## HW 2

## Due: Fri, 3 Feb 2023

1. Problem 1.2.17. (!) Let $G_{n}$ be the graph whose vertices are the permutations of $(1, \ldots, n)$, with two permutations $a_{1}, \ldots, a_{n}$, and $b_{1}, \ldots, b_{n}$, adjacent if they differ by interchanging a pair of adjacent entries ( $G_{3}$ shown below). Prove that $G$ is connected.


## Solution:

Your solution here.

Key from text:
$(-)=$ easier
$(+)=$ harder
(!) = useful or
(instructive
$\left(^{*}\right)=$ uses
optional material
2. Problem 1.2.20. Let $v$ be a cut-vertex of a simple graph $G$. Prove that $\bar{G}-v$ is connected.
3. Problem Problem 1.2.27. Let $G_{n}$ be the graph whose vertices are the permutations of $(1, \ldots, n)$ with two permutations $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ adjacent if they differ by switching two entries. Prove that $G_{n}$ is bipartite.

4. Problem 1.2.28. (!) In each graph below, find a bipartite subgraph with the maximum number of edges. Prove that this is the maximum, and determine whether this is the only bipartite subgraph with this many edges.

5. Problem 1.2.29. (!) Let $G$ be a connected simple graph not having $P_{4}$ or $C_{3}$ as an induced subgraph. Prove that $G$ is a biclique (complete bipartite graph).
6. Problem 1.2.40. Let $P$ and $Q$ be paths of maximum length in a connected graph $G$. Prove that $P$ and $Q$ have a common vertex.

Optional bonus question. Let $P$ be the Petersen graph.
(a) Find a copy of $C_{10}$ in the complement of $P$.
(b) Is there a copy of $P$ in the complement of $P$ ?
(c) Are there two edge-disjoint copies of $P$ in the complement of $P$ ?
N.B. Just counting edges tells us there are at most 2 such edge-disjoint copies of $P$.

Use the theory, not brute force.
induced subgraph defined on p.23

