HW 10
Due: Fri, 14 Apr 2023

1. Problem 7.2.8. (!) On a chessboard, a knight can move from one square to another that differs by 1 in one coordinate and by 2 in the other coordinate, as shown below. Prove that no $4 \times n$ chessboard has a knight's tour: a traversal by knight's moves that visits each square once and returns to the start. (Hint: Find an appropriate set of vertices in the corresponding graph to violate the necessary condition.)

2. Problem 7.2.30. Obtain Lemma 7.2 .9 (sufficiency of Ore's condition) from Theorem 7.2.13 (sufficiency of Chvátal's condition). (Bondy [1978])
3. Problem 7.2.31. (!) Prove or disprove: If G is a simple graph with at least three vertices, and G has at least $\alpha(G)$ vertices of degree $n(G)-1$, then G is Hamiltonian.
4. Problem 3.1.8. (!) Prove or disprove: Every tree has at most one perfect matching.
5. Problem 3.1.9. (!) Prove that every maximal matching in a graph G has at least $\alpha^{\prime}(G) / 2$ edges.
