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ABSTRACT 
This paper presents the design and implementation of Event- 
driven State-machines Programming ( E S P ) - - a  language for 
programmable devices. In traditional languages, like C, us- 
ing event-driven state-machines forces a tradeoff that  re- 
quires giving up ease of development and reliability to achieve 
IJlg}l p~,ti~rlnallc~, ESP is designed to provide all of these 
three properties simult.aneously. 

ESP provides a comprehensive set of teatures to support 
development of compact and modular programs. The ESP 
compiler compiles the programs into two targets---a C file 
that  can be used to generate efficient firmware for the device; 
and a specification that  can be used by a verifier like SPIN 
to extensively test the firmware. 

As a case study, we reimplemented VMMC firmware that  
runs on Myrinet  network interface cards using ESP. We 
found that  ESP simplifies the task of programming with 
event-driven s tate  machines. It, required an order of magni- 
I~:,;~ i~'~\{'l !li l t '> ,,I t l,~l{' [lUItl l iB '  [)l '( ' \ ' iOIl~ i i l l [ ) ]e l l l (ql l ,&tiol i ,  
\.Ve also fbund that model-checking verifiers like SPIN can 
be used to effectively debug the firmware. Finally, our mea, 
surements indicate that  the perfbrmance overhead of using 
ESP i~ relat, ively small. 

1. INTRODUCTION 
Concurrency is a convenient way of structuring firmware 

for programmable devices. These devices tend to have lim- 
ited CPU and memory resources and have to deliver high 
performance. For these systems, the low overhead of event- 
driven s tate  machines often makes them the only choice tbr 
~'xpl~ssi|ig coJicuiq'ellcy. Their low overhead is achieved by 
.~upporting only the bare minimum functionality needed to 
write these programs. However, this makes an already diffi- 
c u r  task of writing reliable concurrent programs even more 
challenging. The result is hard-to-read code with hard-to- 
find bugs resulting from race conditions. 

The VMMC firmware [10] for Myrinet network interface 
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cards was implemented using event-driven state machines in 
C. Our experience was that  while good perfbrmance could 
be achieved with this approach, the source code was hard to 
maintain and debug. The implementation involved around 
15600 lines of C code. Even after several years of debugging, 
race conditions cause the system to crash occasionally. 

ESP was designed to meet the following goals, First,  the 
language should provide constructs to write concise modu- 
lar programs. Second, the language should permit  the use 
of software verification tools like SPIN [14] so that  the con- 
current programs can be tested thoroughly. Finally, the lan- 
guage should permit  aggressive compile time optimizations 
to provide low overhead. 

ESP has a number of language features that  allow devel- 
opment of fast and reliable concurrent programs. Concur- 
rent programs are expressed concisely using processes and 
channels. In addition, pat tern  matching on channels allows 
an object to be dispatched t ransparent ly  to multiple pro- 
cesses. A flexible external interface allows ESP code to in- 
teract seamlessly with C code. Finally, a novel memory 
management scheme allows an efficient and verifiably safe 
management of dynamic data. 

We reimplemented the VMMC firmware on Myrinet net- 
work interface cards using ESP. We found that  the firmware 
can be programmed with significantly fe.wer lines of code. 
in addition, since the C code is used only to perfbrm simple 
operations, all the complexity is localized to a small portion 
of the code (about  300 lines in our implementation).  This 
is a significant improvement over the earlier implementation 
where the complex interactions were scattered over the en- 
tire C code (15600 lines). 

The SPIN verifier wens used to develop and extensively test 
the VMMC firmware. Since, developing code on the network 
card often slow and painstaking,  parts of the system were 
developed and debugged entirely using the SPIN simulator. 
SPIN was also used to exhaustively verify the memory safety 
of the firmware. Once the propert ies to be checked by the 
verifier are specified, they can be rechecked with little effort 
as the system evolves. 

The ESP compiler generates efficient firmware. We used 
microbenchmarks to measure the worst-ease performance 
overhead in the firmware. Based on earlier application stud- 
ies [17, 5], we expect the impact  of the extra  performance 
overhead to be relatively small. 

The rest o[ the paper is organized as tbllows. Section 2 
presents the motivation for a new language. Section 3 de- 
scriber our three goals and our approach. The next three 
sections (Sections 4, 5 & 6) describe how ESP meets each 
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of the three goals. Section 4 provides the design of the ESP 
language. Section 5 describes how the SPIN model-checking 
verifier can be used to develop and test ESP programs. Sec- 
tion 6 shows how the ESP compiler generates eMcient code 
and presents some performance measurements.  Section 7 
describes the related work. Finally, Section 8 presents out" 
conclusions. 

2. MOTIVATION 
Devices like network cards and hard disks of'te~ include a 

programmable processor and memory (Figure 1). This al- 
lows the devices to provide sophist icated features in tfirmware. 
For instance, disk can support  aggressive disk head sehedul- 
ing algorithms in firmware. 

Bus 

Network 

F igure  1: P r o g r a m m a b l e  D e v i c e s  

The firmware for programmable  devices is often programmed 
using concurrency. Concurrent  programs have mult iple threads 
of' control that  coordinate with each other to periorm a smgle 
task. The mult iple threads of control provide a convenient 
way of keeping track of mult iple contexts in the firmware. 
In these situations, concurrency is way of s t ructur ing a pro- 
gram tha t  runs on a single processor. 

Concurrent programs can be writ ten using a variety of 
constructs like user-level threads  or event-driven s tate  ma- 
chines. They differ in the amount  of functionality provided 
and the overhead involved. However, the programmable  de- 
vices tend to have fairly l imited CPU and memory resources. 
Since these systems need to deliver high performance, the 
tow overhead of event-driven s ta te  machines make them the 
only choice. 

In this paper,  we describe a language called ESP tha t  can 
be used to implement firmware for programmable  devices. 
We were motivated by our experience with implementing 
the VMMC firmware. We use VMMC firmware as a case 
s tudy to evaluate the ESP language. In this section, we 
s tar t  with a description of VMMC. Then we examine the 
problems with event-driven s ta te  machines programming in 
tradit ional  languages like C and motivate the need for a new 
language for writing firmware for programmable  devices. 

2.1 Case Study: VMMC Firmware 
The VMMC architecture delivers high-performance on Ci- 

gabit networks by using sophist icated network cards. I t  al- 
lows da ta  to be directly sent to and from the application 
memory (thereby avoiding memory copies) without involw 
ing the operat ing system (thereby avoiding system call over- 

head). The operat ing system is usually involved only during 
connection setup and disconnect. 

The current VMMC implementat ion uses the Myrinet  NeL- 
work Interface Cards. The card has a programmable 33- 
MHz LANai4.1 processor, 1-Mbyte SRAM mernory and 3 
DMAs to transfer data--- to  and from the host memory; to 
send da ta  out onto the network; and to receive data. from 
the network. The card has a number of control registers 
including a s ta tus  register that  needs to be polled to check 
for da ta  arrival, watchdog timers and DMA status.  

Main 
Processor 

N e t w o r k  
Inter face  

C a r d  

Network 

Figure  2: V M M C  Sof tware  Archi tec ture :  T h e  
shaded  regions  are t h e  V M M C  c o m p o n e n t s .  

