
ESP: A Language for Programmable Devices
Sanjeev Kumar, Yitzhak Mandelbaum, Xiang Yu, and Kai Li

Princeton University
(sku mar, yitz h akm ,xyu, li) @ cs. princeton, edu

ABSTRACT
This paper presents the design and implementation of Event-
driven State-machines Programming (E S P) - - a language for
programmable devices. In traditional languages, like C, us-
ing event-driven state-machines forces a tradeoff that re-
quires giving up ease of development and reliability to achieve
IJlg}l p~,ti~rlnallc~, ESP is designed to provide all of these
three properties simult.aneously.

ESP provides a comprehensive set of teatures to support
development of compact and modular programs. The ESP
compiler compiles the programs into two targets---a C file
that can be used to generate efficient firmware for the device;
and a specification that can be used by a verifier like SPIN
to extensively test the firmware.

As a case study, we reimplemented VMMC firmware that
runs on Myrinet network interface cards using ESP. We
found that ESP simplifies the task of programming with
event-driven s tate machines. It, required an order of magni-
I~:,;~ i~'~\{'l !li l t '> ,,I t l,~l{' [lUItl l iB ' [)l '(' \ ' iOIl~ i i l l [)]e l l l (ql l ,&tiol i ,
\.Ve also fbund that model-checking verifiers like SPIN can
be used to effectively debug the firmware. Finally, our mea,
surements indicate that the perfbrmance overhead of using
ESP i~ relat, ively small.

1. INTRODUCTION
Concurrency is a convenient way of structuring firmware

for programmable devices. These devices tend to have lim-
ited CPU and memory resources and have to deliver high
performance. For these systems, the low overhead of event-
driven s tate machines often makes them the only choice tbr
~'xpl~ssi|ig coJicuiq'ellcy. Their low overhead is achieved by
.~upporting only the bare minimum functionality needed to
write these programs. However, this makes an already diffi-
c u r task of writing reliable concurrent programs even more
challenging. The result is hard-to-read code with hard-to-
find bugs resulting from race conditions.

The VMMC firmware [10] for Myrinet network interface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PLD/2001 6/O1 Snowbird, Utah, USA
© 2001 ACM ISBN 1-58113-414-2/01106...$5.00

cards was implemented using event-driven state machines in
C. Our experience was that while good perfbrmance could
be achieved with this approach, the source code was hard to
maintain and debug. The implementation involved around
15600 lines of C code. Even after several years of debugging,
race conditions cause the system to crash occasionally.

ESP was designed to meet the following goals, First, the
language should provide constructs to write concise modu-
lar programs. Second, the language should permit the use
of software verification tools like SPIN [14] so that the con-
current programs can be tested thoroughly. Finally, the lan-
guage should permit aggressive compile time optimizations
to provide low overhead.

ESP has a number of language features that allow devel-
opment of fast and reliable concurrent programs. Concur-
rent programs are expressed concisely using processes and
channels. In addition, pat tern matching on channels allows
an object to be dispatched t ransparent ly to multiple pro-
cesses. A flexible external interface allows ESP code to in-
teract seamlessly with C code. Finally, a novel memory
management scheme allows an efficient and verifiably safe
management of dynamic data.

We reimplemented the VMMC firmware on Myrinet net-
work interface cards using ESP. We found that the firmware
can be programmed with significantly fe.wer lines of code.
in addition, since the C code is used only to perfbrm simple
operations, all the complexity is localized to a small portion
of the code (about 300 lines in our implementation). This
is a significant improvement over the earlier implementation
where the complex interactions were scattered over the en-
tire C code (15600 lines).

The SPIN verifier wens used to develop and extensively test
the VMMC firmware. Since, developing code on the network
card often slow and painstaking, parts of the system were
developed and debugged entirely using the SPIN simulator.
SPIN was also used to exhaustively verify the memory safety
of the firmware. Once the propert ies to be checked by the
verifier are specified, they can be rechecked with little effort
as the system evolves.

The ESP compiler generates efficient firmware. We used
microbenchmarks to measure the worst-ease performance
overhead in the firmware. Based on earlier application stud-
ies [17, 5], we expect the impact of the extra performance
overhead to be relatively small.

