HW 3

Due: Fri, 10 Feb 2023

- 1. **Problem 1.3.8.** (-) Which of the following are graphic sequences? Provide a construction item or a proof of impossibility for each.
- 2. Problem 1.3.12. (!) Prove that an even graph has no cut-edge. For each $k \ge 1$, construct a (2k + 1)-regular simple graph having a cut-edge. The solution manual gives 3 proofs: (contradiction), (construction/extremality), (prior results), and 3 different constructions. See if you can generate more than one of these. But one is sufficient!
- 3. Problem 1.3.17. (!) Let G be a graph with at least two vertices. Prove or disprove:
 - (a) Deleting a vertex of degree $\Delta(G)$ cannot increase the average degree.
 - (b) Deleting a vertex of degree $\delta(G)$ cannot reduce the average degree.
- 4. **Problem 1.3.20.** (!) Count the cycles of length n in K_n , and the cycles of length 2n in $K_{n,n}$. Easy to get wrong if you are not careful.
- 5. Problem 1.3.25. (!) Prove that every cycle of length 2r in a hypercube is contained in a subcube of dimension at most r. Can a cycle of length 2r be contained in a subcube of dimension less than r?
- 6. Problem 1.3.36. Let G be a 4-vertex graph whose list of subgraphs obtained by deleting one vertex appears below. Determine G.

7. Problem 1.3.37. Let H be a graph formed by deleting a vertex from a loopless regular graph G with $n(G) \ge 3$. Describe (and justify) a method for obtaining G from H.

Bonus problems:

- 8. Problem 1.3.26. (!) Count the 6-cycles in Q_3 . Prove that every 6-cycle in Q_k lies in exactly one 3-dimensional subcube. Use this to count the 6-cycles in Q_k for $k \ge 3$.
- 9. Problem 1.2.36. (+) Alternative characterization of Eulerian graphs.
 - (a) Prove that if G is Eulerian and G' = G uv, then G' has an odd number of u, u-trails that visit v only at the end. Prove also that the number of the trails in this list that are not paths is even. (Toida [1973])

- (b) Let u be a vertex of odd degree in a graph. For each edge e incident to v, let c(e) be the number of cycles containing e. Use $\sum_{e} c(e)$ to prove that c(e) is even for some e incident to v. (McKee [1984])
- (c) Use part (a) and part (b) to conclude that a nontrivial connected graph is Eulerian if and only if every edge belongs to an odd number of cycles.
- 10. Problem 1.3.16. (+) For $k \ge 2$ and $g \ge 2$, prove that there exists a k-regular graph with girth g. (Hint: To construct such a graph inductively, make use of a (k 1)-regular graph H with girth g and a graph with girth $\lceil g/2 \rceil$ that is n(H)-regular. (Comment: Such a graph with minimum order is a (k, g)-cage.) (Erdös-Sachs [1963])

See https://en.wikipedia.org/wiki/Cage_(graph_theory).