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THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

JONGHYEON LEE AND HEESUNG SHIN†

Abstract. Let P (G,λ) denote the number of proper vertex colorings of G with λ colors.
The chromatic polynomial P (Cn, λ) for the cycle graph Cn is well-known as

P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1)

for all positive integers n ≥ 1. Also its inductive proof is widely well-known by the deletion-
contraction recurrence. In this paper, we give this inductive proof again and three other
proofs of this formula of the chromatic polynomial for the cycle graph Cn.

1. Introduction

The number of proper colorings of a graph with finite colors was introduced only for planar
graphs by George David Birkhoff [Bir13] in 1912, in an attempt to prove the four color
theorem, where the formula for this number was later called by the chromatic polynomial.
In 1932, Hassler Whitney [Whi32] generalized Birkhoff’s formula from the planar graphs to
general graphs. In 1968, Ronald Cedric Read [Rea68] introduced the concept of chromatically
equivalent graphs and asked which polynomials are the chromatic polynomials of some graph,
that remains open.

Chromatic polynomial. For a graph G, a coloring means almost always a (proper) vertex
coloring, which is a labeling of vertices of G with colors such that no two adjacent vertices
have the same colors. Let P (G,λ) denote the number of (proper) vertex colorings of G with
λ colors and χ(G) the least number λ satisfying P (G,λ) > 0, where P (G,λ) and χ(G) are
called a chromatic polynomial and chromatic number of G, respectively.

In fact, it is clear that the number of λ-colorings is a polynomial in λ from a deletion-
contraction recurrence.

Proposition 1 (Deletion-contraction recurrence). For a given a graph G and an edge e in
G, we have

P (G,λ) = P (G− e, λ)− P (G/e, λ), (1)

where G − e is a graph obtained by deletion the edge e and G/e is a graph obtained by
contraction the edge e.

Example. The chromatic polynomials of graphs in Figure 1 are

P (G,λ) = λ(λ− 1)2(λ− 2),

P (G− e, λ) = λ2(λ− 1)(λ − 2), and

P (G/e, λ) = λ(λ− 1)(λ− 2).
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e

G G/eG− e

Figure 1. G , G− e and G/e

C1 C2 C5C4C3

Figure 2. Cn (1 ≤ n ≤ 5)

It is confirmed that (1) is true for the graph G and the edge e in Figure 1.

Cycle graph. A cycle graph Cn is a graph that consists of a single cycle of length n, which
could be drown by a n-polygonal graph in a plane. The chromatic polynomial for cycle graph
Cn is well-known as follows.

Theorem 2. For a positive integer n ≥ 1, the chromatic polynomial for cycle graph Cn is

P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1) (2)

Example. For an integer n ≤ 3, it is easily checked that the chromatic polynomials of Cn are
from (2) as follows.

P (C1, λ) = (λ− 1) + (−1)(λ− 1) = 0,

P (C2, λ) = (λ− 1)2 + (−1)2(λ− 1) = λ(λ− 1),

P (C3, λ) = (λ− 1)3 + (−1)3(λ− 1) = λ(λ− 1)(λ − 2).

As shown in Figure 2, the cycle graph C1 is a graph with one vertex and one loop and C1

cannot be colored, that means P (C1, λ) = 0. The cycle graph C2 is a graph with two vertices,
where two edges between two vertices, and C2 can have colorings by assigning two vertices
with different colors, that means P (C2, λ) = λ(λ − 1). The cycle graph C3 is drawn by a
triangle and C3 can have colorings by assigning all three vertices with different colors, that
means P (C3, λ) = λ(λ− 1)(λ− 2).

2. Four proofs of Theorem 2

In this section, we show the formula (2) in four different ways.
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e

Cn+1 Cn = Cn+1/ePn+1 = Cn+1 − e

Figure 3. Cn+1 , Pn+1 and Cn

2.1. Inductive proof. This inductive proof is widely well-known. A path graph Pn is a
connected graph in which n − 1 edges connect n vertices of vertex degree at most 2, which
could be drawn on a single straight line. The chromatic polynomial for path graph Pn is
easily obtained by coloring all vertices v1, . . . , vn where vi and vi+1 have different colors for
i = 1, . . . , n− 1.

Lemma 3. For a positive integer n ≥ 1, the chromatic polynomial for path graph Pn is

P (Pn, λ) = λ(λ− 1)n−1. (3)

We use an induction on the number n of vertices by the deletion-contraction recurrence
and the above lemma for path graph: It is already shown that (2) is true for n ≤ 3 by the
example in Section 1. Assume that (2) is true for a positive integer n. Using (1) and (3), we
have

P (Cn+1, λ) = P (Cn+1 − e, λ)− P (Cn+1/e, λ) by (1)

= P (Pn+1, λ)− P (Cn, λ)

= λ(λ− 1)n − ((λ− 1)n + (−1)n(λ− 1)) by (3)

= (λ− 1)n+1 + (−1)n+1(λ− 1).