The rest o[the paper is organized as tbllows. Section 2
presents the motivation for a new language. Section 3 de-
scriber our three goals and our approach. The next three
sections (Sections 4, 5 & 6) describe how ESP meets each

309

of the three goals. Section 4 provides the design of the ESP
language. Section 5 describes how the SPIN model-checking
verifier can be used to develop and test ESP programs. Sec-
tion 6 shows how the ESP compiler generates eMcient code
and presents some performance measurements. Section 7
describes the related work. Finally, Section 8 presents out"
conclusions.

2. MOTIVATION
Devices like network cards and hard disks of'te~ include a

programmable processor and memory (Figure 1). This al-
lows the devices to provide sophist icated features in tfirmware.
For instance, disk can support aggressive disk head sehedul-
ing algorithms in firmware.

Bus

Network

F igure 1: P r o g r a m m a b l e D e v i c e s

The firmware for programmable devices is often programmed
using concurrency. Concurrent programs have mult iple threads
of' control that coordinate with each other to periorm a smgle
task. The mult iple threads of control provide a convenient
way of keeping track of mult iple contexts in the firmware.
In these situations, concurrency is way of s t ructur ing a pro-
gram tha t runs on a single processor.

Concurrent programs can be writ ten using a variety of
constructs like user-level threads or event-driven s tate ma-
chines. They differ in the amount of functionality provided
and the overhead involved. However, the programmable de-
vices tend to have fairly l imited CPU and memory resources.
Since these systems need to deliver high performance, the
tow overhead of event-driven s ta te machines make them the
only choice.

In this paper, we describe a language called ESP tha t can
be used to implement firmware for programmable devices.
We were motivated by our experience with implementing
the VMMC firmware. We use VMMC firmware as a case
s tudy to evaluate the ESP language. In this section, we
s tar t with a description of VMMC. Then we examine the
problems with event-driven s ta te machines programming in
tradit ional languages like C and motivate the need for a new
language for writing firmware for programmable devices.

2.1 Case Study: VMMC Firmware
The VMMC architecture delivers high-performance on Ci-

gabit networks by using sophist icated network cards. I t al-
lows da ta to be directly sent to and from the application
memory (thereby avoiding memory copies) without involw
ing the operat ing system (thereby avoiding system call over-

head). The operat ing system is usually involved only during
connection setup and disconnect.

The current VMMC implementat ion uses the Myrinet NeL-
work Interface Cards. The card has a programmable 33-
MHz LANai4.1 processor, 1-Mbyte SRAM mernory and 3
DMAs to transfer data--- to and from the host memory; to
send da ta out onto the network; and to receive data. from
the network. The card has a number of control registers
including a s ta tus register that needs to be polled to check
for da ta arrival, watchdog timers and DMA status.

Main
Processor

N e t w o r k
Inter face

C a r d

Network

Figure 2: V M M C Sof tware Archi tec ture : T h e
shaded regions are t h e V M M C c o m p o n e n t s .

The VMMC software (Figure 2) has 3 components: a li-
brary that links to the application; a device driver that is
used mainly during connection setup and disconnect; and
firmware that runs on the network card. Most of the soft-
ware complexity is concentrated in the firmware code which
was implemented using event-driven s tate machines in C.
The entue system was developed over several years and most
of the bugs encountered were located in the firmware. Our
goal is to replace the firmware using the ESP language.

2.2 Implementing Firmware in C
Event-driven state machines provide the bare mimmum

functionality necessary to write concurrent p rograms- - the
ability to block in a part icular s ta te and to be woken up
when a part icular event occurs. This makes them fairly
difficult to program with. We il lustrate event-driven state-
machines programming in C with an example. The C codp
fragment ~s presented in Appendix A and is i l lustrated m
Figure 3.

A program consists of multiple state-machines. For each
state in a s ta te machine, a handler is provided for every event
that is expected while in that state. When art event occurs,
the corresponding handler is invoked. The handler processes
the event, t ransit ions to a different s ta te and blocks by re-
turning from the handler. All the s ta te machines share a
single stack.

There are several problems with this approach. First , the
code becomes very hard to read because the code gets frag-
mented across several handlers.

