HW 6

Due: Fri, 10 Mar 2023

Typo in (5) fixed. Bonus question added.

1. Problem 5.1.31. (!) Prove that a graph G is m-colorable if and only if $\alpha\left(G \square K_{m}\right) \geq n(G)$. (Berge [1973, 379-80])
2. Problem 5.1.34. (!) For all $k \in \mathbb{N}$, construct a tree T_{k} with maximum degree k and an ordering σ of $V\left(T_{k}\right)$ such that greedy coloring relative to the ordering σ uses $k+1$ colors. (Hint: Use induction and construct the tree and ordering simultaneously. Comment: This result shows that the performance ratio of greedy coloring to optimal coloring can be as bad as $(\Delta(G)+1) / 2)$. (Bean [1976])
3. Problem 5.2.7. (!) Given an optimal coloring of a k-chromatic graph, prove that for each color i there is a vertex with color i that is adjacent to vertices of the other $k-1$ colors.
4. Problem 5.2.15. (!) Prove that a triangle-free graph with n vertices is colorable with $2 \sqrt{n}$ colors. (Comment: Thus every k-chromatic triangle-free graph has at least $k^{2} / 4$ vertices.)
5. Problem 5.3.4. Notation: $\chi(G ; k)=\chi_{G}(k)$
(a) Prove that $\chi\left(C_{n} ; k\right)=(k-1)^{n}+(-1)^{n}(k-1)$.
(b) For $H=G \vee K_{1}$, prove that $\chi(H ; k)=k \cdot \chi(G ; k-1)$, i.e., $\chi_{H}(k)=k \cdot \chi_{G}(k-1)$. From this and part (a), find the chromatic polynomial of the wheel $C_{n} \vee K_{1}$.
6. Verify the graph G has chromatic polynomial $\chi_{G}(k)=k^{5}-7 k^{4}+18 k^{3}-20 k^{2}+8 k$.

Problem 5.3.12. (+) Coefficients of $\chi(G ; k)$.

Skip this one, but recall that the leading term of $\chi_{G}(k)$ is k^{n}, so the coefficient is 1 , and that the second term is $-\left|E_{G}\right| k^{n-1}$ (proved in your text). Compare these to part (a) below. Also, there was a question in class about roots of $\chi_{G}(k)$. See this random paper: Algebraic properties of chromatic roots in https: // www. cs. tufts. edu/comp/150GT/documents/ for some info. I was struck by Theorem 2: the location of chromatic roots in \mathbb{C} is related to the theory of phase transitions. (!)
(a) Prove that the last nonzero term in the chromatic polynomial of G is the term whose exponent is the number of components of G.

```
(b) Use part (a) to prove that if p(k) = k n}-a\mp@subsup{k}{}{n-1}+\ldots\pmc\mp@subsup{k}{}{r}\mathrm{ and }a>(\begin{array}{c}{n-r+1}\\{2}\end{array})\mathrm{ , then p is not
    a chromatic polynomial. (For example, this immediately implies that the polynomial in
    Exercise 5.3.3 is not a chromatic polynomial.)
```

Bonus question
7. Explain where the formula $\chi_{C_{n}}(k)=(k-1)^{n}+(-1)^{n}(k-1)$ comes from. (See Problem 5.3.4 above.)

