THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

JONGHYEON LEE AND HEESUNG SHIN ${ }^{\dagger}$

Abstract

Let $P(G, \lambda)$ denote the number of proper vertex colorings of G with λ colors. The chromatic polynomial $P\left(C_{n}, \lambda\right)$ for the cycle graph C_{n} is well-known as $$
P\left(C_{n}, \lambda\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)
$$ for all positive integers $n \geq 1$. Also its inductive proof is widely well-known by the deletioncontraction recurrence. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph C_{n}.

1. Introduction

The number of proper colorings of a graph with finite colors was introduced only for planar graphs by George David Birkhoff [Bir13] in 1912, in an attempt to prove the four color theorem, where the formula for this number was later called by the chromatic polynomial. In 1932, Hassler Whitney [Whi32] generalized Birkhoff's formula from the planar graphs to general graphs. In 1968, Ronald Cedric Read Rea68 introduced the concept of chromatically equivalent graphs and asked which polynomials are the chromatic polynomials of some graph, that remains open.

Chromatic polynomial. For a graph G, a coloring means almost always a (proper) vertex coloring, which is a labeling of vertices of G with colors such that no two adjacent vertices have the same colors. Let $P(G, \lambda)$ denote the number of (proper) vertex colorings of G with λ colors and $\chi(G)$ the least number λ satisfying $P(G, \lambda)>0$, where $P(G, \lambda)$ and $\chi(G)$ are called a chromatic polynomial and chromatic number of G, respectively.

In fact, it is clear that the number of λ-colorings is a polynomial in λ from a deletioncontraction recurrence.

Proposition 1 (Deletion-contraction recurrence). For a given a graph G and an edge e in G, we have

$$
\begin{equation*}
P(G, \lambda)=P(G-e, \lambda)-P(G / e, \lambda) \tag{1}
\end{equation*}
$$

where $G-e$ is a graph obtained by deletion the edge e and G / e is a graph obtained by contraction the edge e.

Example. The chromatic polynomials of graphs in Figure 1 are

$$
\begin{aligned}
P(G, \lambda) & =\lambda(\lambda-1)^{2}(\lambda-2) \\
P(G-e, \lambda) & =\lambda^{2}(\lambda-1)(\lambda-2), \text { and } \\
P(G / e, \lambda) & =\lambda(\lambda-1)(\lambda-2)
\end{aligned}
$$

[^0]

Figure 1. $G, G-e$ and G / e

Figure 2. $C_{n}(1 \leq n \leq 5)$

It is confirmed that (1) is true for the graph G and the edge e in Figure (1)

Cycle graph. A cycle graph C_{n} is a graph that consists of a single cycle of length n, which could be drown by a n-polygonal graph in a plane. The chromatic polynomial for cycle graph C_{n} is well-known as follows.

Theorem 2. For a positive integer $n \geq 1$, the chromatic polynomial for cycle graph C_{n} is

$$
\begin{equation*}
P\left(C_{n}, \lambda\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1) \tag{2}
\end{equation*}
$$

Example. For an integer $n \leq 3$, it is easily checked that the chromatic polynomials of C_{n} are from (2) as follows.

$$
\begin{aligned}
& P\left(C_{1}, \lambda\right)=(\lambda-1)+(-1)(\lambda-1)=0, \\
& P\left(C_{2}, \lambda\right)=(\lambda-1)^{2}+(-1)^{2}(\lambda-1)=\lambda(\lambda-1), \\
& P\left(C_{3}, \lambda\right)=(\lambda-1)^{3}+(-1)^{3}(\lambda-1)=\lambda(\lambda-1)(\lambda-2) .
\end{aligned}
$$

As shown in Figure 2, the cycle graph C_{1} is a graph with one vertex and one loop and C_{1} cannot be colored, that means $P\left(C_{1}, \lambda\right)=0$. The cycle graph C_{2} is a graph with two vertices, where two edges between two vertices, and C_{2} can have colorings by assigning two vertices with different colors, that means $P\left(C_{2}, \lambda\right)=\lambda(\lambda-1)$. The cycle graph C_{3} is drawn by a triangle and C_{3} can have colorings by assigning all three vertices with different colors, that means $P\left(C_{3}, \lambda\right)=\lambda(\lambda-1)(\lambda-2)$.

