
i
i

“Current˙Book” — 2018/10/16 — 17:36 — page 157 — #168 i
i

i
i

i
i

Section 3.7 Counting Labeled Trees: Prüfer Encoding 157

3.7 COUNTING LABELED TREES: PRÜFER ENCODING

In 1875, Arthur Cayley presented a paper to the British Association describing a
method for counting certain hydrocarbons containing a given number of carbon atoms.
In the same paper, Cayley also counted the number of n-vertex trees with the standard
vertex labels 1, 2, . . . , n. Two labeled trees are considered the same if their respective
edge-sets are identical. For example, in Figure 3.7.1, the two labeled 4-vertex trees are
di↵erent, even though their underlying unlabeled trees are both isomorphic to the path
graph P4.

1

4

2

3

1

4

2

3

Figure 3.7.1 Two di↵erent labeled trees.

The number of n-vertex labeled trees is nn�2, for n � 2, and is known as Cayley’s
Formula. A number of di↵erent proofs have been given for this result, and the one
presented here, due to H. Prüfer, is considered among the most elegant. The strategy of
the proof is to establish a one-to-one correspondence between the set of standard-labeled
trees with n vertices and certain finite sequences of numbers.

Prüfer Encoding

definition: A Prüfer sequence of length n� 2, for n � 2, is any sequence of integers
between 1 and n, with repetitions allowed.

The following encoding procedure constructs a Prüfer sequence from a given standard
labeled tree, and thus, defines a function fe : Tn ! Pn�2 from the set Tn of trees on n
labeled vertices to the set Pn�2 of Prüfer sequences of length n� 2.

Algorithm 3.7.1: Prüfer Encode
Input: an n-vertex tree with a standard 1-based vertex-labeling.
Output: a Prüfer sequence of length n� 2.

Initialize T to be the given tree.
For i = 1 to n� 2

Let v be the 1-valent vertex with the smallest label.
Let si be the label of the neighbor of v.
T := T � v.

Return sequence hs1, s2 . . . , sn�2i .

Example 3.7.1: The encoding procedure for the tree shown in Figure 3.7.2 is illustrated
with the two figures that follow. The first figure shows the first two iterations of the
construction, and the second figure shows iterations 3, 4, and 5. The portion of the
Prüfer sequence constructed after each iteration is also shown.



i
i

“Current˙Book” — 2018/10/16 — 17:36 — page 158 — #169 i
i

i
i

i
i

158 Chapter 3 TREES

1

2

3

45

6

7

Figure 3.7.2 A labeled tree to be encoded into a Prüfer sequence S.

1

2

3

45

6

7

1

2

3

45

6

7

S = h1, i S = h1, 7, i

Figure 3.7.3 First two iterations of the Prüfer encoding.

1

2

3

45

6

7

1

2

3

45

6

7

1

2

3

45

6

7

S = h1, 7, 3 i S = h1, 7, 3, 7, i S = h1, 7, 3, 7, 5i

Figure 3.7.4 Iterations 3, 4, and 5 of the Prüfer encoding.

Notice that if we allow the label-set for the n vertices of the tree to be any set of
positive integers (not necessarily consecutive integers starting at 1), then the encoding
proceeds exactly as before. Working with this more general label-set enables us to write
the encoding algorithm recursively, shown on the next page, and leads more naturally to
the inductive arguments that establish the one-to-one correspondence between labeled
trees and Prüfer sequences.

The resulting Prüfer sequence will now need to indicate the label-set.

definition: A Prüfer sequence of length n � 2 on a label-set L of n positive
integers is any sequence of integers from L with repetitions allowed.



i
i

“Current˙Book” — 2018/10/16 — 17:36 — page 159 — #170 i
i

i
i

i
i

Section 3.7 Counting Labeled Trees: Prüfer Encoding 159

Algorithm 3.7.2: Prüfer Encode (recursive) (T, L)
Input: an n-vertex labeled tree T and its label-set L of n positive integers.
Output: a Prüfer sequence of length n� 2 of integers from L.

If T is a 2-vertex tree
Return the empty sequence

Else
Let v be the leaf vertex having the smallest label t.
Let s be the label of the neighbor of v
P := Prüfer Encode(T � v, L� {t})
Return hs, P i

Proposition 3.7.1: Let dk be the number of occurrences of the number k in a Prüfer
encoding sequence for a labeled tree T on a set L. Then the degree of the vertex with
label k in T equals dk + 1.