Second, since the stack is shared, all the values tha t are
needed later [lave to be saved explicitly in global variables
before a handler blocks. So da ta is passed between han-
dlers through global variables (e,g. pAddr, sendData). In
addition, global variables are also used by s tate machines
to communicate with each other (e.g. reqSM2), i t is very

310

In#in/| j r event UserReq execute handleReqO~
J

wai%£'a [
event DMAFree execute fetchDataO
@ O @

vent SM2Ready execute syncSM201
• ®

F i g u r e 3: P r o g r a m m i n g in C. T h e code is p r e s e n t e d
in A p p e n d i x A. A s t a t e m a c h i n e is specified us ing
a set of h a n d l e r s . For each s t a te in a s t a te mach ine ,
a list of (e v e n t , h a n d l e r) pa i r s has to be p rov ided .
W h e n a n e v e n t occurs~ the c o r r e s p o n d i n g h a n d l e r is
invoked . A h a n d l e r is a C f u n c t i o n takes no argu-
m e n t s a n d r e t u r n s void.

hard to get the right synchronization to keep from clobber-
ing data..

Third. memory to allocate buffers for the data has to be
managed explicitly. In a concurrent setting, this is hard
to implement correctly when data is used by several state
machines before it is eventually freed. Depending on the
tuning, a different state machine might be the last one to
use the data. and, therefore, be responsible for freeing. When
necessary, explicit reference counts have to be maintained.
II is easy to overlook the need for adding reference counts
bo some data structures and introduce tricky allocation bugs
lhat a.re hard t,o find.

Fourth, functions are an inappropriate abstraction mecha-
nism for programming with state machines. This is because
a state machine can block only by returning fi'om a han-
dler. As the firmware evolves, there might be a need to
block within a flmction that is not a handler. For instance,
in our original implementation, the function t rans la teAddr
was implemented as a simple table lookup. However, as
the firmware evolved, the table became a cache of transla-
tions and the entire table was moved to the host memory.
This meant that if' there was a miss m the translation cache,
the translation had to be DMAed from the host memory.
But if tile DMA was not available, it would need to block.
This required extensive rewrite of the code and addition of
more states to the state machine. In general, the amount of
rewrite is proportional to the nesting depth of the function
that wants to block.

Fifth, union data.types are used extensively in these sys-
tems to encode different possible requests. So, a lot of
handlers have a switch statement to deal with different re-
quests. For instance, an application could request for a mes-
sage to be sent SendReq or to update the virtual to physical
translation UpdateReq. Since these requests are handled by
the same handler handleReq, their code had to be colocated
even when it; makes more sense for these to be implemented
m separate modules. A dzspatch mechanism supported by
the language would simplify the implementation.

Finally, hand-optimized fast paths are often built into the
system to speed up certain requests. These fast paths rely
on global information like the state of the various state ma-
chines and their data structures and violate every abstrac-
tion boundary. For instance, in VMMC firmware, a par-
ticular fast path is taken if the network DMA is free and
no other request is currently being processed (this requires
looking at the state of multiple DMAs). In addition, the
fast path code updates global variables used for retransmis-
sion and might have to update the state of several state
machines. These fast paths complicate the already complex
state-machine code even further.

ESP aims to address these problems without incurring too
much performance penalty. As we shall see, the ESP code
corresponding to the C code (Figure 3) can be written much
more succinctly and readably (Appendix B).

3. GOALS AND APPROACH
ESP is a language designed to support event-driven State-

machines programming. It has the following goals:

Ease of d e v e l o p m e n t To aid programming, the language
should permit the concurrency to be expressed simply.
It should also provide support for modularity, dynamic
memory management and a flexible interface to C.

P e r m i t e x t e n s i v e t e s t i n g Concurrent programs often suf-
fer from hard-to-find race conditions and deadlock.
ESP should support the use of software verifiers so
that the programs can be tested extensively. Cur-
rently, ESP uses the SPIN verifier. SPIN [14] is a
flexible and powerful verification system designed to
verify correctness of software systems. It uses model-
checking to explore the staLe-space of the system.

Low p e r f o r m a n c e p e n a l t y These concurrent programs are
designed to be run on a single processor. To have low
performance overhead, concurrent programs in ESP
should permit aggressive cornpile time optimizations.

In traditional languages, like C. using event-driven state-
machines forces a tradeoff that requires giving up ease of de-
velopment and reliability to achieve high performance. ESP
is designed to provide all of these three properties simulta-
neously.