2. Four proofs of Theorem 2

In this section, we show the formula (2) in four different ways.

Figure 3. C_{n+1}, P_{n+1} and C_{n}
2.1. Inductive proof. This inductive proof is widely well-known. A path graph P_{n} is a connected graph in which $n-1$ edges connect n vertices of vertex degree at most 2 , which could be drawn on a single straight line. The chromatic polynomial for path graph P_{n} is easily obtained by coloring all vertices v_{1}, \ldots, v_{n} where v_{i} and v_{i+1} have different colors for $i=1, \ldots, n-1$.

Lemma 3. For a positive integer $n \geq 1$, the chromatic polynomial for path graph P_{n} is

$$
\begin{equation*}
P\left(P_{n}, \lambda\right)=\lambda(\lambda-1)^{n-1} \tag{3}
\end{equation*}
$$

We use an induction on the number n of vertices by the deletion-contraction recurrence and the above lemma for path graph: It is already shown that (2) is true for $n \leq 3$ by the example in Section (1). Assume that (2) is true for a positive integer n. Using (11) and (3), we have

$$
\begin{array}{rlr}
P\left(C_{n+1}, \lambda\right) & =P\left(C_{n+1}-e, \lambda\right)-P\left(C_{n+1} / e, \lambda\right) \\
& =P\left(P_{n+1}, \lambda\right)-P\left(C_{n}, \lambda\right) \\
& =\lambda(\lambda-1)^{n}-\left((\lambda-1)^{n}+(-1)^{n}(\lambda-1)\right) \\
& =(\lambda-1)^{n+1}+(-1)^{n+1}(\lambda-1) . & \text { by (1) }
\end{array}
$$

Thus, (2) is true for all positive integers $n \geq 1$.
2.2. Proof by inclusion-exclusion principle. The inclusion-exclusion principle is a technique of counting the size of the union of finite sets.

Proposition 4 (Inclusion-exclusion principle). Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of a finite set U. Then number of elements excluding their union is as follows

$$
\begin{aligned}
\left|\bigcap_{i=1}^{n} \overline{A_{i}}\right| & =\sum_{I \subset[n]}(-1)^{|I|}\left|\bigcap_{i \in I} A_{i}\right| \\
& =|U|-\sum_{i=1}^{n}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|-\cdots+(-1)^{n}\left|A_{1} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

where \bar{A} is the complement of A in U.
Considering every condition to assign different colors to two adjacent vertices, for each edge e, we define a finite sets of arbitrary (including improper) colorings to assign same color to two adjacent vertices by the edge e.

Figure 4. A cycle graph C_{5} and a graph K_{4} with names of colors

Let A_{i} be a set of colorings such that two vertices v_{i} and v_{i+1} are of same color, where v_{n+1} is regarded as v_{1}. Applying the inclusion-exclusion principle, we can write the following

$$
\begin{aligned}
P\left(C_{n}, \lambda\right) & =|U|-\sum_{i=1}^{n}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\cdots+(-1)^{n}\left|A_{1} \cap \cdots \cap A_{n}\right| \\
& =\lambda^{n}-\binom{n}{1} \lambda^{n-1}+\binom{n}{2} \lambda^{n-2}+\cdots+(-1)^{n-1}\binom{n}{n-1} \lambda+(-1)^{n} \lambda \\
& =(\lambda-1)^{n}-(-1)^{n}+(-1)^{n} \lambda \\
& =(\lambda-1)^{n}+(-1)^{n}(\lambda-1) .
\end{aligned}
$$

Thus, (2) is true for all positive integers $n \geq 1$.
2.3. Algebric proof. Let us consider a case of $n=5$ and $\lambda=4$, that is, to assign the vertices of C_{5} in four colors: red, blue, yellow, and green. Also let us consider a complete graph K_{4} with vertex names red, blue, yellow, and green, see Figure 4.

