Ti that requires the root
node to be colored i. T1 is just a single node labeled “1”, and (recursively) Tk+1 is:

T1
1

Tk+1

k+1

T1 T2 T3
· · · Tk

The ordering is given by the labels in the recursively defined trees, e.g.,

T4

T1 T2 T3

=

4

1 2

1

3

1 2

1

♠

1
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3. Problem 5.2.7. (!) Given an optimal coloring of a k-chromatic graph, prove that for
each color i there is a vertex with color i that is adjacent to vertices of the other k − 1
colors.

4. Problem 5.2.15. (!) Prove that a triangle-free graph with n vertices is colorable with
2
√

n colors. (Comment: Thus every k-chromatic triangle-free graph has at least k2/4
vertices.)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is the same solution as in the text’s answer book. I just tried to present it in a
way that might indicate what steps might have lead you to the theorem. It is easy to
understand the solution, but still feels like it would be hard to guess ahead of time that
the theorem might be true, so that then you could go attempt to prove it.

Recall: Every graph can be (∆G + 1)-colored. The idea below is to iteratively remove
nodes until ∆G′ + 1 ≤ k, where k = target number of colors.

At each iteration we will use 1 new color to color (∆G + 1) nodes, then remove them.

Let G0 = G. Then for i ≥ 0:
Let vi ∈ Gi s.t. deg(vi) = ∆i

def
= ∆Gi

Color vi with c0
Color all u ∈ NGi(vi) with ci
Define Gi+1 = Gi − ({vi} ∪NGi(vi))

After t-many iterations (at stage t− 1) we have used (1 + t)-many colors, and need only
∆t more to color the rest. (We don’t need ∆t + 1 because color c0 can be use on Gt.) So
the total number of colors we need is t + ∆t + 1. In order to minimize this quantity, we
stop when t ≥ ∆t. Let this critical t-value be t∗ = min{t : t ≥ ∆t}. Then 1 + 2t∗-many
colors will suffice.

Note: We might have ∆G � 2
√

n, so this theorem could give a very suboptimal bound.
But what if we don’t know ∆G? The point of this hw/theorem is to give a bound for χG
in terms of only n (when we don’t have any knowledge about ∆G).

The clever part is realizing you can express t∗ in terms of n.

At stage t∗−1, the number of uncolored nodes is |Gt∗ | = n−(1+∆0)−(1+∆1)− · · · −(1+∆t∗−1).
Since ∆0 ≥ · · · ≥ ∆t∗−1, we clearly have 0 ≤ |Gt∗ | ≤ n − t∗(1 + ∆t∗−1). But, by definition of
t∗ we have t∗ − 1 < ∆t∗−1. Substituting this gives 0 < n − t∗(1 + t∗ − 1) = n − (t∗)2. Hence,
t∗ <

⌈√
n
⌉
, so 1 + 2t∗ ≤ 2

⌈√
n
⌉
, and 2

√
n colors suffice. ♠

5. Problem 5.3.4. Notation: χ(G; k) = χG(k)

(a) Prove that χ(Cn; k) = (k − 1)n + (−1)n(k − 1).

2
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(b) For H = G∨K1, prove that χ(H; k) = k · χ(G; k − 1), i.e., χH(k) = k · χG(k − 1), or even
better, PH(k) = kPG(k − 1). From this and part (a), find the chromatic polynomial of
the wheel Cn ∨ K1.

6. Verify the graph G has chromatic polynomial χG(k) = k5
− 7k4 + 18k3

− 20k2 + 8k.

G =

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= −

=

(
−

)
−

(
−

)
=

(
k(k − 1)3(k − 2) − k(k − 1)2(k − 2)

)
−

(
((k − 1)4 + (k − 1)) − k(k − 1)2

)
then after a half-page of tedium,

= k5
− 7k4 + 18k3

− 20k2 + 8k .

Here’s maybe a nicer (tedium-free) way to get the factored version of χG(k).

= −

=
(

−

)
−

= (k − 2)

= (k − 2)
(

−

)
= (k − 2)

((
−

)
−

)
= (k − 2)

(
(k − 2)

)
= (k − 2)3(k − 1)k

♠

3
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Problem 5.3.12. (+) Coefficients of χ(G; k).

Skip this one, but recall that the leading term of χG(k) is kn, so the coefficient is 1, and
that the second term is −|EG| kn−1 (proved in your text). Compare these to part (a) below.
Also, there was a question in class about roots of χG(k). See this random paper: Alge-
braic properties of chromatic rootshttps://www.cs.tufts.edu/comp/150GT/documents/
Algebraic properties of chromatic roots.pdf for some info. I was struck by Theo-
rem 2: the location of chromatic roots in C is related to the theory of phase transitions. (!)