The VMMC software (Figure 2) has 3 components:  a li- 
brary that  links to the application; a device driver that  is 
used mainly during connection setup and disconnect; and 
firmware that  runs on the network card. Most of the soft- 
ware complexity is concentrated in the firmware code which 
was implemented using event-driven s tate  machines in C. 
The entue system was developed over several years and most 
of the bugs encountered were located in the firmware. Our 
goal is to replace the firmware using the ESP language. 

2.2 Implementing Firmware in C 
Event-driven state machines provide the bare mimmum 

functionality necessary to write concurrent p rograms- - the  
ability to block in a part icular  s ta te  and to be woken up 
when a part icular  event occurs. This makes them fairly 
difficult to program with. We il lustrate event-driven state- 
machines programming in C with an example. The C codp 
fragment ~s presented in Appendix  A and is i l lustrated m 
Figure 3. 

A program consists of multiple state-machines.  For each 
state in a s ta te  machine, a handler is provided for every event 
that  is expected while in that  state. When art event occurs, 
the corresponding handler is invoked. The handler processes 
the event, t ransit ions to a different s ta te  and blocks by re- 
turning from the handler. All the s ta te  machines share a 
single stack. 

There are several problems with this approach. First ,  the 
code becomes very hard to read because the code gets frag- 
mented across several handlers. 

Second, since the stack is shared, all the values tha t  are 
needed later [lave to be saved explicitly in global variables 
before a handler blocks. So da ta  is passed between han- 
dlers through global variables (e,g. pAddr, sendData).  In 
addition, global variables are also used by s tate  machines 
to communicate with each other (e.g. reqSM2), i t  is very 
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In#in/| j r  event UserReq execute handleReqO~ 
J 

wai%£'a [ 
event DMAFree execute fetchDataO 
@ O @ 

vent SM2Ready execute syncSM201 
• ® 

F i g u r e  3: P r o g r a m m i n g  in  C. T h e  code is p r e s e n t e d  
in A p p e n d i x  A. A s t a t e  m a c h i n e  is specified us ing  
a set  of h a n d l e r s .  For  each s t a te  in a s t a te  mach ine ,  
a list of  ( e v e n t , h a n d l e r )  pa i r s  has to be p rov ided .  
W h e n  a n  e v e n t  occurs~ the  c o r r e s p o n d i n g  h a n d l e r  is 
invoked .  A h a n d l e r  is a C f u n c t i o n  takes no argu-  
m e n t s  a n d  r e t u r n s  void. 

hard to get the right synchronization to keep from clobber- 
ing data.. 

Third. memory to allocate buffers for the data has to be 
managed explicitly. In a concurrent setting, this is hard 
to implement correctly when data is used by several state 
machines before it is eventually freed. Depending on the 
tuning, a different state machine might be the last one to 
use the data. and, therefore, be responsible for freeing. When 
necessary, explicit reference counts have to be maintained. 
II is easy to overlook the need for adding reference counts 
bo some data structures and introduce tricky allocation bugs 
lhat a.re hard t,o find. 

Fourth, functions are an inappropriate abstraction mecha- 
nism for programming with state machines. This is because 
a state machine can block only by returning fi'om a han- 
dler. As the firmware evolves, there might be a need to 
block within a flmction that is not a handler. For instance, 
in our original implementation, the function t rans la teAddr  
was implemented as a simple table lookup. However, as 
the firmware evolved, the table became a cache of transla- 
tions and the entire table was moved to the host memory. 
This meant that if' there was a miss m the translation cache, 
the translation had to be DMAed from the host memory. 
But if tile DMA was not available, it would need to block. 
This required extensive rewrite of the code and addition of 
more states to the state machine. In general, the amount of 
rewrite is proportional to the nesting depth of the function 
that wants to block. 

Fifth, union data.types are used extensively in these sys- 
tems to encode different possible requests. So, a lot of 
handlers have a switch statement to deal with different re- 
quests. For instance, an application could request for a mes- 
sage to be sent SendReq or to update the virtual to physical 
translation UpdateReq. Since these requests are handled by 
the same handler handleReq, their code had to be colocated 
even when it; makes more sense for these to be implemented 
m separate modules. A dzspatch mechanism supported by 
the language would simplify the implementation. 

Finally, hand-optimized fast paths are often built into the 
system to speed up certain requests. These fast paths rely 
on global information like the state of the various state ma- 
chines and their data structures and violate every abstrac- 
tion boundary. For instance, in VMMC firmware, a par- 
ticular fast path is taken if the network DMA is free and 
no other request is currently being processed (this requires 
looking at the state of multiple DMAs). In addition, the 
fast path code updates global variables used for retransmis- 
sion and might have to update the state of several state 
machines. These fast paths complicate the already complex 
state-machine code even further. 

ESP aims to address these problems without incurring too 
much performance penalty. As we shall see, the ESP code 
corresponding to the C code (Figure 3) can be written much 
more succinctly and readably (Appendix B). 

3. GOALS AND APPROACH 
ESP is a language designed to support event-driven State- 

machines programming. It has the following goals: 

Ease  of  d e v e l o p m e n t  To aid programming, the language 
should permit the concurrency to be expressed simply. 
It should also provide support  for modularity, dynamic 
memory management and a flexible interface to C. 

P e r m i t  e x t e n s i v e  t e s t i n g  Concurrent programs often suf- 
fer from hard-to-find race conditions and deadlock. 
ESP should support the use of software verifiers so 
that the programs can be tested extensively. Cur- 
rently, ESP uses the SPIN verifier. SPIN [14] is a 
flexible and powerful verification system designed to 
verify correctness of software systems. It uses model- 
checking to explore the staLe-space of the system. 

Low p e r f o r m a n c e  p e n a l t y  These concurrent programs are 
designed to be run on a single processor. To have low 
performance overhead, concurrent programs in ESP 
should permit aggressive cornpile time optimizations. 

In traditional languages, like C. using event-driven state- 
machines forces a tradeoff that requires giving up ease of de- 
velopment and reliability to achieve high performance. ESP 
is designed to provide all of these three properties simulta- 
neously. 

To meet these design goals, the ESP language is designed 
so that it can not only be used to generate an executable 
but also be translated into specification that can be used 
by the SPIN verifier (Figure 4). The ESP compiler takes 
an ESP program (pgm.ESP) and generates 2 files. The gen- 
erated C file (pgm. C) can then be compiled together with 
the C code provided by the user (help.C) to generate the 
executable. The programmer-supplied C code implements 
simple device-specific functionality like accessing device reg- 
isters. The SPIN file (pgra. SPIN) generated by the ESP com- 
piler can be used together with programmer-supplied SPIN 
code ( t e s t .  SPIN) to verify different properties of the sys- 
tem. The programmer-supplied SPIN code generates exter- 
nal events such as network message arrival as well as spec- 
ifies tile properties to be verified. Different properties of 
the system can be verified by using pgra. SPIN together with 
different t es t .SPIN files. 
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Generate Firmware Run SPIN Verifier 

F i g u r e  4: S h a d e d  r eg ions  are  code p r o v i d e d  by  the  use r  

4. EVENT-DRIVEN STATE-MACHINES PRO- 
GRAMMING (ESP) LANGUAGE 

ESP is based on the CSP [13] language and has a C- 
style syntax. ESP supports Event-driven State-machines 
Programming. The basic components of the language are 
processes and channels. Each process represents a sequential 
flow of control in a concurrent program. Processes commu- 
nicate with each other by sending messages on channels. All 
the processes and channels are static and known at compile 
time. 

Appendix B presents the implementat ion of the example 
(Section 2.2) in ESP. In this section, we will use fragments 
from that code to illustrate the various language features. 