Proof: The assertion is true for any tree on 2 vertices, because the Prüfer sequence for
such a tree is the empty sequence and both vertices in T have degree 1.

Assume that the assertion is true for every n-vertex labeled tree, for some n � 2 and
suppose T is an (n+1)-vertex labeled tree. Let v be the leaf vertex with the smallest label,
let w be the neighbor of v, and let l(w) be the label of w. Then the Prüfer sequence S for
T consists of the label l(w) followed by the Prüfer sequence S⇤ of the n-vertex labeled
tree T ⇤ = T � v.

By the inductive hypothesis, for every vertex u of the tree T ⇤, degT⇤(u) is one more
than the number of occurrences of its label l(u) in S⇤. But for all u 6= w, the number
of occurrences of the label l(u) in S⇤ is the same as in S, and degT (u) = degT⇤(u).
Furthermore, degT (w) = degT⇤(w) + 1, and l(w) has one more occurrence in S than in
S⇤. Thus, the condition is true for every vertex in T . }

Corollary 3.7.2: If T is an n-vertex labeled tree with label-set L, then a label k 2 L
occurs in the Prüfer sequence fe(T ) if and only if the vertex in T with label k is not a
leaf vertex.

Prüfer Decoding

The following decoding procedure maps a given Prüfer sequence to a standard labeled
tree.

Algorithm 3.7.3: Prüfer Decode (recursive) (P, L)
Input: a Prüfer sequence P = hp1p2 . . . pn�2i on a label-set L of n positive

integers.
Output: a labeled n-vertex tree T on label-set L.

If P is the empty sequence (i.e., n = 2)
Return a 2-vertex tree on label-set L.

Else
Let k be the smallest number in L that is not in P .
Let P ⇤ be the Prüfer sequence hp2 . . . pn�2i on label-set L⇤ = L� {k}.
Let T ⇤ = Prüfer Decode(P ⇤, L⇤).
Let T be the tree obtained by adding a new vertex with label k and

an edge joining it to the vertex in T ⇤ labeled p1.
Return T .



i
i

“Current˙Book” — 2018/10/16 — 17:36 — page 160 — #171 i
i

i
i

i
i

160 Chapter 3 TREES

Example 3.7.2: To illustrate the decoding procedure, start with the Prüfer sequence
P = h1, 7, 3, 7, 5i and label-set L = {1, 2, 3, 4, 5, 6, 7}. Proposition 3.7.1 implies that the
corresponding tree has: deg(2) = deg(4) = deg(6) = 1; deg(1) = deg(3) = deg(5) = 2;
and deg(7) = 3. Among the leaf vertices, vertex 2 has the smallest label, and its neighbor
must be vertex 1. Thus, an edge is drawn joining vertices 1 and 2. The number 2 is
removed from the list, and the first occurrence of label 1 is removed from the sequence.
The sequence of figures that follows shows each iteration of the decoding procedure.
Shown in each figure are: the edges to be inserted up to that point, the label-set, and
the remaining part of the Prüfer sequence.

P = h1, 7, 3, 7, 5i
L = {1, 2, 3, 4, 5, 6, 7}

1

2

3

45

6

7

1

2

3

45

6

7

1

2

3

45

6

7

1

2

3

45

6

7

1

2

3

45

6

7

1

2

3

45

6

7

P = h7, 3, 7, 5i P = h3, 7, 5i P = h7, 5i
L = {1, 3, 4, 5, 6, 7} L = {3, 4, 5, 6, 7} L = {3, 5, 6, 7}

1

2

3

45

6

7

1

2

3

45

6

7

1

2

3

45

6

7

1

2

3

45

6

7

P = h5i P = h i Resulting tree T

L = {5, 6, 7} L = {5, 7}



i
i

“Current˙Book” — 2018/10/16 — 17:36 — page 161 — #172 i
i

i
i

i
i

Section 3.7 Counting Labeled Trees: Prüfer Encoding 161

Proposition 3.7.3: For any label-set L of n positive integers, the decoding procedure
defines a function fd : Pn�2 ! Tn from the set of Prüfer sequences on L to the set of
n-vertex labeled trees with label-set L.

Proof: First observe that at each step of the procedure, there is never any choice as
to which edge must be drawn. Thus, the procedure defines a function from the Prüfer
sequences on L to the set of labeled graphs with label-set L. Therefore, proving the
following assertion will complete the proof.

Assertion: When the decoding procedure is applied to a Prüfer sequence of length n� 2,
the graph produced is an n-vertex tree.