(a) Prove that the last nonzero term in the chromatic polynomial of G is the term whose
exponent is the number of components of G.

(b) Use part (a) to prove that if p(k) = kn
− akn−1 + ...± ckr and a >

(n−r+1
2

)
, then p is not a

chromatic polynomial. (For example, this immediately implies that the polynomial
in Exercise 5.3.3 is not a chromatic polynomial.)

Bonus question

7. Explain where the formula χCn
(k) = (k − 1)n + (−1)n(k − 1) comes from. (See Problem

5.3.4 above.)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First we should understand why this computation is not trivial. The labels refer to how
many colors are possible on that vertex. If we color them in sequence (like we would do
with a path), then there are two possibilities for the last vertex, depending on whether
its two neighbors are the same or different colors. The difficulty is counting how often
each of these happens.

k k − 1 k − 1 k − 1
k − 1 or k − 2

Look at some small concrete examples to get the pattern. The base case of the chromatic
recurrence for cycles is n = 3.

χC3
(k) = k(k − 1)(k − 2)

Then, for n = 4 we get

χC4
(k) = χP4

(k) − χC3
(k)

= k(k − 1)3
− k(k − 1)(k − 2)

4
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now factor out a k, but not (k − 1), to get an alternating power series:

= k
[
(k − 1)3

− (k − 1)((k − 1) − 1)
]

= k
[
(k − 1)3

− (k − 1)2 + (k − 1)
]

(1)

Now the tricky part: k = (k − 1) + 1. This will shift the power series and add this to the
original, yielding cancellations:

= ((k − 1) + 1)
[
(k − 1)3

− (k − 1)2 + (k − 1)
]

= (k − 1)4
− (k − 1)3 + (k − 1)2

+ (k − 1)3
− (k − 1)2 + (k − 1)1

= (k − 1)4 + (k − 1) (2)

At this point a wrong guess would be that the pattern is (k − 1)n + (k − 1). But since we
have an alternating sum we will do at least one more iteration (n = 5).

χC5
(k) = χP5

(k) − χC4
(k) (3)

Recursively substitute in (2),

= k(k − 1)4
−

[
(k − 1)4 + (k − 1)

]
= (k − 1)4(k − 1) − (k − 1)

= (k − 1)5
− (k − 1)

But maybe we get more insight into “why” this formula is coming up by substituting
(1) instead of (2) into (3),

= k(k − 1)4
− k

[
(k − 1)3

− (k − 1)2 + (k − 1)
]

= k
[
(k − 1)4

− (k − 1)3 + (k − 1)2
− (k − 1)

]
= ((k − 1) + 1)

[
(k − 1)4

− (k − 1)3 + (k − 1)2
− (k − 1)

]
= (k − 1)5

− (k − 1)4 + (k − 1)3
− (k − 1)2

= (k − 1)4
− (k − 1)3 + (k − 1)2

− (k − 1)

= (k − 1)5
− (k − 1)

Now we see better that the length of the alternating sum determines the ± for the last
term, and can make the proper conjecture that you still need to prove.

You will find 4 different proofs of this formula in this random paper: The Chromatic
Polynomial for Cycle Graphs, https://www.cs.tufts.edu/comp/150GT/documents/
The Chromatic Polynomial for Cycle Graphs.pdf. ♠

5
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Project
Proposal due: Wed, 15 Mar 2023

Project due: Fri, 28 Apr 2023
Presentations: Mon, 1 May 2023, 6-8pm

The project is intended to get you to do/learn something independently, beyond what we
have done in class. The project can be

INDIVIDUAL or TEAMS of 2.

First, you need to submit a

0. PROPOSAL: 1-sentence (or 1-paragraph) description of your project (email/txt)

The project will consist of

1. REPORT: (approx) 2-page paper on your topic (pdf)

Should include relevant definitions and examples, an explanation of the topic,
the mathematical problem/question it addresses, the mathematical history of the
problem/question, and connections with other mathematical topics (if any), and
of course, a discussion of your specific topic.

2. SLIDE PRESENTATION: 5 minutes per person in team (pdf, ppt, or key)

Remember:
EXAM 2 is
Wed, Apr 26.

Both your report and slides due Friday, 28 Apr 2023, but you can submit again on
Monday if you make updates over the weekend before presentations.

Presentations on Monday, 1 May 2023, 6:00-8:00pm. Please plan for that longer class
time. Please let me know if that timing is a problem for you. There will be pizza.

1
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Suggested topics

Pretty much any topic or algorithm of interest to you is ok, but it might be better to choose
a more specific topic rather than a broad one.

1. First, check out Quanta Magazine https://www.quantamagazine.org. All of their
articles are short and minimally technical, but always interesting. Do a search for
”graph theory”: https://www.quantamagazine.org/search?q[s]=graph%20theory
to see what’s been in the headlines for the past few years.