4.1 Types, Expressions and Statements 
ESP supports basic types like i n t  and bool as well as 

mutable and immutable versions of complex datatypes like 
record,  un ion  and array.1 Types can be declared as follows: 

type sendT = record of { dest: int, vAddr; int, size: int} 
type updateT = record of { vhddr: int, pAddr: int} 
type userT = union of { send: sendT, update: updateT, ...} 

ESP does not provide any global variables. All variables 
have to be initialized at declaration time (New variable dec- 
laration is indicated with a $ prefix). Types do not, have to 
be specified when they can be deduced (ESP does a simple 
type inferencing on a per s ta tement  basis). For instance: 

8i: int = 7; / /  Declare Variable 
i = 45; / /  Update Variable 
$j = 36; / /  Type inferred 

ESP provides the common imperative constructs like 
i f - t h e n - e l s e  statements and whi le  loops. However, it does 
not provide reeursive data types or functions. Reeursive 
data types are not supported because they cannot be trans- 
lated easily into the specification language of the SPIN veri- 
fier. Functions are not supported because processes provide 
a more appropriate abstraction mechanism in a concurrent 
setting (Section 4.3). 

4.2 Channels 
Communication over channels are synehronous--a  sender 

has to be at tempting a send (using the out construct) con- 
currently with a receiver a t tempt ing to receive (using the in 

t A # prefix indicates a mutable data structure. 

construct) on a channel before the message can be success- 
fully transferred over the channel. Consequently, both -in 
and out are blocking operations. Using synchronous char> 
nels has several benefits. First, they simplily reasoning 
about message ordering, especially when processes can have 
complex interactions. Second, they can be implemented 
more efficiently than buffered channels. When buffering is 
required, it can be implemented explicitly by the program- 
mer. Finally, buffered channels increa-~e the size of ~tatp- 
space that has to be explored during verification. 

The alt construct allows a process to wait on the z'n,/o'u,t 
readiness of multiple channels I~lowe\'er, f'or each ext'cul irm 
of an alt statement, only the actions associated with a single 
channel are performed. In the case where multiple channels 
are ready, a single channel is selected. The channel selec- 
tion algorithm need not be fair (it may favor performance 
critical channels), but must prevent starvation [20]. The %l- 
lowing is a code fragment from a process that implements 
a FIFO queue. The macros FULL, EMPTY and INCR have the 
expected functionality. The first alternative accepts new 
messages and inserts them at the tail of the queue The sec- 
ond alternative sends the message at the head of the queue 
and then removes it from the queue. Note that  the first 
alternative is disabled when the buffer is full and second is 
disabled when the buffer is empty. 

while { 
alt { 

case( !FULL, in( ehanl, Q[tl]) { INCR(tl); } 
case( !EMPTY, out( ehan2, Q[hd])) { INCR(hd); } 

} 
} 

One of the features of the language is the use of pattern 
matching to support dispatch. Pat tern-matching is used m 
languages like ML to provide more expressive switch state- 
ments. ESP uses it to support  dispatch. Patterns have 
the same syntax as the one used for a.lloca.ting uni(ms awl 
records. They can be differentiated based on their' pc~sil ~cm 
in a statement. They are considered a pattern when they 
occur in an lvalue position and cause allocation when they 
occur in a rval~e position. 

$sr: sendT = { 7, 54677, 1024}; 
Surf: userT = { send I> sr}; 
Sur2: userT = { send l> { 5, lO000, 5 i 2 } } ;  
{ send I> { $dest, SvAddr, $size}}: userT = $ur2; 

In the above code, the first line initializes sr  to a newly 
allocated record. The second line initializes u r l  to a newly 
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allocated union with a valid send field 2 that points to the 
record in sr. The third line initializes ur2 to a newly allo- 
cated union with a valid send field that points to a newly 
allocated record. The fourth line has a pattern on the left 
hand side and pattern matching causes variables dest ,  vAddr 
and s i ze  to be initialized to 5, 10000 and 512 respectively 

Patterns can be specified in an in  operation. For example, 
consider process A performs 

in( userKeqC, { send i> { Sdest, $vAddr, $size}}); 

tO accept only send requests while a process B pertbrms 

in( userReqC, { update I> { $vAddr, $pAddr}}); 

to accept only update requests. When process C performs 

out( userReqC, req) ; 

the object will be delivered to process A or B depending on 
which pattern it matches. This frees the process C from try- 
ing to figure out the appropriate processes and sending the 
message to that process. To support this functionality effi- 
cmntly, ESP requires that; all the patterns used on a channel 
have to be disjoint and exhaustive--an object has to match 
exactly one pattern. In addition, each pattern can be used 
by (me process only So. although a channel can have mul- 
tiple readers and writers, a channel together with a pattern 
defint,,~ a port which can have nmltiple writers but only a 
single reader. 

Objects sent over' channels are passed by value. Since 
there are no global variables, this ensures that processes 
can communicate only by sending messages over channels. 
To support this efficiently, ESP allows only immutable ob- 
jects t.o be sent over channels This applies not only to the 
ob.lect specified in the out operation but also to all objects 
recursively pointed to by that object. 

A cast operation allows casting an immutable object into 
a llml.ablc objecl and vice versa. Semantically, the cast op- 
eration causes a new object to be allocated and the corre- 
spondillg values to copied into the new object. However, 
the compiler can avoid creating a new object in a number of 
cases. For instance, if the compiler can determine that the 
object being cast is no longer used afterwards, it can reuse 
that object and avoid allocation. 

4.3 Processes 
Processes in ESP implement state machines--each loca.- 

t, ion in the process where it can block implicitly represents 
a state in the state machine. 

process add5 { 
while(true) { 

in( chanl, $i); 
out(  ehem2, 5.+5) ; 

} 
} 

The above process represents a state machine with 2 states. 
The first state is when it is blocked waiting on an in  opera- 
tion on channel chanl and the second when it is blocked on 
an owe operation on channel chart2. 

Processes in ESP are lightweight in that they do not need 
a stack to run This is because ESP does not support func- 
tions, allowing the local variables of a process to be allocated 

eExactly one field of a union has to be valid 

in the static region. Thus a context switch only requires sav- 
ing the current location in one process and jumping to the 
saved location in another. 

In ESP, the processes are used to support abst ract ion--  
functions are not supported. For example, consider the fol- 
lowing code fragment from a process which implements a 
page table which maps virtual addresses into physical ad- 
dresses (Appendix B). The mapping is maintained in the 
array t ab le .  When it receives a request to translate virtual 
address to physical address, it uses the virtual address to 
lookup the mapping and sends a reply back to the request- 
ing process. The r e t  specifies the process making the re- 
quest so that the reply can be directed back to that  process. 
The second case accepts requests to update the mapping 
and updates the table. 

alt { 
c a s e (  in( ptReqC, { $ret, $vAddr})) { 

/ /  Request to lookup a mapping 
out(  ptReplyC, { ret ,  table[vAddr]}); 

} 
c a s e (  in( userReqC, { update I> { $vAddr, $pAddr}})) { 

/ /  l~eqaes~ to ~,pdale a rr~appin 9 
table [vAddr] = pAddr; 

} 
} 

To mimic the behavior of functions that expect return 
values, a pair of out and in operations. For instance: 3 

out( ptReqC, { @, vAddr}); 
in( ptReplyC, { @, $pAddr}); 

On the other hand, functions that do not expect a return 
value can be modeled using an out operation 

out( userReqC, { update I> { vAddr, pAddr}}); 

ESP processes are a more appropriate abstraction mech- 
anism than functions in a concurrent setting because an 
ESP process can block on an event, while allowing such be- 
havior in a function cannot be done without a stack (Sec- 
tion 2.2). In addition, the process abstraction allows flexi- 
bility in scheduling computation. For instance, if no return 
values are expected (see last example), the code to update 
the table can be delayed until later. 