The assertion is trivially true for n = 2, since the procedure produces a single edge.
Assume that the assertion is true for some n � 2, and consider a label-set L of n + 1
positive integers and a Prüfer sequence hp1, p2, . . . , pn�1i on L. Let k be the smallest
number in L that does not appear in hp1, p2, . . . , pn�1i.

The first call of the procedure creates a new vertex v with label k and joins v to the
vertex with label p1. By the inductive hypothesis, Prüfer Decode(hp2, . . . , pn�1i, L�{k})
produces an n-vertex tree. Since k is not in the label-set L� {k}, this tree has no vertex
with label k. Therefore, adding the edge from v to the vertex with label p1 does not
create a cycle and the resulting graph is a tree. }

Notice that the tree obtained in Example 3.7.2 by the Prüfer decoding of the se-
quence h1, 7, 3, 7, 5i is the same as the tree in Example 3.7.1 that was Prüfer-encoded
as h1, 7, 3, 7, 5i. This inverse relationship between the encoding and decoding functions
holds in general, as the following proposition asserts.

Proposition 3.7.4: The decoding function fd : Pn�2 ! Tn is the inverse of the encoding
function fe : Tn ! Pn�2.

Proof: We show that for any list L of n positive integers, fd � fe is the identity function
on the set of n-vertex labeled trees with n distinct labels from L. We use induction on n.

Let T be a labeled tree on 2 vertices labeled s and t. Since fe(T ) is the empty sequence,
fd(fe(T )) = T .

Assume for some n � 2, that for n-vertex labeled tree T , (fd � fe)(T ) = T . Let T be an
(n+ 1)-vertex labeled tree, and suppose v is the leaf vertex with the smallest label t. If
s is the label of the neighbor of v, then fe(T ) = hs, fe(T � v)i. It remains to show that
fd (hs, fe(T � v)i) = T .

By Corollary 3.7.2, the label of every non-leaf vertex appears in hs, fe(T � v)i, and since
t is the smallest label among the leaf vertices, t is the smallest label that does not appear
in hs, fe(T � v)i. Therefore, fd (hs, fe(T � v)i) consists of a new vertex labeled t and an
edge joining it to the vertex labeled s in fd(fe(T � v)) (see figure below).

fd (fe (T - v ))t s



i
i

“Current˙Book” — 2018/10/16 — 17:36 — page 162 — #173 i
i

i
i

i
i

162 Chapter 3 TREES

By the inductive hypothesis, fd(fe(T � v)) = T � v. Thus, (fd � fe)(T ) consists of the
tree T � v, a new vertex labeled t and an edge joining that vertex to the vertex labeled
s in T � v. That is, (fd � fe)(T ) = T .

A similar argument shows that fe(fd(P )) = P , where P is a Prüfer sequence of length
n� 2 on a label-set L of n positive integers. (See exercises.) }

Theorem 3.7.5: [Cayley’s Tree Formula]. The number of di↵erent trees on n labeled
vertices is nn�2.

Proof: By Proposition 3.7.4, fe � fd : Pn�2 ! Pn�2 and fd � fe : Tn ! Tn are both
identity functions, and hence, fd and fe are both bijections. This establishes a one-to-one
correspondence between the trees in Tn and the sequences in Pn�2, and, by the Rule of
Product, there are nn�2 such sequences. }

Remark: A slightly di↵erent view of Cayley’s Tree Formula gives us the number of dif-
ferent spanning trees of the complete graph Kn. The next chapter is devoted to spanning
trees.

EXERCISES for Section 3.7

In Exercises 3.7.1 through 3.7.6, encode the given labeled tree as a Prüfer sequence. Then
decode the resulting sequence, to demonstrate that Proposition 3.7.4 holds.

3.7.1S
6

1

2

34

5

3.7.2
3

2

1

6

4

5

3.7.3
3

4 6

2

71

5
3.7.4

5

6 2

1

3

7 4

3.7.5

1

4

68

7

5
3

2
3.7.6S 7

6

2

45

3
1

In Exercises 3.7.7 through 3.7.12, construct the labeled tree corresponding to the given
Prüfer sequence.

3.7.7 (6, 7, 4, 4, 4, 2). 3.7.8 (2, 1, 1, 3, 5, 5).

3.7.9 (1, 3, 7, 2, 1). 3.7.10S (1, 3, 2, 3, 5).

3.7.11 (1, 1, 5, 1, 5). 3.7.12 (1, 1, 5, 2, 5).


