THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

JONGHYEON LEE AND HEESUNG SHIN[†]

ABSTRACT. Let $P(G, \lambda)$ denote the number of proper vertex colorings of G with λ colors. The chromatic polynomial $P(C_n, \lambda)$ for the cycle graph C_n is well-known as

$$P(C_n, \lambda) = (\lambda - 1)^n + (-1)^n (\lambda - 1)$$

for all positive integers $n \ge 1$. Also its inductive proof is widely well-known by the *deletion-contraction recurrence*. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph C_n .

1. INTRODUCTION

The number of proper colorings of a graph with finite colors was introduced only for planar graphs by George David Birkhoff [Bir13] in 1912, in an attempt to prove the four color theorem, where the formula for this number was later called by the chromatic polynomial. In 1932, Hassler Whitney [Whi32] generalized Birkhoff's formula from the planar graphs to general graphs. In 1968, Ronald Cedric Read [Rea68] introduced the concept of chromatically equivalent graphs and asked which polynomials are the chromatic polynomials of some graph, that remains open.

Chromatic polynomial. For a graph G, a coloring means almost always a (proper) vertex coloring, which is a labeling of vertices of G with colors such that no two adjacent vertices have the same colors. Let $P(G, \lambda)$ denote the number of (proper) vertex colorings of G with λ colors and $\chi(G)$ the least number λ satisfying $P(G, \lambda) > 0$, where $P(G, \lambda)$ and $\chi(G)$ are called a chromatic polynomial and chromatic number of G, respectively.

In fact, it is clear that the number of λ -colorings is a polynomial in λ from a deletioncontraction recurrence.

Proposition 1 (Deletion-contraction recurrence). For a given a graph G and an edge e in G, we have

$$P(G,\lambda) = P(G-e,\lambda) - P(G/e,\lambda), \tag{1}$$

where G - e is a graph obtained by deletion the edge e and G/e is a graph obtained by contraction the edge e.

Example. The chromatic polynomials of graphs in Figure 1 are

$$P(G,\lambda) = \lambda(\lambda-1)^2(\lambda-2),$$

$$P(G-e,\lambda) = \lambda^2(\lambda-1)(\lambda-2), and$$

$$P(G/e,\lambda) = \lambda(\lambda-1)(\lambda-2).$$

Date: July 11, 2019.

[†] Corresponding author. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2017R1C1B2008269).

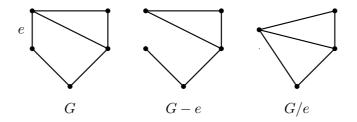


FIGURE 1. G, G - e and G/e

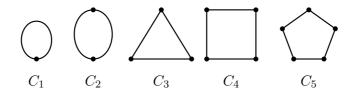


FIGURE 2. $C_n \ (1 \le n \le 5)$

It is confirmed that (1) is true for the graph G and the edge e in Figure 1.

Cycle graph. A cycle graph C_n is a graph that consists of a single cycle of length n, which could be drown by a n-polygonal graph in a plane. The chromatic polynomial for cycle graph C_n is well-known as follows.

Theorem 2. For a positive integer $n \ge 1$, the chromatic polynomial for cycle graph C_n is

$$P(C_n, \lambda) = (\lambda - 1)^n + (-1)^n (\lambda - 1)$$
(2)

Example. For an integer $n \leq 3$, it is easily checked that the chromatic polynomials of C_n are from (2) as follows.

$$P(C_1, \lambda) = (\lambda - 1) + (-1)(\lambda - 1) = 0,$$

$$P(C_2, \lambda) = (\lambda - 1)^2 + (-1)^2(\lambda - 1) = \lambda(\lambda - 1),$$

$$P(C_3, \lambda) = (\lambda - 1)^3 + (-1)^3(\lambda - 1) = \lambda(\lambda - 1)(\lambda - 2).$$

As shown in Figure 2, the cycle graph C_1 is a graph with one vertex and one loop and C_1 cannot be colored, that means $P(C_1, \lambda) = 0$. The cycle graph C_2 is a graph with two vertices, where two edges between two vertices, and C_2 can have colorings by assigning two vertices with different colors, that means $P(C_2, \lambda) = \lambda(\lambda - 1)$. The cycle graph C_3 is drawn by a triangle and C_3 can have colorings by assigning all three vertices with different colors, that means $P(C_3, \lambda) = \lambda(\lambda - 1)(\lambda - 2)$.

2. Four proofs of Theorem 2

In this section, we show the formula (2) in four different ways.