2. Second, do an initial exploration of a topic using Wikipedia. Their math articles are
often pretty good.

3. Do a search on arXiv (https://arxiv.org) to find research papers on your topic.

4. Don’t hesitate to talk to me if you want a suggestion, or want to discuss any topic.

5. Below is a dynamic list of random ideas. I will keep adding to it. Mostly, these are
buzzwords to help you get your search for a topic started.

• graph coloring

• spectral graph theory

Spielman is the real deal. This talk discusses how algebraic graph theory touches on
many topics in graph theory: https://www.youtube.com/watch?v=CDMQR422LGM

• random graphs

• something in computational geometry (Delaunay, art gallery, ?)

• reconstruction conjecture

• expander graphs

• hypergraphs

• network flows

• graph isomorphism problem

– https://cacm.acm.org/magazines/2020/11/248220-the-graph-isomorphism-problem/
abstract

– https://arxiv.org/abs/1512.03547

• the graph minor theorem (Robertson-Seymour theorem)

2
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Generally considered to be the most difficult result in all of graph theory. Lovász
(another superstar) gives an intro and survey: https://www.ams.org/journals/
bull/2006-43-01/S0273-0979-05-01088-8/S0273-0979-05-01088-8.pdf

Erik Demaine was only 20 when he became professor at MIT (the youngest every at
MIT): https://erikdemaine.org/papers/Decomposition_FOCS2005/paper.pdf

• graph drawing

Start the video at 7:00 minutes to see an implementation of Tutte’s theorem in graph
drawing: https://www.youtube.com/watch?v=CDMQR422LGM

Force-Directed Drawing Algorithms: https://cs.brown.edu/people/rtamassi/
gdhandbook/chapters/force-directed.pdf

Planar Straight-Line Drawings and Algorithms: https://cs.brown.edu/people/
rtamassi/gdhandbook/chapters/straightline.pdf, e.g.,

– W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms, pages 138–148, 1990.

– H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

• realizing an arbitrary group with autos of 3-regular graph

• tensor products of graphs and Shitov’s counterexample to Hedetniemi’s conjecture.

Project proposals submitted:

• graceful graphs
Claimed by MW. Another student could also do this topic, but we would just have
to make sure your specific choices don’t overlap too much.

Of course, take a look at the two papers I had already posted (especially Gallian):

https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6

graceful-labeling-algorithms-and-complexity.pdf

Here are a couple dissertations that should include good overviews, as well as
interesting stuff on more specific parts of the field:

https://dsc.duq.edu/cgi/viewcontent.cgi?article=1625&context=etd

https://scholarworks.wmich.edu/cgi/viewcontent.cgi?article=4310&context=

dissertations

https://www.researchgate.net/publication/340306660_The_Graceful_Chromatic_

Number_for_Some_Particular_Classes_of_Graphs

3
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• Ringel’s Conjecture
Claimed by AS

https://arxiv.org/pdf/2001.02665.pdf

https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/

• compiler register allocation (as a graph-coloring problem)
Claimed by JG

https://www.sciencedirect.com/science/article/pii/0096055181900485

https://dl.acm.org/doi/pdf/10.1145/74818.74843

• Application: graph theory in video games
Claimed by TB.

• Decompostitions
Claimed by VC.

https://kostochk.web.illinois.edu/docs/2016/joc13-jw.pdf

• Application: graph theory in neural networks
Claimed by GH/SZ.

• Edge colorings and mathematical origami
Claimed by JF.

https://arxiv.org/abs/1910.05667

• Art gallery theorems
Tentatively claimed by RR.

https://www.science.smith.edu/˜jorourke/books/ArtGalleryTheorems/art.html

• Four color problem
Tentatively claimed by RR.
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CS 150-GT S23 Graph Theory Spring 2023

Homework 7
Due: Fri, 17 Mar 2023

1. Problem 6.1.6. (–) Prove that a plane graph is 2-connected if and only if for every face,
the bounding walk is a cycle.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This one seemed pretty hard given that it was marked “easy” in the text. Here is the
half we worked on in OH. The idea was to prove the contrapositive, but avoid all the
special cases that we encountered in OH . . .

(⇒). Prove the contrapositive. Assume there is a face F with a boundary walk W =
(v0, e1, v1, . . . , ek, vk) that is not a cycle. Since W is not a cycle it must have at least one
vertex that is revisited in the walk (other than being the first and last vertex of the
walk). We want to show this is a cut-vertex.

Clearly, we can find a proper closed subwalk Y of W such that Y = (v, . . . , v), and no
vertex y is repeated along the subwalk Y (except for the two occurences of v as the first
and last vertex). Let X be the walk W − Y, with start and endpoint v.