To meet these design goals, the ESP language is designed
so that it can not only be used to generate an executable
but also be translated into specification that can be used
by the SPIN verifier (Figure 4). The ESP compiler takes
an ESP program (pgm.ESP) and generates 2 files. The gen-
erated C file (pgm. C) can then be compiled together with
the C code provided by the user (help.C) to generate the
executable. The programmer-supplied C code implements
simple device-specific functionality like accessing device reg-
isters. The SPIN file (pgra. SPIN) generated by the ESP com-
piler can be used together with programmer-supplied SPIN
code (t e s t . SPIN) to verify different properties of the sys-
tem. The programmer-supplied SPIN code generates exter-
nal events such as network message arrival as well as spec-
ifies tile properties to be verified. Different properties of
the system can be verified by using pgra. SPIN together with
different t es t .SPIN files.

311

Generate Firmware Run SPIN Verifier

F i g u r e 4: S h a d e d r eg ions are code p r o v i d e d by the use r

4. EVENT-DRIVEN STATE-MACHINES PRO-
GRAMMING (ESP) LANGUAGE

ESP is based on the CSP [13] language and has a C-
style syntax. ESP supports Event-driven State-machines
Programming. The basic components of the language are
processes and channels. Each process represents a sequential
flow of control in a concurrent program. Processes commu-
nicate with each other by sending messages on channels. All
the processes and channels are static and known at compile
time.

Appendix B presents the implementat ion of the example
(Section 2.2) in ESP. In this section, we will use fragments
from that code to illustrate the various language features.

4.1 Types, Expressions and Statements
ESP supports basic types like i n t and bool as well as

mutable and immutable versions of complex datatypes like
record, un ion and array.1 Types can be declared as follows:

type sendT = record of { dest: int, vAddr; int, size: int}
type updateT = record of { vhddr: int, pAddr: int}
type userT = union of { send: sendT, update: updateT, ...}

ESP does not provide any global variables. All variables
have to be initialized at declaration time (New variable dec-
laration is indicated with a $ prefix). Types do not, have to
be specified when they can be deduced (ESP does a simple
type inferencing on a per s ta tement basis). For instance:

8i: int = 7; / / Declare Variable
i = 45; / / Update Variable
$j = 36; / / Type inferred

ESP provides the common imperative constructs like
i f - t h e n - e l s e statements and whi le loops. However, it does
not provide reeursive data types or functions. Reeursive
data types are not supported because they cannot be trans-
lated easily into the specification language of the SPIN veri-
fier. Functions are not supported because processes provide
a more appropriate abstraction mechanism in a concurrent
setting (Section 4.3).

4.2 Channels
Communication over channels are synehronous--a sender

has to be at tempting a send (using the out construct) con-
currently with a receiver a t tempt ing to receive (using the in

t A # prefix indicates a mutable data structure.

construct) on a channel before the message can be success-
fully transferred over the channel. Consequently, both -in
and out are blocking operations. Using synchronous char>
nels has several benefits. First, they simplily reasoning
about message ordering, especially when processes can have
complex interactions. Second, they can be implemented
more efficiently than buffered channels. When buffering is
required, it can be implemented explicitly by the program-
mer. Finally, buffered channels increa-~e the size of ~tatp-
space that has to be explored during verification.

The alt construct allows a process to wait on the z'n,/o'u,t
readiness of multiple channels I~lowe\'er, f'or each ext'cul irm
of an alt statement, only the actions associated with a single
channel are performed. In the case where multiple channels
are ready, a single channel is selected. The channel selec-
tion algorithm need not be fair (it may favor performance
critical channels), but must prevent starvation [20]. The %l-
lowing is a code fragment from a process that implements
a FIFO queue. The macros FULL, EMPTY and INCR have the
expected functionality. The first alternative accepts new
messages and inserts them at the tail of the queue The sec-
ond alternative sends the message at the head of the queue
and then removes it from the queue. Note that the first
alternative is disabled when the buffer is full and second is
disabled when the buffer is empty.

while {
alt {

case(!FULL, in(ehanl, Q[tl]) { INCR(tl); }
case(!EMPTY, out(ehan2, Q[hd])) { INCR(hd); }

}
}

One of the features of the language is the use of pattern
matching to support dispatch. Pat tern-matching is used m
languages like ML to provide more expressive switch state-
ments. ESP uses it to support dispatch. Patterns have
the same syntax as the one used for a.lloca.ting uni(ms awl
records. They can be differentiated based on their' pc~sil ~cm
in a statement. They are considered a pattern when they
occur in an lvalue position and cause allocation when they
occur in a rval~e position.