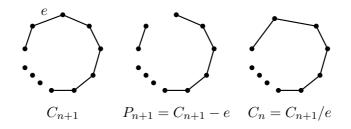


FIGURE 3. C_{n+1} , P_{n+1} and C_n

2.1. Inductive proof. This inductive proof is widely well-known. A path graph P_n is a connected graph in which n-1 edges connect n vertices of vertex degree at most 2, which could be drawn on a single straight line. The chromatic polynomial for path graph P_n is easily obtained by coloring all vertices v_1, \ldots, v_n where v_i and v_{i+1} have different colors for $i = 1, \ldots, n-1$.

Lemma 3. For a positive integer
$$n \ge 1$$
, the chromatic polynomial for path graph P_n is

$$P(P_n, \lambda) = \lambda (\lambda - 1)^{n-1}.$$
(3)

We use an induction on the number n of vertices by the deletion-contraction recurrence and the above lemma for path graph: It is already shown that (2) is true for $n \leq 3$ by the example in Section 1. Assume that (2) is true for a positive integer n. Using (1) and (3), we have

ת / ת

$$P(C_{n+1},\lambda) = P(C_{n+1} - e,\lambda) - P(C_{n+1}/e,\lambda)$$
 by (1)

$$= P(P_{n+1}, \lambda) - P(C_n, \lambda)$$

= $\lambda(\lambda - 1)^n - ((\lambda - 1)^n + (-1)^n(\lambda - 1))$ by (3)
= $(\lambda - 1)^{n+1} + (-1)^{n+1}(\lambda - 1).$

Thus, (2) is true for all positive integers $n \ge 1$.

2.2. **Proof by inclusion-exclusion principle.** The *inclusion-exclusion principle* is a technique of counting the size of the union of finite sets.

Proposition 4 (Inclusion-exclusion principle). Let A_1, A_2, \ldots, A_n be subsets of a finite set U. Then number of elements excluding their union is as follows

$$\left| \bigcap_{i=1}^{n} \overline{A_{i}} \right| = \sum_{I \subset [n]} (-1)^{|I|} \left| \bigcap_{i \in I} A_{i} \right|$$
$$= |U| - \sum_{i=1}^{n} |A_{i}| + \sum_{i < j} |A_{i} \cap A_{j}| - \dots + (-1)^{n} |A_{1} \cap \dots \cap A_{n}|$$

where \overline{A} is the complement of A in U.

Considering every condition to assign different colors to two adjacent vertices, for each edge e, we define a finite sets of arbitrary (including improper) colorings to assign same color to two adjacent vertices by the edge e.

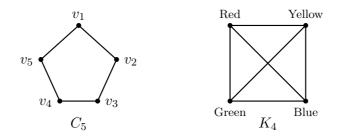


FIGURE 4. A cycle graph C_5 and a graph K_4 with names of colors

Let A_i be a set of colorings such that two vertices v_i and v_{i+1} are of same color, where v_{n+1} is regarded as v_1 . Applying the inclusion-exclusion principle, we can write the following

$$P(C_n, \lambda) = |U| - \sum_{i=1}^n |A_i| + \sum_{i < j} |A_i \cap A_j| + \dots + (-1)^n |A_1 \cap \dots \cap A_n|$$

= $\lambda^n - \binom{n}{1} \lambda^{n-1} + \binom{n}{2} \lambda^{n-2} + \dots + (-1)^{n-1} \binom{n}{n-1} \lambda + (-1)^n \lambda$
= $(\lambda - 1)^n - (-1)^n + (-1)^n \lambda$
= $(\lambda - 1)^n + (-1)^n (\lambda - 1).$

Thus, (2) is true for all positive integers $n \ge 1$.

2.3. Algebric proof. Let us consider a case of n = 5 and $\lambda = 4$, that is, to assign the vertices of C_5 in four colors: red, blue, yellow, and green. Also let us consider a complete graph K_4 with vertex names red, blue, yellow, and green, see Figure 4.

When red-blue-red-yellow-green is assigned in order from the vertex v_1 to the vertex v_5 in C_5 , it is corresponding to a closed walk of length 5 in K_4 which begins and ends at red, that is, it is red-blue-red-yellow-green-red in K_4 . By generalizing it, we have a correspondence between λ -colorings of C_n and closed walks of length n in K_{λ} . By this correspondence, it is enough to count the number of closed walks of length n in K_{λ} , instead of the number of λ -colorings of C_n .

For a graph G with vertex set $\{v_1, \ldots, v_n\}$, the *adjacency matrix* of G is an $n \times n$ square matrix A such that its element A_{ij} is one when there is an edge between two vertices v_i and v_j , and zero when there is no edge between v_i and v_j .

The following related to an adjacency matrix is well-known.

Proposition 5. Let A be the adjacency matrix of the graph G on n vertices v_1, \ldots, v_n . Then the (i, j)th entry of the matrix A^n is the number of the walk of length n beginning at v_i and ending at v_j .