If there are vertices x , v on X, y , v on Y, such that every xy-path in G goes through v,
then v is a cut-vertex in G, and we are done. So assume this fails. Let x = vi−1, e = ei−1,
e′ = ei+1, y = vi+1, i.e., W = (. . . , x, e, v, e′, y, . . . , v, . . .). and let P be an xy-path that does
not contain v. Clearly, P cannot be contained in W.

If e has F on both sides, then P would split F, contradiction. Similarly for e′.

So e, e′ can each have F on only one side. Now P gives a cycle Pvx whose interior is in
the complement of F (since P not contained in W). Hence, W cannot cross P to get back
to v.

By choice of Y, the part of W after y must revisit v before it gets back to x. This yv-walk
will contain a yv-path P′, which will give a cycle C = vP′ whose interior intersects F.
But this will split F since x is not on C, contradiction. �

Definition. A graph is outerplanar if it has an embedding with every vertex on the
boundary of the unbounded face.

2. Problem 6.1.7. (–) A maximal outerplanar graph is a simple outerplanar graph that
is not a spanning subgraph of a larger simple outerplanar graph. Let G be a maximal
outerplanar graph with at least three vertices. Prove that G is 2-connected.

1



CS 150-GT S23 Homework 7 Spring 2023

3. Problem 6.1.13. Find a planar embedding of the graph below. Note: You must explain
how you got your planar embedding. The text gives an answer without explanation. . . My
answer does not look like the text answer, but I give an explanation of how I got it.

d0 d1

d2

c0 c1

c2

b0 b1

b2

a0 a1

a2

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, note that the answer in the text solution manual is incorrect–it doesn’t even have
the correct number of edges. However, it is really just a graphical “typo” and is easy
to fix . . .

The graph is even, in fact 4-regular, so it is Eulerian and decomposes into cycles. In
fact, it decomposes into two (Hamiltonian) cycles, and is hence planar, i.e., draw the
vertices on a circle and put one cycle inside and one cycle outside the circle.

If we put these vertices on a circle (in the order of the red cycle) we get:

a0

a1

a2

b0b1

b2

c0

c1

d2

d0 d1

c2

�
a0

a1

a2

b0b1

b2

c0

c1

d2

d0 d1

c2

Note that the blue cycle can be partitioned into two halves as indicated by the blue/cyan
(i.e., “horizontal”/“vertical”) coloring above. It is easy to see that either half (blue or
cyan) can be drawn outside the red cycle without edge crossings, thus yielding a planar
graph. �

• Problem 6.1.21. (!) Prove that a set of edges in a connected plane graph G forms a
spanning tree of G if and only if the duals of the remaining edges form a spanning tree
of G∗. Don’t turn in, but take a look at this one. We didn’t talk about spanning trees in class,
but this shows a nice connection between duals and spanning trees.

2



CS 150-GT S23 Homework 7 Spring 2023

4. Problem 6.1.25. (!) Prove that every n-vertex plane graph isomorphic to its dual has
2n − 2 edges. For all n ≥ 4, construct a simple n-vertex plane graph isomorphic to its
dual.

Bonus problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Let G be connected planar. Find a condition on G that ensures G∗ is simple.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If G has a cut-edge, then G∗ will not be simple–it will have a loop.

If G has a edges u, v such that removal of only one leaves G connected, but removal of
both disconnects G.

So our condition is for G to be 3-connected. �

3



CS 150-GT S23 PRINT your name =⇒

Quiz 4
Wed, 15 Mar 2023

1. Let G = . Compute: χG(k) = k(k − 1)2(k − 2)2 . Hint: no need for chromatic

recurrence.

2. The largest number of colors the greedy algorithm would ever use on a complete binary

tree of height h is 4 . Note: “complete” and “height h” are both irrelevant.

3. Removing (horizontal) edge g in graph G below gives a 4-critical subgraph.

a

b

c

zx

gg

w

f h

y

d e

4. Do not compute χG or χH, but give a short proof that they are equal.

G H
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e

G

⇒

G − e

−

G/e

e′

H

⇒

H − e′

−

H/e′

χG(k) = χG−e(k) − χG/e(k)

= χH−e(k) − χH/e(k)

= χH(k) .

1



CS 150-GT S23 Graph Theory Spring 2023

Homework 8
Due: Fri, 31 Mar 2023

Not graded. Do not turn in.
(But there still might will be a quiz on Wed, Apr 5)

1. Problem 6.2.2. (−) Give three proofs that the Petersen graph is nonplanar.

(a) Using Kuratowski’s Theorem.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Find a subdivision of K3,3.

(b) Using Euler’s Formula and the fact that the Petersen graph has girth 5.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assume a planar embedding. Then each face has ≥ 5 edges on its boundary, so
2e ≥ 5 f . Substitue f ≤ 2

5e into n − e + f = 2 to get a contradiction.