$sr: sendT = { 7, 54677, 1024};
Surf: userT = { send I> sr};
Sur2: userT = { send l> { 5, lO000, 5 i 2 } } ;
{ send I> { $dest, SvAddr, $size}}: userT = $ur2;

In the above code, the first line initializes sr to a newly
allocated record. The second line initializes u r l to a newly

312

allocated union with a valid send field 2 that points to the
record in sr. The third line initializes ur2 to a newly allo-
cated union with a valid send field that points to a newly
allocated record. The fourth line has a pattern on the left
hand side and pattern matching causes variables dest , vAddr
and s i ze to be initialized to 5, 10000 and 512 respectively

Patterns can be specified in an in operation. For example,
consider process A performs

in(userKeqC, { send i> { Sdest, $vAddr, $size}});

tO accept only send requests while a process B pertbrms

in(userReqC, { update I> { $vAddr, $pAddr}});

to accept only update requests. When process C performs

out(userReqC, req) ;

the object will be delivered to process A or B depending on
which pattern it matches. This frees the process C from try-
ing to figure out the appropriate processes and sending the
message to that process. To support this functionality effi-
cmntly, ESP requires that; all the patterns used on a channel
have to be disjoint and exhaustive--an object has to match
exactly one pattern. In addition, each pattern can be used
by (me process only So. although a channel can have mul-
tiple readers and writers, a channel together with a pattern
defint,,~ a port which can have nmltiple writers but only a
single reader.

Objects sent over' channels are passed by value. Since
there are no global variables, this ensures that processes
can communicate only by sending messages over channels.
To support this efficiently, ESP allows only immutable ob-
jects t.o be sent over channels This applies not only to the
ob.lect specified in the out operation but also to all objects
recursively pointed to by that object.

A cast operation allows casting an immutable object into
a llml.ablc objecl and vice versa. Semantically, the cast op-
eration causes a new object to be allocated and the corre-
spondillg values to copied into the new object. However,
the compiler can avoid creating a new object in a number of
cases. For instance, if the compiler can determine that the
object being cast is no longer used afterwards, it can reuse
that object and avoid allocation.

4.3 Processes
Processes in ESP implement state machines--each loca.-

t, ion in the process where it can block implicitly represents
a state in the state machine.

process add5 {
while(true) {

in(chanl, $i);
out(ehem2, 5.+5) ;

}
}

The above process represents a state machine with 2 states.
The first state is when it is blocked waiting on an in opera-
tion on channel chanl and the second when it is blocked on
an owe operation on channel chart2.

Processes in ESP are lightweight in that they do not need
a stack to run This is because ESP does not support func-
tions, allowing the local variables of a process to be allocated

eExactly one field of a union has to be valid

in the static region. Thus a context switch only requires sav-
ing the current location in one process and jumping to the
saved location in another.

In ESP, the processes are used to support abst ract ion--
functions are not supported. For example, consider the fol-
lowing code fragment from a process which implements a
page table which maps virtual addresses into physical ad-
dresses (Appendix B). The mapping is maintained in the
array t ab le . When it receives a request to translate virtual
address to physical address, it uses the virtual address to
lookup the mapping and sends a reply back to the request-
ing process. The r e t specifies the process making the re-
quest so that the reply can be directed back to that process.
The second case accepts requests to update the mapping
and updates the table.

alt {
c a s e (in(ptReqC, { $ret, $vAddr})) {

/ / Request to lookup a mapping
out(ptReplyC, { ret , table[vAddr]});

}
c a s e (in(userReqC, { update I> { $vAddr, $pAddr}})) {

/ / l~eqaes~ to ~,pdale a rr~appin 9
table [vAddr] = pAddr;

}
}

To mimic the behavior of functions that expect return
values, a pair of out and in operations. For instance: 3

out(ptReqC, { @, vAddr});
in(ptReplyC, { @, $pAddr});

On the other hand, functions that do not expect a return
value can be modeled using an out operation

out(userReqC, { update I> { vAddr, pAddr}});

ESP processes are a more appropriate abstraction mech-
anism than functions in a concurrent setting because an
ESP process can block on an event, while allowing such be-
havior in a function cannot be done without a stack (Sec-
tion 2.2). In addition, the process abstraction allows flexi-
bility in scheduling computation. For instance, if no return
values are expected (see last example), the code to update
the table can be delayed until later.