4.4 Memory Management 
Memory allocation bugs are often the hardest to find espe- 

cially in the context of concurrent programming. However, 
supporting automatic memory management usually involves 
too much overhead (both in terms of space and time). On 
the other hand, explicit memory management with malloc 
and :free are hard to program correctly with. 

ESP provides a novel explicit management scheme to al- 
low efficient but  bug free memory management. The key 
observation is that  memory bugs are hard to find because 
memory safety is, usually, a global property of a concurrent 
program--memory safety cannot be inferred by looking only 
at a part of the program. To rectify this, ESP is designed 
to make memory satety a local property of each process. 

When objects are sent over channels, deep copies of the 
objects are delivered to the receiving process. 4 Hence, there 

:~ is a constant different fbr each process (a process id). 
J'I'his is true only semantically. The implementation never 
has to actually copy the object. 
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is no overlap between the objects accessible to different pro- 
cesses. Therefore, each process is responsible for managing 
its own objects. Bugs in the other processes do not effect it. 

ESP provides a reference counting interface to manage 
memory. ~ At allocation time, ~ the reference count is set, to 
1. ESP also provides 2 primitives ( l i n k  a.nd un l ink)  to ma- 
nipulate the reference counts. The l i n k  primitive increases 
the reference count of the object  while the u n l i n k  decreases 
the reference count of the object.  If this causes the refer- 
ence count of an object  to become 0, it frees the object  and 
recursively invokes unlink on the objects  pointed by it, 

ESP is designed so tha t  l i n k  and u n l i n k  are the only 
source of unsafeness in language. However, since the un- 
safeness is local to each process, the SPIN verifier can be 
used to verify safety of each process separately. This makes 
it less vulnerable to state-explosion in the verifier. In fact, 
the SPIN verifier was able to verify the safety of all pro- 
e(,sses llsed to impiernent th(, VMMC firmware fairly easily 
(Section 5.3). 

4.5 External InterNee 
The firmware implementat ion has to deal with special reg- 

isters, volatile memory and layout of packets sent/received 
on the network. ESP addresses this  by providing an external  
interface to interact  with C code. 

In addition, the  specification derived from the ESP code 
has to interact with some programmer provided SPIN code 
during verification (Figure 4). 

ESP provides a single external interface for both SPIN and 
C code. It uses the channel mechanism to suppor t  external 
interfaces. This is different f?om the t radi t ional  approaches 
of either allowing C code to be directly embedded in the 
program [6, 2] or allowing functions tha t  are implemented 
externally to be called [3, 8]. 

Using channels to provide external  interfaces has a num- 
ber of advantages. First ,  ESP processes often block on ex- 
ternal  events like arrival of user request or network pack- 
ets. Using channels allows a process to use the existing con- 
structs to block on external  events. Second, external  code 
can also use the same dispatch mechanism built  into chan- 
nels through pat tern-matching Finally. it prc~mc~tes mnd , -  
laritv. For instance, if retransmission is no longer required, 
the retransmismon processes can be dropped and the chan- 
nels used to interact  can be converted into external channels. 
Other processes that  were using these channels are not ef- 
fected because they cannot  tell the difference between an 
external channel and a regular channel. 

A channel can be declared to have an external  reader or 
writer but  not both .  For example: 

channel  usargeqC: aserT / /  External C writer 
interface userReq( out  userReqC) { 

Send( { Send I> { Sdest, SvAddr, Ssize}), 
Update( { Update I> Snew}), 

} 

defines a channel with a external  writer. The  $ prefix 
in the pa t te rn  indicates a parameter  to be passed to the C 
function. 
5The inability of reference counting to deal with cycles poses 
no problems to ESP because it does not have circular da t a  
structures. 
s o b j e c t s  received over channels are treated as newly allo- 
cated objects. 

I n t e r f a c e  to  C. To suppor t  a synchronoll~ (2 inkerthc'e. 
ESP requires two types of functions to be provided. The 
first, type has a "IsReady" suffix and returns whether the 
channel has data. to send/receive. The second type of func- 
tion is called after the first one ha..~ indicated it it i.~ l'(,nd\ 
to communicate So. in the previolls example, the f'o)lowin¢ 
~unctions have to be provided by the programmer.  

int UserReqIsReady( void); 
void UserReqSend( int *dest, int *vAddr, int *size); 
void UserReqUpdate( int **new); 

UserReqIsReacly should return 0 when it has nothing to 
send. When it has something to send, it returns a integer 
that  specifies which one of the pa t te rns  is ready. A separate  
t~lrlclio~ has to b<' provided {7~r each o['/llc, pc( t.c,ill~ ~;1~,, i 
fled The use o[' pat lerns  in Ibis coHtext serves 2 pmlp~ses. 
First ,  it supports  dispatch on external  channels. Second. 
it minimizes the amount  of allocation and manipulat ion of 
ESP da ta  s tructures that  has to be done in C. For instance, 
by specifying the entire pat tern in UsergeqSend, there is no 
need for that  function to allocate any ESP data. structure.  
UserReqUpdate, on the other hand, will have to allocate, cor- 
rectly initialize and return an ESP record. This can not only 
introduce allocation bugs in the system but  also move the 
allocation beyond the reach of the ESP compllet, ~lhelebl,, 
preventing the allocation from being optimized away. 

External  in channels diftbr [i'om external out  eham~el m 
2 ways. First ,  the IsReady flmction just  returns whether or 
not the channel is willing to accept data.  Then any writer 
on that  channel can write to it. In addition, it does not need 
to pass pointers since the parameters  will not be modified. 
So, all the parameters  have one less level of indirection. 

S P I N  I n t e r f a c e .  Since SPIN has suppor t  for channels, ex- 
ternal SPIN code can interact  directly with SPIN by reading 
and writing to the appropria te  channels. 

4.6 Case Study: VMMC Firmware 
~\c have remLplemented the V.XiM(5 Ill mwarc using i:;51 ~. 

The implementation supports  most o[ the VMMC hmction- 
ality (only the redirection feature is currently not supported)  

The earlier implementat ion included about  15600 lines of 
C code (Around 1100 of these lines were used to implement 
the fast p a t h s ) /  

The new implementat ion using ESP uses 500 lines of ESP 
code (200 lines of declarations + 300 lines of process code) 
together with around 3000 lines of C code. s The C code 
is used to implement simple tasks like initialization, initial- 
ing DMA, packet marshalling and unmarshalling and shared 
data  structures with code r ,  nnin~ cm the heft prnco~snr (in 
the library and the driver). All the complex sta.tu ma.chmte 
interactions are restricted to the ESP code which uses 7 pro- 
cesses and 17 channels. This is a significant improvement 
over the earlier implementat ion where the complex interac- 
tions were spread throughout  the 15600 lines of hard-to-read 
code. 

7To make a fair comparison, we counted only those lines of 
tile earlier implementat ion that  correspond to functionality 
implemented in the new VMMC implementation using E~P 
sESP currently does not provide any suppor t  for fast paths. 