(c) Using the planarity-testing algorithm of Demoucron-Malgrange-Pertuiset.

Skip this part, but you might be interested in taking a look in the text . . .

2. Problem 6.2.6. (!) Fáry’s Theorem. Let R be a region in the plane bounded by a simple
polygon with at most five sides (simple polygon means the edges are line segments
that do not cross). Prove there is a point x inside R that ”sees” all of R, meaning that the
segment from x to any point of R does not cross the boundary of R. Use this to prove
inductively that every simple planar graph has a straight-line embedding.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i) For the polygons with ≤ 5 sides, just do a case analysis. For 1 side there is one case,
for 4 sides there are two cases, and for 5 sides there are four cases.
ii) Then recursively build the desired embedding. Idea (1): can replace the given
embedding a G and triangulate it. Idea (2): as seen before, there is a vertex v ∈ G with
deg(v) ≤ 5. Recurse on this one by noting that the face of G − x containing x is a cycle,
then replacing x at the point found in part (i).

3. Problem 6.3.1. (−) State a polynomial-time algorithm that takes an arbitrary planar
graph as input and produces a proper 5-coloring of the graph.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1



CS 150-GT S23 Homework 8 Spring 2023

Basic idea: show that processing via Kempe-chains is polynomial.

4. Problem 6.3.3. (−) Use the Four Color Theorem to prove that every outerplanar graph
is 3- colorable.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let G be simple outerplanar, and v be a new vertex. Then G∨ v is simple planar, hence
4-colorable. But only 3 colors can be used on G, and the 4th color is only used on v.

5. Problem 6.3.5. Prove that every planar graph decomposes into two bipartite graphs.
(Hedetniemi [1969], Mabry [1995])
Hint: Use the 4-color Theorem.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Any pair of colors from a 4-coloring will give a bipartite graph.

2
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Homework 9
Due: Fri, 7 Apr 2023

1. Problem 7.1.1. (−) For each graph G below, compute χ′(G) and draw L(G).

2. Problem 7.1.3. (−) Determine the edge-chromatic number of Cn �K2.

3. Problem 7.1.5. (−) Prove that the Petersen graph is the complement of L(K5).

4. Problem 7.1.24. (−) Let G and H be nontrivial simple graphs. Use Vizing’s Theorem to
prove that χ′(H) = ∆(H) implies χ′(G�H) = ∆(G�H).

5. Problem 7.2.2. (−) Is the Grötzsch graph (Example 5.2.2 in the text, shown below)
Hamiltonian?

6. Problem 7.2.7. A mouse eats its way through a 3× 3× 3 cube of cheese by eating all the
1 × 1 × 1 subcubes. If it starts at a corner subcube and always moves on to an adjacent
subcube (sharing a face of area 1), can it do this and eat the center subcube last? Give
a method or prove impossible. (Ignore gravity.)

1



CS 150-GT S23 PRINT your name =⇒

Quiz 5
Wed, 5 Apr 2023

1. Let G be a simple planar bipartite graph on 6 vertices. What is the maximum number
of faces that a planar embedding of G can have? You must give a (simple) computa-
tion/explanation that verifies your answer (not brute force) below.

max f = 4 .

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By Euler’s formula n − e + f = 2, we get f = e − 4. To maximize this (and still have a
connected planar graph) we set e = 8 to get f = 4.

2. A maximal outerplanar graph has an embedding with every vertex on the boundary
of the unbounded face, and is not a spanning subgraph of a larger simple outerplanar
graph.
How many edges must be added to the graph below for it to be maximal outerplanar?
If your answer is > 0, add them to the picture below.

add 2 edges

3. Give a planar embedding of the graph below if possible. Otherwise, find a Kuratowski
subgraph on the template provided. (Maybe use different shapes for vertices of different
colors.)

a0

a1

a2

a3

b0

b1

b2

b3

a0

a1

a2

a3

b0

b1

b2

b3

a0a2

b3

a1

a3

b2 b0

b1

a0

b3

a2

a3

b2

a1

b0

b1

A subdivision of K3,3

4. Let Gn be built from Cn and n new vertices with each node of Cn adjacent to exactly one

1



CS 150-GT S23 Quiz 5 Spring 2023

of the new nodes, so |V(Gn)| = |E(Gn)| = 2n. One planar embedding of G7 is pictured
below. How many duals (distinct up to isomorphism) does (the abstract graph) Gn
have?

number of duals of Gn =
⌈n + 1

2

⌉
(arbitrary n)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The iso type of the dual depends only on how many spikes are on different sides of the
cycle. If there are k1 on one side, and k2 = n− k1 on the other, then we have k1 self-loops
on a, n multiple edges between a, b, and k2 loops on b.

a b· · · ... · · ·

k1 n k2

�
a b· · · ... · · ·

k2 n k1

Furthermore, k1 spikes on the inside and k2 on the outside gives the same dual as (i.e.,
is isomorphic to) k1 on the outside and k2 on the inside (where of course, k1 + k2 = n).