4.4 Memory Management
Memory allocation bugs are often the hardest to find espe-

cially in the context of concurrent programming. However,
supporting automatic memory management usually involves
too much overhead (both in terms of space and time). On
the other hand, explicit memory management with malloc
and :free are hard to program correctly with.

ESP provides a novel explicit management scheme to al-
low efficient but bug free memory management. The key
observation is that memory bugs are hard to find because
memory safety is, usually, a global property of a concurrent
program--memory safety cannot be inferred by looking only
at a part of the program. To rectify this, ESP is designed
to make memory satety a local property of each process.

When objects are sent over channels, deep copies of the
objects are delivered to the receiving process. 4 Hence, there

:~ is a constant different fbr each process (a process id).
J'I'his is true only semantically. The implementation never
has to actually copy the object.

313

is no overlap between the objects accessible to different pro-
cesses. Therefore, each process is responsible for managing
its own objects. Bugs in the other processes do not effect it.

ESP provides a reference counting interface to manage
memory. ~ At allocation time, ~ the reference count is set, to
1. ESP also provides 2 primitives (l i n k a.nd un l ink) to ma-
nipulate the reference counts. The l i n k primitive increases
the reference count of the object while the u n l i n k decreases
the reference count of the object. If this causes the refer-
ence count of an object to become 0, it frees the object and
recursively invokes unlink on the objects pointed by it,

ESP is designed so tha t l i n k and u n l i n k are the only
source of unsafeness in language. However, since the un-
safeness is local to each process, the SPIN verifier can be
used to verify safety of each process separately. This makes
it less vulnerable to state-explosion in the verifier. In fact,
the SPIN verifier was able to verify the safety of all pro-
e(,sses llsed to impiernent th(, VMMC firmware fairly easily
(Section 5.3).

4.5 External InterNee
The firmware implementat ion has to deal with special reg-

isters, volatile memory and layout of packets sent/received
on the network. ESP addresses this by providing an external
interface to interact with C code.

In addition, the specification derived from the ESP code
has to interact with some programmer provided SPIN code
during verification (Figure 4).

ESP provides a single external interface for both SPIN and
C code. It uses the channel mechanism to suppor t external
interfaces. This is different f?om the t radi t ional approaches
of either allowing C code to be directly embedded in the
program [6, 2] or allowing functions tha t are implemented
externally to be called [3, 8].

Using channels to provide external interfaces has a num-
ber of advantages. First , ESP processes often block on ex-
ternal events like arrival of user request or network pack-
ets. Using channels allows a process to use the existing con-
structs to block on external events. Second, external code
can also use the same dispatch mechanism built into chan-
nels through pat tern-matching Finally. it prc~mc~tes mnd , -
laritv. For instance, if retransmission is no longer required,
the retransmismon processes can be dropped and the chan-
nels used to interact can be converted into external channels.
Other processes that were using these channels are not ef-
fected because they cannot tell the difference between an
external channel and a regular channel.

A channel can be declared to have an external reader or
writer but not both . For example:

channel usargeqC: aserT / / External C writer
interface userReq(out userReqC) {

Send({ Send I> { Sdest, SvAddr, Ssize}),
Update({ Update I> Snew}),

}

defines a channel with a external writer. The $ prefix
in the pa t te rn indicates a parameter to be passed to the C
function.
5The inability of reference counting to deal with cycles poses
no problems to ESP because it does not have circular da t a
structures.
s o b j e c t s received over channels are treated as newly allo-
cated objects.

I n t e r f a c e to C. To suppor t a synchronoll~ (2 inkerthc'e.
ESP requires two types of functions to be provided. The
first, type has a "IsReady" suffix and returns whether the
channel has data. to send/receive. The second type of func-
tion is called after the first one ha..~ indicated it it i.~ l'(,nd\
to communicate So. in the previolls example, the f'o)lowin¢
~unctions have to be provided by the programmer.

int UserReqIsReady(void);
void UserReqSend(int *dest, int *vAddr, int *size);
void UserReqUpdate(int **new);

UserReqIsReacly should return 0 when it has nothing to
send. When it has something to send, it returns a integer
that specifies which one of the pa t te rns is ready. A separate
t~lrlclio~ has to b<' provided {7~r each o['/llc, pc(t.c,ill~ ~;1~,, i
fled The use o[' pat lerns in Ibis coHtext serves 2 pmlp~ses.
First , it supports dispatch on external channels. Second.
it minimizes the amount of allocation and manipulat ion of
ESP da ta s tructures that has to be done in C. For instance,
by specifying the entire pat tern in UsergeqSend, there is no
need for that function to allocate any ESP data. structure.
UserReqUpdate, on the other hand, will have to allocate, cor-
rectly initialize and return an ESP record. This can not only
introduce allocation bugs in the system but also move the
allocation beyond the reach of the ESP compllet, ~lhelebl,,
preventing the allocation from being optimized away.