.............. 314 



5. D'EVELOPING AND TESTING USING A 
VERIFIER 

We have a working prototype of the ESP compiler, i t  
generates both C code that  can be compiled into firmware as 
well a.s a specification that  can be used by the SPIN verifier 
(Figure 4). In this section, we start  with a description of 
the SPIN model checker. We then describe how ESP code is 
t ranslated into SPIN specification. Finally, we present our 
experience with using the SPIN model checker to develop 
and extensively test the VMMC firmware. 

5.1 SPIN Model Checking Verifier 
Model checking is a technique for verifying a system com- 

posed o1 c(mcurrerlt finite-state machines. Cliven a. concur- 
rein, finite-state system, a model checker explores all possible 
interleaved executions of the state machines and checks if the 
property being verified holds. A global state in the system 
~s a snapshot of the entire system at a particular point of 
execution. The state space of the system is the set of all the 
global states reachable from the initial global state. Since 
the s ta te  space of such systems is finite, the model checkers 
can, in principle, exhaustively explore the entire state space. 

The advantage of using model checking is that  it is auto- 
|lia.ti(:. Given a specification for the system and the prop- 
erty to be verified, model checkers automatically explore the 
slat~, space lf a violatiol, of the, property is discover~,d, il 
can produce an execution sequence that causes the violation 
and thereby helps in finding the bug. 

The disadvantage is that the state space to be explored 
is exponential  in the number of processes and the amount 
of memory used (for variables and da ta  structures). So the 
resources.required (CPI r as well as memory resources) by the 
model checker to explore the entire state space can quickly 
grow beyond the capacity of modern machines. 

S P I N  [14]. i t  is a flexible and powerful model checker de- 
signed for software systems. SPIN supports high-level fea- 
tures like processes, rendezvous channels, arrays and records. 
Most other verifiers target hardware systems and provide a 
fairly different specification language. Although ESP can be 
translated into these languages, additional state would have 
to be introduced to implement features like the rendezvous 
channels using primitives provided in that  specification lan- 
gua.ge. "I'hi~ would make the ~tate explosion problem worse. 
In addition, the semantic information lost during transla- 
tion would make it harder for the verifiers to optimize the 
state-space search. 

SPIN supports  checking for deadlocks and verifying simple 
properties specified using assertions. More complex proper- 
ties, like, absence of starvation, can be specified using Linear 
Temporal Logic (LTL). 

SPIN is an on-the-fly model checker and does not build 
the global s ta te  machine before it can start  checking for 
the property to be verified. So, in cases where the state 
space is too big to be explored completely, it can do partial 
~earche~. It provlde~ 3 dilferent modes tot state-space explo- 
ration. The entire state space is explored in the exhaustive 
mode. For larger systems state spaces, tile bit-state hash- 
ing mode performs a partial search using significantly less 
memory. The simulation mode explores single execution 
sequence ill tile state space. A random choice Is made be- 
tween the posstble next states at each stage. S ince  it does 

not keep track of the states already visited and could ex- 
plore some states multiple times while never exploring some 
other states. However, the simulation mode in SPIN usually 
discovers most bugs in the system. Most simulators are de- 
signed to accurately mimic the system being simulated. So, 
hard to find bugs that  occur infrequently on the real system 
also occur infrequently on the simulators. The SPIN simu- 
lator is different in that  it makes a random choice at each 
stage and is, therefore, more effective in discovering bugs. 

5.2 Translating ESP into SPIN Specifications 
The ESP code can be translated into the SPIN specifica- 

tion at various stages of the compilation process. The ESP 
compiler does this very ea r ly - - r igh t  after type checking--for 
several reasons, First,  the SPIN specification language does 
not support  pointers. So, the translat ion is much more diffi- 
cult at the lat ter  stage because it would require the compiler 
to carry some of the type information through the transfor- 
mations on the intermediate representations. Second, the 
addition of temporary variables during the compilation in- 
creases the size of the s ta te  space that  must be explored. 
The one disadvantage is that  any bugs introduced by the 
compiler cannot be caught by the verifier. 

The bESP compiler generates SPIN specification that  can 
instantiate multiple copies of the ESP program. This is 
achieved easily in SPIN by using an array of every da ta  
structure. Then each instance can access its da t a  by using 
its instantiation id. The abil i ty to run multiple copies of a 
ESP program under SPIN allows one to mimic a setup where 
the firmware on multiple machines are communicating with 
each other. 

The translation into SPIN specification is fairly straight- 
forward with a few exceptions. These stem from the lack of 
pointers and dynamic allocations. While ESP allows the size 
of the arrays to be determined at  run time, SPIN requires it 
to be specified at  compile time. This problem is addressed 
by using arrays of a fixed maximum size. This size can be 
specified per type. 

Another problem arising from the lack of pointers in SPIN 
is dealing with mutable da ta  types. For instance, 

$al: #array of int = #{ 5 -> 0 .... }; 
$a2 = al; 
$a213] = 7; 

/ /  Allocate 
/ /  Copy pointer 
/ /  Update 

Here, an update  to a2 has to be visible to a l .  Since, SPIN 
does not support  pointers, different memory is allocated for 
a l  and a2 and an assignment causes the entire structure 
to be copied. This causes a problem with mutable da ta  
structures because an update  to one structure a2 has to be 
visible in the other a l .  We address this by assigning an 
objectId to all objects at  allocation time. So, when objects 
get copied, the objectId also gets copied. Later,  when a 
structure is updated,  we update  the all s tructures with the 
same objectId. Although, this may appear  very inefficient, 
it does not increase the s tate-space that  has to be explored 
and, therefbre, does not significantly impact the verifiability 
ol the system. 

Memory safety of each individual process can be verified 
independently using the verifier (Section 4.4). To verify 
memory safety, we maintain a table that  maps the objec- 
l id  of the objects to reference count. Before each object 
access, the compiler inserts an assertion to verify that  the 
object is live. The objectId is reclaimed when the reference 
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count falls to 0 and the object  is freed. One positive side- 
effect of having to use fixed size reference count table is that  
the  verifier can often catch memory leaks. This is because a 
memory leak can cause the system to run out of objectIds 
during verification, 

5.3 Case Study: VMMC Firmware 
The motivation for using a verifier is to allow more ex- 

tensive testing than  achievable with conventional methods. 
In the earlier VMMC implementat ion,  we encountered new 
bugs every time we tried a different class of applications 
or ran it on a bigger cluster. The  state-space exploration 
performed by verifiers allows more extensive testing. 

We used SPIN throughout the development process. Tra- 
ditionally, model checking is used to find hard-to-find bugs 
in working systems. However, since developing firmware on 
the network interface card involves a slow and painstaking 
process, we used the SPIN simulator to implement and de- 
bug it. Once debugged, the firmware can be ported to the 
network interface card with little effort. 

As explained earlier (Figure 4), the programmer has to 
supply some test code ( t e s t . S P I N )  for each proper ty  to be 
checked. The code not only specifies the proper ty  to be 
verified but  also simulates external  events such as network 
message arrival. The test code is usually less than 100 lines 
each. Once writ ten,  these can be made par t  of the testing 
suite and used to recheck the sys tem whenever changes are 
made to it. 