For example, n = 3 ⇒ the (in, out)-possibilities are (0, 3), (1, 2), (2, 1), (3, 0), but only 2
distinct duals (up to isomorphism). For n = 4 the (in, out)-possibilities are (0, 4), (1, 3),
(2, 2), (3, 1), (4, 0), and 3 distinct duals. In general,

the number of distinct duals =

{n+1
2 if n is odd

n
2 + 1 if n is even

=
⌈n + 1

2

⌉
.

2
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Homework 10
Due: Fri, 14 Apr 2023

1. Problem 7.2.8. (!) On a chessboard, a knight can move from one square to another that
differs by 1 in one coordinate and by 2 in the other coordinate, as shown below. Prove
that no 4 × n chessboard has a knight’s tour: a traversal by knight’s moves that visits
each square once and returns to the start. (Hint: Find an appropriate set of vertices in
the corresponding graph to violate the necessary condition.)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Some simple ideas that might lead you to the solution:

(a) Note that the graph is bipartite. Then you will want to remove nodes of only one
color (if possible), in order to minimize the number you need to remove.

(b) Remove nodes in the middle since they have higher degree than those on the edges.

2. Problem 7.2.30. Obtain Lemma 7.2.9 (sufficiency of Ore’s condition) from Theorem
7.2.13 (sufficiency of Chvátal’s condition). (Bondy [1978])

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dirac’s condition: for all u, deg(u) ≥ n/2 (1)
Ore’s condition: u, v not adjacent ⇒ deg(u) + deg(v) ≥ n (2)
Chvatal’s condition: i < n/2⇒ di > i or dn−i ≥ n − i (3)

Note: we trivially have, (1)⇒ (2), hence, Ore’s Theorem⇒ Dirac’s Theorem, i.e.,
“(2)⇒ Hamiltonian” ⇒ “(1)⇒ Hamiltonian”.

1
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We want to prove Ore’s Theorem “(2) ⇒ Hamiltonian” , by assuming Chvatal’s
Theorem “(3)⇒ Hamiltonian”. Clearly it is enough to show (2)⇒ (3).

3. Problem 7.2.31. (!) Prove or disprove: If G is a simple graph with at least three vertices,
and G has at least α(G) vertices of degree n(G) − 1, then G is Hamiltonian.

4. Problem 3.1.8. (!) Prove or disprove: Every tree has at most one perfect matching.

5. Problem 3.1.9. (!) Prove that every maximal matching in a graph G has at least α′(G)/2
edges.

2
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Homework 11
Due: Fri, 21 Apr 2023

1. Problem 3.1.11. Let C and C′ be cycles in a graph G. Prove that C∆C′ decomposes into
cycles.

2. Problem 3.1.28. (!) Exhibit a perfect matching in the graph below or give a short proof
that it has none. (Lovász-Plummer (1986, p7])

3. Problem 4.1.1. (−) Give a proof or a counterexample for each statement below.

(a) Every graph with connectivity 4 is 2-connected.

(b) Every 3-connected graph has connectivity 3.

(c) Every k-connected graph is k-edge-connected.

(d) Every k-edge-connected graph is k-connected.

Don’t turn in, but take a look at:

4. Problem 4.1.8. Determine κ(G), κ′(G), and δ(G) for each graph G drawn below.

1
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Quiz 6
Fri, 21 Apr 2023

1. Let P be the Petersen graph. The edge-chromatic number χ′(P�C8) = 5 .

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ′(P) = 4, but by HW 9.4, χ′(C8) = ∆(C8) = 2⇒ χ′(P�C8) = ∆(P) + ∆(C8) = 3 + 2 = 5.

2. Show that for every k ≥ 3, there is a tree T with a leaf node u that is adjacent to a vertex
v of degree k, and that T− {u, v} does have a (non-empty) perfect matching. Modify the
given pic.

u v
...

or
v

...

u

3. For maximal matching M, |M| ≥ α′(G)/2. Give an example to indicate there are arbi-
trarily large graphs witnessing this bound to be tight.

α′ = 6 |M| = 3

4. A new chess piece, a Knight-King can move one square in any direction, or move as a
knight. There is obviously a Knight-King tour on a 4 × 4 board. Explain which of the
following (if any) guarantee a Hamiltonian cycle. Hint: Indicate the degrees of each node
on the board.

5 8
8 12

(a) Dirac: NO: δ = 5 < n/2 = 8

(b) Ore: NO: corners are not adjacent, but 5 + 5 < 16

(c) Chvatal: YES: for all i < n/2 = 8, di > i
(5, 5, 5, 5, 8, 8, 8, . . .)