External in channels diftbr [i'om external out eham~el m
2 ways. First , the IsReady flmction just returns whether or
not the channel is willing to accept data. Then any writer
on that channel can write to it. In addition, it does not need
to pass pointers since the parameters will not be modified.
So, all the parameters have one less level of indirection.

S P I N I n t e r f a c e . Since SPIN has suppor t for channels, ex-
ternal SPIN code can interact directly with SPIN by reading
and writing to the appropria te channels.

4.6 Case Study: VMMC Firmware
~\c have remLplemented the V.XiM(5 Ill mwarc using i:;51 ~.

The implementation supports most o[the VMMC hmction-
ality (only the redirection feature is currently not supported)

The earlier implementat ion included about 15600 lines of
C code (Around 1100 of these lines were used to implement
the fast p a t h s) /

The new implementat ion using ESP uses 500 lines of ESP
code (200 lines of declarations + 300 lines of process code)
together with around 3000 lines of C code. s The C code
is used to implement simple tasks like initialization, initial-
ing DMA, packet marshalling and unmarshalling and shared
data structures with code r , nnin~ cm the heft prnco~snr (in
the library and the driver). All the complex sta.tu ma.chmte
interactions are restricted to the ESP code which uses 7 pro-
cesses and 17 channels. This is a significant improvement
over the earlier implementat ion where the complex interac-
tions were spread throughout the 15600 lines of hard-to-read
code.

7To make a fair comparison, we counted only those lines of
tile earlier implementat ion that correspond to functionality
implemented in the new VMMC implementation using E~P
sESP currently does not provide any suppor t for fast paths.

.............. 314

5. D'EVELOPING AND TESTING USING A
VERIFIER

We have a working prototype of the ESP compiler, i t
generates both C code that can be compiled into firmware as
well a.s a specification that can be used by the SPIN verifier
(Figure 4). In this section, we start with a description of
the SPIN model checker. We then describe how ESP code is
t ranslated into SPIN specification. Finally, we present our
experience with using the SPIN model checker to develop
and extensively test the VMMC firmware.

5.1 SPIN Model Checking Verifier
Model checking is a technique for verifying a system com-

posed o1 c(mcurrerlt finite-state machines. Cliven a. concur-
rein, finite-state system, a model checker explores all possible
interleaved executions of the state machines and checks if the
property being verified holds. A global state in the system
~s a snapshot of the entire system at a particular point of
execution. The state space of the system is the set of all the
global states reachable from the initial global state. Since
the s ta te space of such systems is finite, the model checkers
can, in principle, exhaustively explore the entire state space.

The advantage of using model checking is that it is auto-
|lia.ti(:. Given a specification for the system and the prop-
erty to be verified, model checkers automatically explore the
slat~, space lf a violatiol, of the, property is discover~,d, il
can produce an execution sequence that causes the violation
and thereby helps in finding the bug.

The disadvantage is that the state space to be explored
is exponential in the number of processes and the amount
of memory used (for variables and da ta structures). So the
resources.required (CPI r as well as memory resources) by the
model checker to explore the entire state space can quickly
grow beyond the capacity of modern machines.

S P I N [14]. i t is a flexible and powerful model checker de-
signed for software systems. SPIN supports high-level fea-
tures like processes, rendezvous channels, arrays and records.
Most other verifiers target hardware systems and provide a
fairly different specification language. Although ESP can be
translated into these languages, additional state would have
to be introduced to implement features like the rendezvous
channels using primitives provided in that specification lan-
gua.ge. "I'hi~ would make the ~tate explosion problem worse.
In addition, the semantic information lost during transla-
tion would make it harder for the verifiers to optimize the
state-space search.

SPIN supports checking for deadlocks and verifying simple
properties specified using assertions. More complex proper-
ties, like, absence of starvation, can be specified using Linear
Temporal Logic (LTL).