We have successfully used the SPIN verifier in a number 
of situations. They  include: 

D e v e l o p m e n t  o f  R e t r a n s m i s s i o n  P r o t o c o l .  The retrans- 
mission protocol (a simple sliding window protocol with pig- 
gyback acknowledgement) was developed entirely using the 
SPIN simulator. The SPIN test  code used was 65 lines. 
Once debugged, the retransmission protocol was compiled 
into the firmware. It ran successfully on the network card 
without encountering any new bugs. The retransmission 
protocol in the earlier implementat ion required about  10 
days to get a working version. Since we developed our code 
using SPIN, it required 2 days. 

C h e c k i n g  M e m o r y  Sa fe ty .  Since memory safety is a lo- 
cal property of each process, each process can be checked 
separately for memory safety. To verify the memory safety 
of the biggest process in the firmware required 40 lines of 
test code. The entire s ta te  space was 2251 states and could 
be explored using exhaustive search mode in the SPIN veri- 
tier. I t  took 0.5 second to complete and required 2.2 Mbytes 
of memory. It should be noted tha t  an exhaustive search 
would not only catch all the memory safety bugs but also 
some memory leaks. The result is a safe system that  does 
not incur the overhead of garbage collection. 

The firmware had been debugged by the time our memory 
safety verifier was developed. So we ran the verifier on an 
earlier version of the system tha t  had a bug. The  bug was 
identified by the verifier. We also introduced a variety of 
memory allocation bugs that  access data. that  was already 
freed or introduce memory leaks. The verifier was able to 
find the bug in every case. 

State-space explosion prevented us from checking for system- 
wide properties like absence of deadlocks. We are currently 

working on extract ing more abs t rac t  models so thal the 
state-space search is more tractable. This hags allowed us 
to find several bugs in the firmware that, can cause dead- 
locks [15]. 

6. GENERATING EFFICIENT FIRMWARE 
As described earlier (Figure 4), the ESP compiler uses C 

as baekend and generates C code that can be used to gener- 
ate the firmware. In this section, we describe the ESP com- 
piler and then compare the performance of the new VMMC 
implementation using ESP with the earlier implementation. 

6.1 ESP Compiler 

P r o c e s s e s .  The ESP compiler requires the entire program 
for compilation. It, does whole-program analysis and gen- 
erates one big C function that  implements the entire con- 
current program. One approach is t,o t reat  each process a~s 
an automaton and t,o combine them to generate one large 
automaton [3, 18]. Although this approach provides zero- 
overhead context switching, it can result in exponential  growth 
in code size [11]. The ESP compiler takes a simpler ap- 
proach. I t  generates the code for the processes separately 
and context, switches between them. Since these processes 
are essentially s ta te  machines, the stack does not. have t,o be 
saved during a context switch---only the program counter 
needs to be saved and restored. This has a fairly low over- 
head and involves only a few instructions. 

The generated code has an idle loop tha t  polls for mes- 
sages on external  channels. When a message is available, it: 
checks to see if a process is waiting for that  message. If there 
is, it restar ts  tha t  process by .jumping to the location where 
the process was blocked. The process then executes till it 
reaches a synchronization point. If one or more processes are 
blocked waiting to synchronize, it picks one randomly and 
completes the message transfer. At this point, both the syn- 
chronizing processes can continue executing. ESP currently 
uses a simple stack-based scheduling policy. This schedul- 
ing policy picks one of these two processes to continue ex- 
ecution and adds  the other one to the ready queue (queue 
of processes tha t  are waiting to execute). The processes 
are executed non-preemptively. When the running process 
eventually blocks, the next process in the ready queue is ex- 
ecuted. This is repeated till there are no more processes to 
run and the program returns to the idle loop. 

The ESP compiler performs some of tlw *radii irma] ~1~I i- 
mizations like copy propagation and dead code elimination 
on each process separately be[ore combining them to gen- 
erate the C code. Although, the C compiler also perIbrms 
these optimizations,  the semantic information lost when the 
processes are combined to generate the C code makes it hard 
for the C compiler to perfbrm these opt imizat ions effectively. 

C h a n n e l s .  One way of implementing channeIs is to have 
a set of queues (one lbr each pa t te rn  used on the channel) 
that  writers can wait on. 9 This approach makes (,,lt fairly 
expensive. This is because, before blocking on an air state-  
ment, tile process has to be added to nmltiple queues (one 
for each case in the alt). When it is later unblocked, it has to 

9Although there can be multiple readers on a channel, there 
can only be one reader per -pa t te rn  on a channel. So a queue 
is not needed for the readers. 
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be removed from all these queues (which can require look- 
ing through the queue since it might be in the middle of the 
queue). 

The ESP compiler takes a different approach. It uses a 
bit-mask per process--one bit tbr every channel the process 
may block on. Blocking at  an all statement requires simply 
setting the right bit mask for the process, while unblocking 
requires zeroing out all the bits. This approach can have 
two problems. First ,  checking if a channel has a writer now 
requires checking the bit masks of multiple processes (as op- 
posed to just  checking the corresponding queue). However, 
since each process uses only a. few bits (much fewer than 32), 
the bit masks for several processes can be colocated on a sin- 
gle integer at compile time. Colocating the right processes 
can reduce the number of different masks to be checked to 1 
or 2. Second, we lose the FIFO ordering of the queues, and 
extra effort must be made to avoid introducing starvation. 
I h~wever, most of the t, ime only one other process is waiting. 
No extra  overhead is incurred in the common case. 

Another simple optimization that  helps agt's performance 
is postponing as much computation as possible until after 
the rendezvous. For instance, if an object has to be allo- 
cated before being sent over the channel, the allocation is 
postponed so that  the allocation does not happen if one of 
the other alternatives succeeds. 

M e s s a g e s  on channe l s .  Semantically, messages sent. over 
the channels require deep copies to be handed to the re- 
ceiving processes However. the implementation can simply 
increment the reference count of the objects to be sent over 
channel and jus t  send pointers to those objects. This works 
because only immutable objects can be sent over channels. 

The ESP compiler also avoids some unnecessary allocation 
associated with pat tern matching. For instance, if a process 
wants to send more that  one value over a channel, it has to 
put, it in a record. If the receiving process is using a pattern 
to access the components,  the compiler can avoid allocating 
the record. This is possible because the static design of 
the language allows the compiler to look at all the patterns 
being used to receive messages on a channel along with all 
lh( ,  s e l l ( l e t s  ol l  tlla.t c h a n l l e l .  

6.2 Case Study: VMMC Firmware 
b'igure 5 compares the perlbrmance of the earlier VMMC 

implementa~tion (vmmcOrig) with the performance of the 
new implementation using ESP (vmmcESP) using 3 mi- 
crobenchmarks. In addition, we also present the perfor- 
mance of the earlier implementation with the fast paths dis- 
abled (vmmcOrigNoFastPaths). The ESP implementation 
currently does not implement fast paths. 

The first microbenchmark measures the latency of mes- 
sages of different sizes between applications running on 2 
chllerent, machum~. This ~s measured by running a sim- 
ple pingpong application that send messages back and forth 
between 2 machines. Figure 5(a) shows that vmrncESP is 
around ~wme as slow as vmmcOmg fbr 4 byte messages and 
38 % slower for 4 Kbyte messages. However, vmracESP is 
only 35 % slower than vramcOrQNoFastPaths in the worst 
case (for 64 byte messages) but has comparable performance 
for 4 byte and 4 Kbyte messages. 