1
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Exam 2 Hints

The exam is on Wed, 26 Apr 2023 in class. No notes or books, but I will supply any
definitions you ask for.

When building the exam, I will be looking at

1. quizzes

2. homework

3. problems in the text marked with (–), i.e., the easy ones

3:30pm Tuesday, 25 April 2023
The exam is not finished, but I have problems on these topics:

Kempe chains
chromatic recurrence formula
Euler
Kuratowski’s theorem
compute edge-chromatic number
dual graph
matchings/Hall’s condition
connectivity of a graph
Hamiltonian cycle

1
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Exam 2
Wed, 26 Apr 2023

Name on every leaf. Please print your name 4 times (once on each leaf).

Use the answer boxes.

Show your work.

All problems of equal value. All parts of a problem are of equal value.

Work exactly 8 of the problems.

On the 4 problems that you don’t work place a large visible star ?O.

You can only assign a ?O to an entire problem, not just a part.

You must assign 4 ?O’s.

1. A difficult problem . . .

?O
2. An easy problem . . .

my correct solution

.

.

.

Good luck!

Typos fixed in class: #3, #7a, #9b, #11 (corrected in this version)

1
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1. The graph below is planar, so it does have a 4-coloring using only the colors {R,G,B,Y}.Kempe originally
believed he could
prove the 4-color
theorem, but
Heawood showed his
technique was only
strong enough for
the 5-color theorem.

Let HXY = the subgraph induced by the vertices colored X or Y, for X,Y ∈ {R,G,B,Y}.
Show which (if any) of the HXY can be used to color vertex u, thus giving a 4-coloring
of the graph.

u a

b
c

d
e x

y z

(a) RG: NO: nodes b, e are connected in HRG, so switching leaves 4 colors in NG(u)

(b) RB: NO: nodes b, d are connected in HRB

(c) RY: NO: nodes a, b are connected and b, c are connected in HRY

(d) BG: NO: nodes d, e are connected in HBG

(e) BY: NO: switching in either or both components of HBY leaves 4 colors on NG(u)

(f) GY: NO: switching in either or both components of HGY leaves 4 colors on NG(u)

2. Let G = Kn �C2n. Then χ′(G) = n + 1 .

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ′(C2n) = ∆(C2n) = 2 and ∆(Kn) = n − 1 ⇒ χ′(G) = n − 1 + 2 = n + 1. ,

2
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3. Fix simple connected graph G with chromatic polynomial χG(k). Build a new graph G′
by doing the following: for each edge e = uv ∈ E(G), add a new vertex we < V(G), and
two new edges uwe, vwe As usual, let n be the number of vertices, and m the number of
edges. So n′ = n + m and m′ = 3m. Compute χG′(k) in terms of n, m, and χG(k).

χG′(k) = (k − 2)m
·χG(k)

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adding a single “ear” to get (say) G1 gives

χG1
(k) = χG+uwe

(k) − χG(k).

= (k − 1)·χG(k) − χG(k)
= (k − 2)·χG(k)

Hence, adding all m-many of the ears gives

χG′(k) = (k − 2)m
·χG(k)

,

4. Let Qn= the hypercube of dimension n. Then χ′(Qn) = n .

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qn = P2 �Qn−1, χ′(P2) = 1 = ∆(P2), so χ′(Qn) = 1 + χ′(Qn−1) = n. ,

3
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5. The maximum number of faces for a planar subgraph of the Petersen graph P is 5

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For the subgraph we will have n − e + f = 2, so f = 2 + e − n. We want n small and e
large.

Note: It would really help to know that P is both vertex-transitive and edge-transitive.
Since all vertices “look the same” and all edges “look the same”, this reduces the
number of cases.

Removing vertices:

Note that if we remove one vertex from P, we get a nonplanar subgraph, so we must
remove at least two vertices from P.

If we remove two adjacent vertices we get a planar subgraph, so f = 2 + 10 − 8 = 4.

⇒

If we remove two nonadjacent vertices, we get f = 2 + 9 − 8 = 3.

If we remove no vertices, but only edges, then

Removing edges:

If we remove 1 edge, we get a nonplanar subgraph.

If we remove 2 edges, it is possible to get a planar subgraph. (These must be nonincident.)

This gives our answer: f = 2 + 13 − 10 = 5 .

⇒ ⇒ f = 5 ,

4
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6. Use Kuratowski’s theorem to prove:

G is outerplanar if and only if G contains no subdivision of K4 or K2,3.

Hint: Add a new vertex x < V(G) in the unbounded face of G. Let H = G ∨ x, i.e., add an edge
xv, for every v ∈ V(G).

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: H planar iff G outerplanar.