When red-blue-red-yellow-green is assigned in order from the vertex v_{1} to the vertex v_{5} in C_{5}, it is corresponding to a closed walk of length 5 in K_{4} which begins and ends at red, that is, it is red-blue-red-yellow-green-red in K_{4}. By generalizing it, we have a correspondence between λ-colorings of C_{n} and closed walks of length n in K_{λ}. By this correspondence, it is enough to count the number of closed walks of length n in K_{λ}, instead of the number of λ-colorings of C_{n}.

For a graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the adjacency matrix of G is an $n \times n$ square matrix A such that its element $A_{i j}$ is one when there is an edge between two vertices v_{i} and v_{j}, and zero when there is no edge between v_{i} and v_{j}.

The following related to an adjacency matrix is well-known.
Proposition 5. Let A be the adjacency matrix of the graph G on n vertices v_{1}, \ldots, v_{n}. Then the (i, j) th entry of the matrix A^{n} is the number of the walk of length n beginning at v_{i} and ending at v_{j}.

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Figure 5. A graph G and its adjacency matrix A

By Proposition 5, we can calculate the number of closed walk of length n in the complete graph K_{λ} : Let A be an adjacency matrix of K_{λ}. Then A is a $\lambda \times \lambda$ matrix as follows

$$
A=\left(a_{i j}\right)=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 1 & 1 \\
1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 0 & 1 \\
1 & 1 & \cdots & 1 & 0
\end{array}\right)
$$

where $a_{i j}=0$ if $i=j$, and otherwise $a_{i j}=1$. So the number of closed walks of length n in K_{λ} is enumerated by $\operatorname{tr}\left(A^{n}\right)$, which equals the sum of all eigenvalues of A^{n}. Also let all eigenvalues of the matrix A be denoted by $u_{1}, \ldots, u_{\lambda}$, then all eigenvalues of the matrix A^{n} are $u_{1}^{n}, \ldots, u_{\lambda}^{n}$.

$$
A=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 1 & 1 \\
1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 0 & 1 \\
1 & 1 & \cdots & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ccccc}
\lambda-1 & 0 & \cdots & 0 & 0 \\
0 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & -1 & 0 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right)
$$

Since the matrix A have λ eigenvalues $u_{1}=\lambda-1$ and $u_{2}=\cdots=u_{\lambda}=-1$, we have

$$
\operatorname{tr}\left(A^{n}\right)=\sum_{i=1}^{\lambda} u_{i}^{n}=(\lambda-1)^{n}+\underbrace{(-1)^{n}+\cdots+(-1)^{n}}_{\lambda-1 \text { times }}
$$

Thus, (2) is true for all positive integers $n \geq 1$.
2.4. Bijective proof. Let X_{n} denote the set of λ-colorings of C_{n} and $[\lambda-1]^{n}$ be the set of n-tuples of positive integers less than λ, where $[\lambda-1]$ means $\{1, \ldots, \lambda-1\}$. We consider a mapping φ from λ-colorings of C_{n} in X_{n} to n-tuples in $[\lambda-1]^{n}$.