The second microbenchmark measures the bandwidth be- 
tween two machines for different message sizes. In this case, 
an application running on one machine continuously sends 
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data  of part icular  size to the second machine which sin> 
ply receives it. Figure 5(b) shows that  vmmcESP delivers 
4 1 %  less bandwidth as vmmcOri  9 for 1 Kbyte  messages 
and 14 % for 64 Kbyte  messages. However, vmmcE SP  is 
only 25 % slower than vmmcOrigNoFastPaths for 1 Kbyte  
messages and 12 % for 64 Kbyte  messages. 

The final microbenchmark measures the total bandwidth 
between two machines for different message sizes in a dif- 
ferent scenario. In this case, applications on two machines 
continuously send da ta  to each other simultaneously. Fig- 
ure 5(c) shows that  vmmcESP  delivers 23 % less bandwidth 
as vmmcOri  9 for 1 Kbyte  messages but  similar performance 
for 64 Kbyte  messages. Also, vmmcESP  is 20 % slower 
than vmmcOrigNoFastPaths for 1 Kbyte  messages but  sim- 
ilar performance for 64 Kbyte  messages. 

The microbenchmark performance shows tha t  vmmcESP 
performs significantly worse tha t  vmmcOrig in certain cases 
(latency of small messages). However, most of the perfor- 
mance difference is due to the bri t t le fast paths. Also, the 
performance difference is significantly less in the bidirec- 
tional bandwidth microbenchmark where the firmware has 
to deal with messages arriving on the network as well as the 
host at the same time. In the other two microbenchmark, 
the firmware has to deal with only one type of message at a 
given instant. 

The microbenchmarks represent the worst case scenario. 
The impact of the performance difference on real applica- 
tions should be much smaller [17, 5] for a number of reasons. 
First ,  the vmmcOr'ig numbers represent the performance of 
some hand-opt imized fast pa ths  in the system. These fast 
paths tend to be fairly brit t le and applications often fall 
off the fast path.  While some applicat ions [16] (which re- 
peatedly send very large messages) tha t  have very simple 
communication pat terns  benefit from the fast paths,  a lot 
of applications do not. SVM applicat ions [4] experience a 
lot of contention in the network and the actual  latency mea- 
sured by the different applicat ions varied between 3 times 
to 10 times slower than the microbenchmarks numbers for 
small messages. So, for most applications,  the vmmcOr'igNo- 
FastPaths is a more accurate representat ive than vmrncOri 9 
when comparing performance with vmmcESP. 

Second, the microbenchmarks represent applications that  
spend 100 °70 of their t ime communicating,  while most real 
applications spend only a fraction of their time communi- 
cating and are, thereibre, less sensitive to firmware perfor- 
mance [17, 51. 

Finally, we plan to implement more aggressive optimiza- 
tions that  should decrease the performance gap. For in- 
stance, data-flow analysis is currently perl0rmed on a pet' 
process basis. We plan to extend data-flow analysis across 
processes. 

7. RELATED W O R K  
Devices are usually programmed using event-driven s tate  

machines in languages like C, and sometimes, in assembly. 
We are not aware of any other high-level language for pro- 
gramming network devices. 

C o n c u r r e n c y  T h e o r y .  A number of languages like CSP [13] 
and Squeak [61 have been designed to gain bet ter  under- 
standing of concurrent programming. Both of these lan- 
guages suppor t  processes communicat ing with each other. 
However, they were not designed with efficient implementa- 

t;ion in mind, 

C o n c u r r e n t  L a n g u a g e s .  A number of languages like CML [191. 
Java [1] and OCCAM [20] suppor t  concurrency. CML [191 
provides first-class synchronous operations. OC(:;AM [20] 
was designed to implement concurrent prograrn;~ that nm 
on a parallel machine. Java [1}, like most other program- 
mint  languages, provides user-level threads to express con- 
currency. All these systems are fairly expressive and hard 
to be compiled efficiently for devices. 

C o d e  G e n e r a t i o n + V e r i f i c a t i o n .  A number of other lan- 
guages [3, 8, 2] have taken a similar' approach of generating 
efficient executables as well as specifications tha t  can be used 
by a verifier. However, they differ from ESP significantly. 

Esterel [3] was designed to model the control of synchronous 
hardware and has been used recently to efficiently impl~,- 
ment a subset of TCP protocol {7]. It adopts  the s:l/.,.- 
chronous hypothes~s--the reaction to an external  event is 
ins tan taneous- -and  ensures tha t  every reaction has a unique, 
and therefore, determinist ic reaction. This makes the pro- 
grams easier to analyze and debug. The  esterel programs 
can be compiled to generate both soft:ware and hardware m> 
plementations. However, using esterel to implement device 
firmware has several drawbacks. First.  the reactions are not 
instantaneous in practice. For instance, if a DMA becomes 
available while an event was being processed, it cannot be 
used to process the current event. The "DMA available" 
event would be registered on the next clock tick and woHld 
be then available for rise. This results in inefficient use of the 
DMA. Second, the synchronous hypothesis b rces  some con- 
straints  on valid programs. For instance, every i teration of 
a loop has to have a "time consuming" operation like signal 
emission. In addition, this constraint  has to be w~rifiable by 
the compiler. This disallows simple loops that  initialize an 
array. Finally, the language is designed to encode only the 
control portion of the program. The da t a  handling has to 
be performed externally using the C interface. This forces 
some of the complex tasks including memory management  
to be implemented in C. 

Teapot [8] is a language fbr writing coherence protocols 
that  can generate efficient protocols as well as \'erifly cor- 
rectness. It uses a s ta te  machine to keep track of the state 
of a coherence unit (a cache line or a page). The state ma- 
chine is specified using a set of handlers similar to the C 
interface described in Section 2.2. However. they use con- 
tinuations to reduce the number states tha t  the programmer 
has to deal with. While this approach works well when ap- 
plied to coherence protocol, it suffers fbr some of the same 
problems described in Section 2.2 when used to irnplen,ent 
device firmware. Teapot  Mso does not provide any support  
for complex da ta types  and dynamic memory management  

P romela++ [2] is a language designed I.o mlplemcnt la.y.- 
ered network protocols. The adjacent  layers communicate 
using F IFO queues. Although, the layered framework works 
well for writing network protocols, they are too restrictive 
for writing firmware code where the different modules have 
much more complex interactions. Also, they do riot provide 
any support  for dynamic memory management.  

S o f t w a r e  T e s t i n g .  Some systems [12, 9] have been suc- 
cessful in finding bugs in existing software written m tra.d> 
tional languages like C. Verisoft [121 does this by modifying 
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the scheduler of the concurrent system to do a state-space 
exploration. Meta-level Compilation [9] attempts to verify 
s.ystem-specffic invariants at compile ume. However, these 
systems do not, simplify the task of writing concurrent pro- 
gralub. 

8. CONCLUSIONS 
We have presented the design and implementation of ESP-,- 

a language for programmable devices. ESP has a number 
of language features that allow development of compact and 
modular concurrent programs. ESP programs can be devel- 
oped and debugged using the SPIN model-checking verifier. 
The compiler automatically generates SPIN specifications 
from ESP programs. Once debugged, ESP programs can 
be compiled into efficient firmware that runs on the pro- 
grammable device, 

We have reimplemented VMMC firmware for the Myrinet 
network interlace cards using ESP. Our main conclusions 
are the following' 

* Programnfing event-driven state machines can be lairly 
easy with the right language support. We found that 
the firmware can be programmed with significantly 
fewer lines of code. In addition, since C eode is used 
only to perform simple operation& all the complexity is 
localized to a small portion of the code (about 300 lines 
in our implementation). This is a significant improve- 
ment over the earlier implementation where complex 
lUbetaCblOllb were scatbered over the entire G program 
(15600 lines). 

