HW 3

Due: Fri, 10 Feb 2023

1. Problem 1.3.8. (-) Which of the following are graphic sequences? Provide a construction item or a proof of impossibility for each.
(a) $(5,5,4,3,2,2,2,1)$,
(c) $(5,5,5,3,2,2,1,1)$,
(b) $(5,5,4,4,2,2,1,1)$,
(d) $(5,5,5,4,2,1,1,1)$.
2. Problem 1.3.12. (!) Prove that an even graph has no cut-edge. For each $k \geq 1$, construct a $(2 k+1)$-regular simple graph having a cut-edge.
The solution manual gives 3 proofs: (contradiction), (construction/extremality), (prior results), and 3 different constructions. See if you can generate more than one of these. But one is sufficient!
3. Problem 1.3.17. (!) Let G be a graph with at least two vertices. Prove or disprove:
(a) Deleting a vertex of degree $\Delta(G)$ cannot increase the average degree.
(b) Deleting a vertex of degree $\delta(G)$ cannot reduce the average degree.
4. Problem 1.3.20. (!) Count the cycles of length n in K_{n}, and the cycles of length $2 n$ in $K_{n, n}$. Easy to get wrong if you are not careful.
5. Problem 1.3.25. (!) Prove that every cycle of length $2 r$ in a hypercube is contained in a subcube of dimension at most r. Can a cycle of length $2 r$ be contained in a subcube of dimension less than r ?
6. Problem 1.3.36. Let G be a 4 -vertex graph whose list of subgraphs obtained by deleting one vertex appears below. Determine G.

7. Problem 1.3.37. Let H be a graph formed by deleting a vertex from a loopless regular graph G with $n(G) \geq 3$. Describe (and justify) a method for obtaining G from H.

Bonus problems:

8. Problem 1.3.26. (!) Count the 6 -cycles in Q_{3}. Prove that every 6 -cycle in Q_{k} lies in exactly one 3 -dimensional subcube. Use this to count the 6 -cycles in Q_{k} for $k \geq 3$.
9. Problem 1.2.36. (+) Alternative characterization of Eulerian graphs.
(a) Prove that if G is Eulerian and $G^{\prime}=G-u v$, then G^{\prime} has an odd number of u, u-trails that visit v only at the end. Prove also that the number of the trails in this list that are not paths is even. (Toida [1973])
(b) Let u be a vertex of odd degree in a graph. For each edge e incident to v, let $c(e)$ be the number of cycles containing e. Use $\sum_{e} c(e)$ to prove that $c(e)$ is even for some e incident to v. (McKee [1984])
(c) Use part (a) and part (b) to conclude that a nontrivial connected graph is Eulerian if and only if every edge belongs to an odd number of cycles.
10. Problem 1.3.16. (+) For $k \geq 2$ and $g \geq 2$, prove that there exists a k-regular graph with girth g. (Hint: To construct such a graph inductively, make use of a $(k-1)$-regular graph H with girth g and a graph with girth $\lceil g / 2\rceil$ that is $n(H)$-regular. (Comment: Such a graph with minimum order is a (k, g)-cage.) (Erdös-Sachs [1963])
See https://en.wikipedia.org/wiki/Cage_(graph_theory).