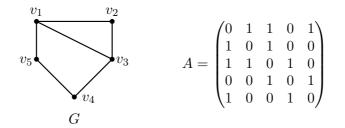


FIGURE 5. A graph G and its adjacency matrix A

By Proposition 5, we can calculate the number of closed walk of length n in the complete graph K_{λ} : Let A be an adjacency matrix of K_{λ} . Then A is a $\lambda \times \lambda$ matrix as follows

$$A = (a_{ij}) = \begin{pmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{pmatrix},$$

where $a_{ij} = 0$ if i = j, and otherwise $a_{ij} = 1$. So the number of closed walks of length n in K_{λ} is enumerated by $tr(A^n)$, which equals the sum of all eigenvalues of A^n . Also let all eigenvalues of the matrix A be denoted by u_1, \ldots, u_{λ} , then all eigenvalues of the matrix A^n are $u_1^n, \ldots, u_{\lambda}^n$.

$$A = \begin{pmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} \lambda - 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & \cdots & 0 & -1 \end{pmatrix}$$

Since the matrix A have λ eigenvalues $u_1 = \lambda - 1$ and $u_2 = \cdots = u_{\lambda} = -1$, we have

$$tr(A^n) = \sum_{i=1}^{\lambda} u_i^n = (\lambda - 1)^n + \underbrace{(-1)^n + \dots + (-1)^n}_{\lambda - 1 \text{ times}}.$$

Thus, (2) is true for all positive integers $n \ge 1$.

2.4. **Bijective proof.** Let X_n denote the set of λ -colorings of C_n and $[\lambda - 1]^n$ be the set of *n*-tuples of positive integers less than λ , where $[\lambda - 1]$ means $\{1, \ldots, \lambda - 1\}$. We consider a mapping φ from λ -colorings of C_n in X_n to *n*-tuples in $[\lambda - 1]^n$.

A mapping φ from X_n to $[\lambda - 1]^n$. The mapping $\varphi : X_n \to [\lambda - 1]^n$ is defined as follows: Let ω be a λ -coloring of C_n in X_n , we write $\omega = (\omega_1, \ldots, \omega_n)$ where ω_i is the color of v_i in C_n and it is obvious that $\omega_i \neq \omega_{i+1}$ for $1 \leq i \leq \lambda$, where ω_{n+1} is regarded as ω_1 . An entry ω_i is called a cyclic descent of C if $\omega_i > \omega_{i+1}$ for $1 \leq i \leq \lambda$. Then we define $\varphi(\omega) = \sigma = (\sigma_1, \ldots, \sigma_n)$ with

$$\sigma_i = \begin{cases} \omega_i - 1, & \text{if } \omega_i \text{ is a cyclic descent} \\ \omega_i, & \text{otherwise.} \end{cases}$$

Given a λ -coloring ω , if $\omega_i = \lambda$ then $\omega_{i+1} < \lambda$, so $\omega_i = \lambda$ should be a cyclic descent. Thus we have $\sigma_i < \lambda$ for all $1 \le i \le n$ and $\varphi(\omega)$ belongs to $[\lambda - 1]^n$.

For example, in a case of n = 9 and $\lambda = 4$, $\omega = (1, 2, 1, 3, 2, 3, 1, 4, 2) \in X_9$ is given as an example of 4-colorings of C_9 . Here $\omega_2 = 2$, $\omega_4 = 3$, $\omega_6 = 3$, $\omega_8 = 4$, and $\omega_9 = 2$ are cyclic descents of ω . So we have

$$\varphi(\omega) = \sigma = (1, 1, 1, 2, 2, 2, 1, 3, 1) \in [3]^9.$$

A mapping ψ as the inverse of φ . Let Z_n be the set of *n*-tuples $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ in $[\lambda - 1]^n$ with

$$\sigma_1 = \sigma_2 = \dots = \sigma_n$$

and it is obvious that the size of Z_n is $\lambda - 1$.

We would like to describe a mapping $\psi : ([\lambda - 1]^n \setminus Z_n) \to X_n$ in order to satisfy $\varphi \circ \psi$ is the identity on $[\lambda - 1]^n \setminus Z_n$ as follows: Given a $\sigma \in [\lambda - 1]^n \setminus Z_n$, we define $\overline{\sigma} = (\overline{\sigma}_1, \ldots, \overline{\sigma}_n)$ with

$$\overline{\sigma}_i = \begin{cases} \sigma_i + 1, & \text{if } \sigma_i \text{ is a cyclic descent} \\ \sigma_i, & \text{otherwise.} \end{cases}$$