A mapping φ from X_{n} to $[\lambda-1]^{n}$. The mapping $\varphi: X_{n} \rightarrow[\lambda-1]^{n}$ is defined as follows: Let ω be a λ-coloring of C_{n} in X_{n}, we write $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ where ω_{i} is the color of v_{i} in C_{n} and it is obvious that $\omega_{i} \neq \omega_{i+1}$ for $1 \leq i \leq \lambda$, where ω_{n+1} is regarded as ω_{1}. An entry ω_{i} is called a cyclic descent of C if $\omega_{i}>\omega_{i+1}$ for $1 \leq i \leq \lambda$. Then we define $\varphi(\omega)=\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with

$$
\sigma_{i}= \begin{cases}\omega_{i}-1, & \text { if } \omega_{i} \text { is a cyclic descent } \\ \omega_{i}, & \text { otherwise }\end{cases}
$$

Given a λ-coloring ω, if $\omega_{i}=\lambda$ then $\omega_{i+1}<\lambda$, so $\omega_{i}=\lambda$ should be a cyclic descent. Thus we have $\sigma_{i}<\lambda$ for all $1 \leq i \leq n$ and $\varphi(\omega)$ belongs to $[\lambda-1]^{n}$.

For example, in a case of $n=9$ and $\lambda=4, \omega=(1,2,1,3,2,3,1,4,2) \in X_{9}$ is given as an example of 4 -colorings of C_{9}. Here $\omega_{2}=2, \omega_{4}=3, \omega_{6}=3, \omega_{8}=4$, and $\omega_{9}=2$ are cyclic descents of ω. So we have

$$
\varphi(\omega)=\sigma=(1,1,1,2,2,2,1,3,1) \in[3]^{9} .
$$

A mapping ψ as the inverse of φ. Let Z_{n} be the set of n-tuples $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ in $[\lambda-1]^{n}$ with

$$
\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n}
$$

and it is obvious that the size of Z_{n} is $\lambda-1$.
We would like to describe a mapping $\psi:\left([\lambda-1]^{n} \backslash Z_{n}\right) \rightarrow X_{n}$ in order to satisfy $\varphi \circ \psi$ is the identity on $[\lambda-1]^{n} \backslash Z_{n}$ as follows: Given a $\sigma \in[\lambda-1]^{n} \backslash Z_{n}$, we define $\bar{\sigma}=\left(\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{n}\right)$ with

$$
\bar{\sigma}_{i}= \begin{cases}\sigma_{i}+1, & \text { if } \sigma_{i} \text { is a cyclic descent } \\ \sigma_{i}, & \text { otherwise }\end{cases}
$$

Since $\bar{\sigma}$ may have consecutive same entries, we define $\psi(\sigma)=\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ from $\bar{\sigma}$ with $\omega_{i}=\bar{\sigma}_{i}+1$ for any entry $\bar{\sigma}_{i}$ of $\bar{\sigma}$ with a finite positive even integer ℓ satisfying

$$
\bar{\sigma}_{i}=\bar{\sigma}_{i+1}=\cdots=\bar{\sigma}_{i+\ell-1} \neq \bar{\sigma}_{i+\ell},
$$

where $\bar{\sigma}_{n+k}$ is regarded as $\bar{\sigma}_{k}$ for $1 \leq k \leq n$, and $\omega_{i}=\bar{\sigma}_{i}$, otherwise. Thus ω has no consecutive same entries and $1 \leq \omega_{i} \leq \lambda$ for all $1 \leq i \leq n$, so $\psi(\sigma)=\omega$ belongs to X_{n}. Moreover, it is obvious that $\sigma_{i} \leq \omega_{i} \leq \sigma_{i}+1$ for all $1 \leq i \leq n$ and if $\omega_{i}=\sigma_{i}+1$ for some $1 \leq i \leq n$ then ω_{i} is a cyclic descent in ω. Hence $\varphi(\omega)=\sigma$ and $\sigma \in[\lambda-1]^{n} \backslash Z_{n}$ if and only if $\psi(\sigma)=\omega$.