Thus, (2) is true for all positive integers n ≥ 1.

2.2. Proof by inclusion-exclusion principle. The inclusion-exclusion principle is a tech-
nique of counting the size of the union of finite sets.

Proposition 4 (Inclusion-exclusion principle). Let A1, A2, . . . , An be subsets of a finite set
U . Then number of elements excluding their union is as follows

∣
∣
∣
∣
∣

n⋂

i=1

Ai

∣
∣
∣
∣
∣
=

∑

I⊂[n]

(−1)|I|

∣
∣
∣
∣
∣

⋂

i∈I

Ai

∣
∣
∣
∣
∣

= |U | −
n∑

i=1

|Ai|+
∑

i<j

|Ai ∩Aj| − · · ·+ (−1)n |A1 ∩ · · · ∩An|

where A is the complement of A in U .

Considering every condition to assign different colors to two adjacent vertices, for each edge
e, we define a finite sets of arbitrary (including improper) colorings to assign same color to
two adjacent vertices by the edge e.
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C5 K4

v1

v2

v3v4

v5

Red

BlueGreen

Yellow

Figure 4. A cycle graph C5 and a graph K4 with names of colors

Let Ai be a set of colorings such that two vertices vi and vi+1 are of same color, where
vn+1 is regarded as v1. Applying the inclusion-exclusion principle, we can write the following

P (Cn, λ) = |U | −

n∑

i=1

|Ai|+
∑

i<j

|Ai ∩Aj |+ · · ·+ (−1)n |A1 ∩ · · · ∩An|

= λn −

(
n

1

)

λn−1 +

(
n

2

)

λn−2 + · · · + (−1)n−1

(
n

n− 1

)

λ+ (−1)nλ

= (λ− 1)n − (−1)n + (−1)nλ

= (λ− 1)n + (−1)n(λ− 1).

Thus, (2) is true for all positive integers n ≥ 1.

2.3. Algebric proof. Let us consider a case of n = 5 and λ = 4, that is, to assign the vertices
of C5 in four colors: red, blue, yellow, and green. Also let us consider a complete graph K4

with vertex names red, blue, yellow, and green, see Figure 4.

When red-blue-red-yellow-green is assigned in order from the vertex v1 to the vertex v5
in C5, it is corresponding to a closed walk of length 5 in K4 which begins and ends at red,
that is, it is red-blue-red-yellow-green-red in K4. By generalizing it, we have a correspondence
between λ-colorings of Cn and closed walks of length n in Kλ. By this correspondence, it is
enough to count the number of closed walks of length n in Kλ, instead of the number of
λ-colorings of Cn.

For a graph G with vertex set {v1, . . . , vn}, the adjacency matrix of G is an n × n square
matrix A such that its element Aij is one when there is an edge between two vertices vi and
vj , and zero when there is no edge between vi and vj .

The following related to an adjacency matrix is well-known.

Proposition 5. Let A be the adjacency matrix of the graph G on n vertices v1, . . . , vn. Then
the (i, j)th entry of the matrix An is the number of the walk of length n beginning at vi and
ending at vj.
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G

v1 v2

v3

v4

v5 A =









0 1 1 0 1
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
1 0 0 1 0









Figure 5. A graph G and its adjacency matrix A

By Proposition 5, we can calculate the number of closed walk of length n in the complete
graph Kλ: Let A be an adjacency matrix of Kλ. Then A is a λ× λ matrix as follows

A = (aij) =










0 1 · · · 1 1
1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0










,

where aij = 0 if i = j, and otherwise aij = 1. So the number of closed walks of length n
in Kλ is enumerated by tr(An), which equals the sum of all eigenvalues of An. Also let all
eigenvalues of the matrix A be denoted by u1, . . . , uλ, then all eigenvalues of the matrix An

are un1 , . . . , u
n
λ.

A =










0 1 · · · 1 1
1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0










∼










λ− 1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · 0 −1










,

Since the matrix A have λ eigenvalues u1 = λ− 1 and u2 = · · · = uλ = −1, we have

tr(An) =

λ∑

i=1

uni = (λ− 1)n + (−1)n + · · ·+ (−1)n
︸ ︷︷ ︸

λ− 1 times

.

Thus, (2) is true for all positive integers n ≥ 1.

2.4. Bijective proof. Let Xn denote the set of λ-colorings of Cn and [λ− 1]n be the set of
n-tuples of positive integers less than λ, where [λ − 1] means {1, . . . , λ− 1}. We consider a
mapping ϕ from λ-colorings of Cn in Xn to n-tuples in [λ− 1]n.