Since $\overline{\sigma}$ may have consecutive same entries, we define $\psi(\sigma) = \omega = (\omega_1, \ldots, \omega_n)$ from $\overline{\sigma}$ with $\omega_i = \overline{\sigma}_i + 1$ for any entry $\overline{\sigma}_i$ of $\overline{\sigma}$ with a finite positive even integer ℓ satisfying

$$\overline{\sigma}_i = \overline{\sigma}_{i+1} = \cdots = \overline{\sigma}_{i+\ell-1} \neq \overline{\sigma}_{i+\ell},$$

where $\overline{\sigma}_{n+k}$ is regarded as $\overline{\sigma}_k$ for $1 \leq k \leq n$, and $\omega_i = \overline{\sigma}_i$, otherwise. Thus ω has no consecutive same entries and $1 \leq \omega_i \leq \lambda$ for all $1 \leq i \leq n$, so $\psi(\sigma) = \omega$ belongs to X_n . Moreover, it is obvious that $\sigma_i \leq \omega_i \leq \sigma_i + 1$ for all $1 \leq i \leq n$ and if $\omega_i = \sigma_i + 1$ for some $1 \leq i \leq n$ then ω_i is a cyclic descent in ω . Hence $\varphi(\omega) = \sigma$ and $\sigma \in [\lambda - 1]^n \setminus Z_n$ if and only if $\psi(\sigma) = \omega$.

In a previous example, $\sigma = (1, 1, 1, 2, 2, 2, 1, 3, 1)$ is denoted as an example of 9-tuples in [3]⁹. Here $\sigma_6 = 2$, $\sigma_8 = 3$ are cyclic descents of σ and we obtain $\overline{\sigma} = (1, 1, 1, 2, 2, 3, 1, 4, 1)$. And then there exist only three entries $\overline{\sigma}_2$, $\overline{\sigma}_4$, and $\overline{\sigma}_9$ in $\overline{\sigma}$ satisfying the following

$$k = 2: \quad \overline{\sigma}_2 = \overline{\sigma}_3 \neq \overline{\sigma}_4 \quad (\ell = 2),$$

$$k = 4: \quad \overline{\sigma}_4 = \overline{\sigma}_5 \neq \overline{\sigma}_6 \quad (\ell = 2), \text{ and}$$

$$k = 9: \quad \overline{\sigma}_9 = \overline{\sigma}_1 = \overline{\sigma}_2 = \overline{\sigma}_3 \neq \overline{\sigma}_4 \quad (\ell = 4)$$
so we get $\omega_2 = \overline{\sigma}_2 + 1 = 2, \, \omega_4 = \overline{\sigma}_4 + 1 = 3, \, \omega_9 = \overline{\sigma}_9 + 1 = 2, \text{ and}$

$$\psi(\sigma) = \omega = (1, 2, 1, 3, 2, 3, 1, 4, 2) \in X_9.$$

Let Y_n be the set of λ -colorings ω in X_n with $\varphi(\omega) \in Z_n$. Since two mapping φ and ψ are bijections between $X_n \setminus Y_n$ and $[\lambda - 1]^n \setminus Z_n$, the size of the set $X_n \setminus Y_n$ is same with the size of the $[\lambda - 1]^n \setminus Z_n$, which is equal to $(\lambda - 1)^n - (\lambda - 1)$.

When n is even, for any $1 \le i \le \lambda - 1$, there exist only two n-tuples in X_n

$$\omega = (i+1, i, i+1, i, \dots, i+1, i)$$
 and $\omega = (i, i+1, i, i+1, \dots, i, i+1)$

satisfying $\varphi(\omega) = (i, i, \dots, i) \in \mathbb{Z}_n$. If n is even, the size of Y_n is equal to $2(\lambda - 1)$ and we obtain

$$P(C_n, \lambda) = |X_n| = |X_n \setminus Y_n| + |Y_n| = [(\lambda - 1)^n - (\lambda - 1)] + 2(\lambda - 1).$$
(4)

When n is odd, there is no n-tuples satisfying $\varphi(\omega) \in Z_n$ and the set Y_n is empty. If n is odd, we obtain

$$P(C_n, \lambda) = |X_n| = |X_n \setminus Y_n| + |Y_n| = [(\lambda - 1)^n - (\lambda - 1)] + 0.$$
(5)

Therefore, (2) yields from (4) and (5) for all positive integers $n \ge 1$.

References

- [Bir13] George D. Birkhoff. A determinant formula for the number of ways of coloring a map. Ann. of Math. (2), 14(1-4):42–46, 1912/13.
- [Rea68] Ronald C. Read. An introduction to chromatic polynomials. J. Combinatorial Theory, 4:52–71, 1968.
- [Whi32] Hassler Whitney. Congruent Graphs and the Connectivity of Graphs. Amer. J. Math., 54(1):150–168, 1932.

(Jonghyeon Lee) Department of Mathematics, Inha University, Incheon 22212, Korea $E\text{-}mail\ address:\ \texttt{orie73@naver.com}$

(Heesung Shin) Department of Mathematics, Inha University, Incheon 22212, Korea $E\text{-}mail\ address: \texttt{shinQinha.ac.kr}$