® Model-checking verifiers like SPIN can be used to ex- 
t, ensivety test the firmware. However, state-space ex- 
plosion limits the size of the models that can be checked. 
SPIN was used to develop and debug a retransmission 
protocol. The new implementation took around 2 days 
(compared to the earlier implementation which took 
around 10 days). SPIN was also used to exhaustively 
check the memory safety on the firmware. 

® The performance overhead of using ESP is relatively 
small. Our microbenchmarks measurements indicate 
that most of the per[brmance difference with the ear- 
lier implen~entation of VMMC is due to brittle fast, 
paths that rarely benefit applications. Based on ear- 
lier application studies [17, 5], we expect the impact of 
the ext, ra performance overhead to be relatively small. 
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A P P E N D I X  
A.  C EXAMPLE 

We present a code fragment tha t  illustrates the task of' 
programming with event-driven s ta te  machines in C. It uses 
a typical event-driven s tate-machines programming interface 
in C which includes the following functions: 

s e t H a n d l e r ( s m , s , e , f )  Sets function f r o  be the handler for 
event e when the s ta te  machine s m  is in s ta te  s. 

s e t S t a t e ( s m , s )  Moves s ta te  machine sm to s ta te  s. 
i s S t a t e ( s m , s )  Checks if s tate machine sm is in s ta te  s. 
d e l i v e r E v e n t ( s m , e )  Deliver event e to state machine sin. 

The C code fragment presented in this section implements 
the following functionality. The s ta te  machine s g l  is respon- 
sible for handling requests from applications.  On receiving a 
request to send data ,  it DMAs the da ta  from the users mem- 
ory onto the network card and hands  it over to s ta te  machine 
SM2 (which is responsible for sending it over the network). 
Then, Sgl  waits for the next request. While processing the 
send request., SM1 might need t.o block if the DMA is busy 
or if SM2 is not ready to accept the request. 

During initialization, the handlers for different events are 
set up and the s ta te  machine is initially in s ta te  Waitgeq. 
When a request from the user arrivers (event UserReq). the 
corresponding handler handleReq is triggered. Since the 
user specifies vir tual  address of the  data,  it is first t ranslated 
into physical address by calling function t r a n s l a t e A d d r  tha t  
performs a table lookup. Then, it checks if the DMA is 
available. If it is, it calls f e t c h D a t a  directly. Otherwise, it 
sets the s ta te  of the s ta te  machine SM1 to WaitForDMA and 
blocks. In this case, f e t c h D a t a  will be called when the DMA 
becomes available (because it is the handler) 

When f e t c h D a t a  is invoked, it DMAs the da ta  from the 
applications memory onto the network card by calling dmaData () .  
Then, it checks to see if the s ta te  machine SM2 is ready to 
accept data.  If it  is, it calls syncSM2 directly. Otherwise, 
it sets the s ta te  of the s ta te  machine SM1 to WaitSM2 and 
blocks. In this case, syncSM2 will be called when SM2 is 
finally ready to accept data.  

When syncSM2 is invoked, the request is handed over to 
SM2 by updat ing global variable reqSM2. Then an event 
SM1Ready is delivered to SM2. This will eventually cause the 
corresponding handler in sg2 to be invoked. Finally, it sets 
the state of SM1 to waitReq and waits for the next request. 

e n u m  SCateMachineT { SM1, SM2 . . . .  }; 
e n u m  StateT { Waitgeq, WaitDMA, WaitSM2, WaitSMl, ,,.}; 
enum EventT { UserReq, DMAFree, SM2Ready, SMIReady .... }; 
enum UserReqT { SendReq, UpdateKeq .... }; 

ReqSMl *reqSMl ; 
ReqSM2 *reqSM2; 
int pAddr, *sendData; 

maln() { 

" / /  Initiab:ze s tate  'machine SM1 
setHandler( SMI, WaitReq, UserReq, handleReq); 
setHandler( SM1, WaitDMA, DMAFree, fetchData) ; 
setHandlsr( SMI, WaitSM2, SM2Ready, syncSM2) ; 
setState( SMI, WaitReq); // [nitial State 

void h~ndleReq() { // Req Aas armved 
switch ( r e q S M l - > t y p e )  { 
case SendReq: 

pAddr = tr~islateAddr( reqSMl->vAddr); 
if (dmaIsFree()) fetchData(); 
else setState( SMi, WaitForDMA); 
r e t u r n ;  / /  Block State machine 

ease  UpdateReq: 
upda t eAddrTrans (  reqSMl->vAddr,  reqSMl->pAddr) ;  

} 
void fetchData() { // DMA ~s available 

sendData = dmaData( pAddr, reqSMi->size); 
if  (isState(SM2,WaitSM1)) syncSM2(); 
else setState( SMi, WaitSM2); 

} 

void syncSM2() { // SM2 is ready for  next Teques~ 
reqSM2->data = sendData; 
reqSM2->dest = reqSMl->dest; 
deliverEvent( SM2, SMiReady); 
setState( SMI, WaitReq); // Wazt ~ r  r~ex~ ~wquesf 

} 

B. ESP EXAMPLE 
This section presents ESP code fragment that  is used to 

i l lustrate different aspects of the ESP language throughout  
this paper.  It implements some of the same functionality 
described in Appendix  A. 
t y p e  da taT = a r r a y  o f  i n t  
t y p e  sendT = r e c o r d  o f  { d e s t :  i n t ,  vAddr: i n t ,  s i z e :  in t}  
t y p e  updateT = r e c o r d  o f  { vAddr: i n t ,  pAddr: in t}  
type userT = union of { send: sendT, update: updateT .... } 

channel ptReqC: record of { ret: int, vAddr: int} 
channel ptReplyC: record of { ret: int, pAddr: int} 
channel dmaReqC: record of { ret: int, pAddr: int, size: int} 
channel dmaDataC: record of { ret: int, data: dataT} 
channel SM2C: record of { dest: int, data: dataT} 
channel userReqC: userT // Ezternal (aka O) writer 

p r o c e s s  pageTab le  { / /  virtual to physical address "mappzn9 
S t a b l e :  # a r r a y  o f  i n t  = #{ TABLE_SIZE -> 0, . . .  }; 
w h i l e  ( t r u e )  { 

a i r  { 
case( in( ptKeqC, { $ret, $vAddr})) { 

// Request to lookup a mapping 
o u t (  p tReplyC,  { r e t ,  t a b l e [ v A d d r ] } ) ;  

} 
c a s e (  i n (  userReqC,  { u p d a t e  t> { $ v t d d r ,  $pAddr}}))  { 

/ /  Request to update a mapping 
t a b l e  [vAddr] = pAddr; 

} 
} 

} 
} 

p r o c e s s  SM1 { 
w h i l e  ( t r u e )  { 

in( userReqC, { send I> { $dest, $vAddr, $slze}}); 
out( ptReqC, { @, vAddr}); 
in( ptReplyC, { @, $pAddr}); 
out( dmaReqC, { @, pAddr, size}); 
in( dmaDataC, { @, $sendData}); 
out( SM2C, { dest, sendData}); 
u n l i n k (  sendData); 

} 
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