A mapping ϕ from Xn to [λ− 1]n. The mapping ϕ : Xn → [λ− 1]n is defined as follows: Let
ω be a λ-coloring of Cn in Xn, we write ω = (ω1, . . . , ωn) where ωi is the color of vi in Cn and
it is obvious that ωi 6= ωi+1 for 1 ≤ i ≤ λ, where ωn+1 is regarded as ω1. An entry ωi is called
a cyclic descent of C if ωi > ωi+1 for 1 ≤ i ≤ λ. Then we define ϕ(ω) = σ = (σ1, . . . , σn) with

σi =

{

ωi − 1, if ωi is a cyclic descent

ωi, otherwise.
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Given a λ-coloring ω, if ωi = λ then ωi+1 < λ, so ωi = λ should be a cyclic descent. Thus we
have σi < λ for all 1 ≤ i ≤ n and ϕ(ω) belongs to [λ− 1]n.

For example, in a case of n = 9 and λ = 4, ω = (1, 2, 1, 3, 2, 3, 1, 4, 2) ∈ X9 is given as an
example of 4-colorings of C9. Here ω2 = 2, ω4 = 3, ω6 = 3, ω8 = 4, and ω9 = 2 are cyclic
descents of ω. So we have

ϕ(ω) = σ = (1, 1, 1, 2, 2, 2, 1, 3, 1) ∈ [3]9.

A mapping ψ as the inverse of ϕ. Let Zn be the set of n-tuples σ = (σ1, σ2, . . . , σn) in [λ−1]n

with

σ1 = σ2 = · · · = σn

and it is obvious that the size of Zn is λ− 1.
We would like to describe a mapping ψ : ([λ− 1]n \ Zn) → Xn in order to satisfy ϕ ◦ ψ is

the identity on [λ− 1]n \ Zn as follows: Given a σ ∈ [λ− 1]n \ Zn, we define σ = (σ1, . . . , σn)
with

σi =

{

σi + 1, if σi is a cyclic descent

σi, otherwise.

Since σ may have consecutive same entries, we define ψ(σ) = ω = (ω1, . . . , ωn) from σ with
ωi = σi + 1 for any entry σi of σ with a finite positive even integer ℓ satisfying

σi = σi+1 = · · · = σi+ℓ−1 6= σi+ℓ,

where σn+k is regarded as σk for 1 ≤ k ≤ n, and ωi = σi, otherwise. Thus ω has no consecutive
same entries and 1 ≤ ωi ≤ λ for all 1 ≤ i ≤ n, so ψ(σ) = ω belongs to Xn. Moreover, it is
obvious that σi ≤ ωi ≤ σi + 1 for all 1 ≤ i ≤ n and if ωi = σi + 1 for some 1 ≤ i ≤ n then ωi

is a cyclic descent in ω. Hence ϕ(ω) = σ and σ ∈ [λ− 1]n \ Zn if and only if ψ(σ) = ω.
In a previous example, σ = (1, 1, 1, 2, 2, 2, 1, 3, 1) is denoted as an example of 9-tuples in

[3]9. Here σ6 = 2, σ8 = 3 are cyclic descents of σ and we obtain σ = (1, 1, 1, 2, 2, 3, 1, 4, 1).
And then there exist only three entries σ2, σ4, and σ9 in σ satisfying the following

k = 2 : σ2 = σ3 6= σ4 (ℓ = 2),

k = 4 : σ4 = σ5 6= σ6 (ℓ = 2), and

k = 9 : σ9 = σ1 = σ2 = σ3 6= σ4 (ℓ = 4),

so we get ω2 = σ2 + 1 = 2, ω4 = σ4 + 1 = 3, ω9 = σ9 + 1 = 2, and

ψ(σ) = ω = (1, 2, 1, 3, 2, 3, 1, 4, 2) ∈ X9.

Let Yn be the set of λ-colorings ω in Xn with ϕ(ω) ∈ Zn. Since two mapping ϕ and ψ are
bijections between Xn \ Yn and [λ− 1]n \Zn, the size of the set Xn \ Yn is same with the size
of the [λ− 1]n \ Zn, which is equal to (λ− 1)n − (λ− 1).

When n is even, for any 1 ≤ i ≤ λ− 1, there exist only two n-tuples in Xn

ω = (i+ 1, i, i + 1, i, . . . , i+ 1, i) and ω = (i, i + 1, i, i + 1, . . . , i, i+ 1)

satisfying ϕ(ω) = (i, i, . . . , i) ∈ Zn. If n is even, the size of Yn is equal to 2(λ − 1) and we
obtain

P (Cn, λ) = |Xn| = |Xn \ Yn|+ |Yn|

= [(λ− 1)n − (λ− 1)] + 2(λ− 1). (4)
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When n is odd, there is no n-tuples satisfying ϕ(ω) ∈ Zn and the set Yn is empty. If n is
odd, we obtain

P (Cn, λ) = |Xn| = |Xn \ Yn|+ |Yn|

= [(λ− 1)n − (λ− 1)] + 0. (5)

Therefore, (2) yields from (4) and (5) for all positive integers n ≥ 1.
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