G outerplanar⇒ H planar⇒ H has no K5,K3,3 ⇒ G has no K4,K2,3

G not outerplanar⇒ H not planar⇒ H has either K5,K3,3 ⇒ G has either K4,K2,3 ,

7. The term “dual” is usually reserved for the case where the dual is its own inverse, i.e.,
the dual of the dual is the original object.

(a) Give an example of a planar G with 3 vertices for which G∗∗ 6� G.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

has the dual ,

(b) Hence, we get G∗∗ � G if G is connected . (No need to give a proof.)

5
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8. Let G be a k-regular X,Y-bigraph. Show that Hall’s condition is satisfied (hence, G has
a perfect matching). Hint: Compare the number of edges out of a set S ⊆ X to the number of
edges out of N(S).

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fix arbitrary S ⊂ X. Recall that G[S] = the subgraph induced by S. Then∣∣∣E(G[S])
∣∣∣︸    ︷︷    ︸

edges out of S

= k·
∣∣∣S∣∣∣ and

∣∣∣E(G[N(S)]
∣∣∣︸       ︷︷       ︸

edges out of N(S)

= k·
∣∣∣N(S)

∣∣∣.
Clearly, the first is ≤ the second, so k|S| ≤ k|N(S)|, hence |S| ≤ |N(S)| (which is Hall’s
condition). ,

9. κ(G) = the minimum size of a vertex set S such that G − S is disconnected or has only
one vertex.

(a) Show κ(G) ≤ δ(G).

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let deg(v) = δ(G). Then G − N(v) will have at least one more component than G,
comprised of v, so κ ≤ δ. (Note that (G − N(v)) − v , ∅ because each w ∈ N(v) has
δ-many neighbors.) ,

(b) Give a family of connected graphs to show that the difference δ−κ can be arbitrarily
large.

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider the disjoint union Kn + Kn, for n ≥ 3. Then add one new edge between a
single vertex in each copy of Kn to get a connected graph G.

G:

Then κ(G) = 1 < δ(G) = n − 1 ,

6
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10. Find a Hamiltonian cycle or show that there is not one.

Removing the 3 vertices of degree 6
leaves 4 components. Since 4 > 3,
the graph is not Hamiltonian.

11. A 2-King move consists of two legal King moves done in succession. What is the
largest n so that Chvatal’s condition guarantees a Hamiltonian cycle of 2-King moves
on an n × n board?

8 11
15

8 11 14
15 19

24

8 11 14
15 19

24
n = 5

n = 4 ⇒ 8, 8, 8, 8, 11, 11, 11, 11, 11, 11, 11, 11, 15, 15, 15, 15
n = 5 ⇒ 8, 8, 8, 8, 11, 11, 11, 11, 11, 11, 11, 11, 14, 14, 14, 14, 15, 15, 15, 15, 19, 19, 19, 19, 24
n = 6 ⇒ d1 − d4 = 8, d5 − d12 = 11, d13 − d16 = 15, d17 − d24 = 14, d25 − d32 = 19, d33 − d36 = 24

⇒ d11 = 11 ≤ 11 and d25 = 19 < 25, so Chvatal’s condition not satisfied.

12. The following was posted to stackoverflow. Please help this programmer out by
answering their question.

Knight’s Tour on a 5 x 5 Board Start from any Square? Asked 7 years, 9 months ago, Modified 9 months ago, Viewed 5k times

I’d just like to check my logic here...

I wrote code to solve the Knight’s Tour and it works well for 8x8 boards starting the Knight at any square.

But... on a 5x5 board I show no solution possible when starting at square (0, 1).

What I tried for 5x5 starting the Knight at Row 0, Col 1:

Warnsdorff’s path Added Roth (tie breakers based on Euclidean distance from center).

Since those did not produce a solution I did code that is just basic recursion with backtracking to test every possible path -- also no solution

found when starting a 5x5 on 1, 0.

I looked everywhere for a list of exhaustive solutions to the 5x5 board but found none.

Is it that there just is no solution for 5x5 when starting at square 0, 1?

Thank you!

Is there a Hamiltonian cycle? NO

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bipartite graph, but a Hamiltonian cycle would have an odd number (25) of vertices.,
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Final Project Presentations
Vote your favorites. The most votes win fabulous non-cash prizes!

Presenter Title Distribute 10 points
among 9 candidates

Sabrina Hypergraphs:
Modeling Complex Interactions

Avi Ringel’s conjecture

Jasper Register allocation by graph coloring

Grace and Sachin Neural Networks on
Graphs and Hypergraphs

Matthew Graceful Labelings for Trees

Raymond Four colors suffice

Johnna Where Graph Theory and
Origami Overlap

Tyler Graph Theory and Games

Vera Decompositions of Cartesian Products
of Complete Graphs into
Sunlet Graphs of Order 8

Total = 10 points
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