HW 2

Due: Fri, 3 Feb 2023

Key from text: 1. Problem 1.2.17. (!) Let G_n be the graph whose vertices are the permutations of $(1, \ldots, n)$, (-) = easier(+) = harderwith two permutations a_1, \ldots, a_n , and b_1, \ldots, b_n , adjacent if they differ by interchanging a pair (!)of adjacent entries (G_3 shown below). Prove that G is connected. (*) = usesoptional material

Solution: Your solution here. $\blacklozenge \heartsuit \clubsuit \diamondsuit$

- 2. Problem 1.2.20. Let v be a cut-vertex of a simple graph G. Prove that $\overline{G} v$ is connected.
- 3. Problem Problem 1.2.27. Let G_n be the graph whose vertices are the permutations of $(1,\ldots,n)$ with two permutations (a_1,\ldots,a_n) and (b_1,\ldots,b_n) adjacent if they differ by switching two entries. Prove that G_n is bipartite.

4. Problem 1.2.28. (!) In each graph below, find a bipartite subgraph with the maximum Use the theory number of edges. Prove that this is the maximum, and determine whether this is the only bipartite subgraph with this many edges.

- 5. Problem 1.2.29. (!) Let G be a connected simple graph not having P_4 or C_3 as an induced subgraph induced subgraph defined on p.23 subgraph. Prove that G is a biclique (complete bipartite graph).
- 6. Problem 1.2.40. Let P and Q be paths of maximum length in a connected graph G. Prove that P and Q have a common vertex.

Optional bonus question. Let P be the Petersen graph.

- (a) Find a copy of C_{10} in the complement of P.
- (b) Is there a copy of P in the complement of P?
- (c) Are there two edge-disjoint copies of P in the complement of P? N.B. Just counting edges tells us there are at most 2 such edge-disjoint copies of P.

not brute force

= useful or instructive

The standard proo of (c) uses eigenvalues, but you can do in an "elementary", but slightly tedious, way. Use the Kneser labeling