In a previous example, $\sigma=(1,1,1,2,2,2,1,3,1)$ is denoted as an example of 9 -tuples in $[3]^{9}$. Here $\sigma_{6}=2, \sigma_{8}=3$ are cyclic descents of σ and we obtain $\bar{\sigma}=(1,1,1,2,2,3,1,4,1)$. And then there exist only three entries $\bar{\sigma}_{2}, \bar{\sigma}_{4}$, and $\bar{\sigma}_{9}$ in $\bar{\sigma}$ satisfying the following

$$
\begin{array}{ll}
k=2: & \bar{\sigma}_{2}=\bar{\sigma}_{3} \neq \bar{\sigma}_{4} \quad(\ell=2), \\
k=4: & \bar{\sigma}_{4}=\bar{\sigma}_{5} \neq \bar{\sigma}_{6} \quad(\ell=2), \text { and } \\
k=9: & \bar{\sigma}_{9}=\bar{\sigma}_{1}=\bar{\sigma}_{2}=\bar{\sigma}_{3} \neq \bar{\sigma}_{4} \quad(\ell=4),
\end{array}
$$

so we get $\omega_{2}=\bar{\sigma}_{2}+1=2, \omega_{4}=\bar{\sigma}_{4}+1=3, \omega_{9}=\bar{\sigma}_{9}+1=2$, and

$$
\psi(\sigma)=\omega=(1,2,1,3,2,3,1,4,2) \in X_{9} .
$$

Let Y_{n} be the set of λ-colorings ω in X_{n} with $\varphi(\omega) \in Z_{n}$. Since two mapping φ and ψ are bijections between $X_{n} \backslash Y_{n}$ and $[\lambda-1]^{n} \backslash Z_{n}$, the size of the set $X_{n} \backslash Y_{n}$ is same with the size of the $[\lambda-1]^{n} \backslash Z_{n}$, which is equal to $(\lambda-1)^{n}-(\lambda-1)$.

When n is even, for any $1 \leq i \leq \lambda-1$, there exist only two n-tuples in X_{n}

$$
\omega=(i+1, i, i+1, i, \ldots, i+1, i) \quad \text { and } \quad \omega=(i, i+1, i, i+1, \ldots, i, i+1)
$$

satisfying $\varphi(\omega)=(i, i, \ldots, i) \in Z_{n}$. If n is even, the size of Y_{n} is equal to $2(\lambda-1)$ and we obtain

$$
\begin{align*}
P\left(C_{n}, \lambda\right) & =\left|X_{n}\right|=\left|X_{n} \backslash Y_{n}\right|+\left|Y_{n}\right| \\
& =\left[(\lambda-1)^{n}-(\lambda-1)\right]+2(\lambda-1) . \tag{4}
\end{align*}
$$

When n is odd, there is no n-tuples satisfying $\varphi(\omega) \in Z_{n}$ and the set Y_{n} is empty. If n is odd, we obtain

$$
\begin{align*}
P\left(C_{n}, \lambda\right) & =\left|X_{n}\right|=\left|X_{n} \backslash Y_{n}\right|+\left|Y_{n}\right| \\
& =\left[(\lambda-1)^{n}-(\lambda-1)\right]+0 . \tag{5}
\end{align*}
$$

Therefore, (2) yields from (4) and (5) for all positive integers $n \geq 1$.

References

[Bir13] George D. Birkhoff. A determinant formula for the number of ways of coloring a map. Ann. of Math. (2), 14(1-4):42-46, 1912/13.
[Rea68] Ronald C. Read. An introduction to chromatic polynomials. J. Combinatorial Theory, 4:52-71, 1968.
[Whi32] Hassler Whitney. Congruent Graphs and the Connectivity of Graphs. Amer. J. Math., 54(1):150-168, 1932.
(Jonghyeon Lee) Department of Mathematics, Inha University, Incheon 22212, Korea
E-mail address: orie73@naver.com
(Heesung Shin) Department of Mathematics, Inha University, Incheon 22212, Korea
E-mail address: shin@inha.ac.kr

[^0]: Date: July 11, 2019.
 \dagger Corresponding author. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2017R1C1B2008269).