SPIN is an on-the-fly model checker and does not build
the global s ta te machine before it can start checking for
the property to be verified. So, in cases where the state
space is too big to be explored completely, it can do partial
~earche~. It provlde~ 3 dilferent modes tot state-space explo-
ration. The entire state space is explored in the exhaustive
mode. For larger systems state spaces, tile bit-state hash-
ing mode performs a partial search using significantly less
memory. The simulation mode explores single execution
sequence ill tile state space. A random choice Is made be-
tween the posstble next states at each stage. S ince it does

not keep track of the states already visited and could ex-
plore some states multiple times while never exploring some
other states. However, the simulation mode in SPIN usually
discovers most bugs in the system. Most simulators are de-
signed to accurately mimic the system being simulated. So,
hard to find bugs that occur infrequently on the real system
also occur infrequently on the simulators. The SPIN simu-
lator is different in that it makes a random choice at each
stage and is, therefore, more effective in discovering bugs.

5.2 Translating ESP into SPIN Specifications
The ESP code can be translated into the SPIN specifica-

tion at various stages of the compilation process. The ESP
compiler does this very ea r ly - - r igh t after type checking--for
several reasons, First, the SPIN specification language does
not support pointers. So, the translat ion is much more diffi-
cult at the lat ter stage because it would require the compiler
to carry some of the type information through the transfor-
mations on the intermediate representations. Second, the
addition of temporary variables during the compilation in-
creases the size of the s ta te space that must be explored.
The one disadvantage is that any bugs introduced by the
compiler cannot be caught by the verifier.

The bESP compiler generates SPIN specification that can
instantiate multiple copies of the ESP program. This is
achieved easily in SPIN by using an array of every da ta
structure. Then each instance can access its da t a by using
its instantiation id. The abil i ty to run multiple copies of a
ESP program under SPIN allows one to mimic a setup where
the firmware on multiple machines are communicating with
each other.

The translation into SPIN specification is fairly straight-
forward with a few exceptions. These stem from the lack of
pointers and dynamic allocations. While ESP allows the size
of the arrays to be determined at run time, SPIN requires it
to be specified at compile time. This problem is addressed
by using arrays of a fixed maximum size. This size can be
specified per type.

Another problem arising from the lack of pointers in SPIN
is dealing with mutable da ta types. For instance,

$al: #array of int = #{ 5 -> 0 };
$a2 = al;
$a213] = 7;

/ / Allocate
/ / Copy pointer
/ / Update

Here, an update to a2 has to be visible to a l . Since, SPIN
does not support pointers, different memory is allocated for
a l and a2 and an assignment causes the entire structure
to be copied. This causes a problem with mutable da ta
structures because an update to one structure a2 has to be
visible in the other a l . We address this by assigning an
objectId to all objects at allocation time. So, when objects
get copied, the objectId also gets copied. Later, when a
structure is updated, we update the all s tructures with the
same objectId. Although, this may appear very inefficient,
it does not increase the s tate-space that has to be explored
and, therefbre, does not significantly impact the verifiability
ol the system.

Memory safety of each individual process can be verified
independently using the verifier (Section 4.4). To verify
memory safety, we maintain a table that maps the objec-
l id of the objects to reference count. Before each object
access, the compiler inserts an assertion to verify that the
object is live. The objectId is reclaimed when the reference

315

count falls to 0 and the object is freed. One positive side-
effect of having to use fixed size reference count table is that
the verifier can often catch memory leaks. This is because a
memory leak can cause the system to run out of objectIds
during verification,

5.3 Case Study: VMMC Firmware
The motivation for using a verifier is to allow more ex-

tensive testing than achievable with conventional methods.
In the earlier VMMC implementat ion, we encountered new
bugs every time we tried a different class of applications
or ran it on a bigger cluster. The state-space exploration
performed by verifiers allows more extensive testing.

We used SPIN throughout the development process. Tra-
ditionally, model checking is used to find hard-to-find bugs
in working systems. However, since developing firmware on
the network interface card involves a slow and painstaking
process, we used the SPIN simulator to implement and de-
bug it. Once debugged, the firmware can be ported to the
network interface card with little effort.

As explained earlier (Figure 4), the programmer has to
supply some test code (t e s t . S P I N) for each proper ty to be
checked. The code not only specifies the proper ty to be
verified but also simulates external events such as network
message arrival. The test code is usually less than 100 lines
each. Once writ ten, these can be made par t of the testing
suite and used to recheck the sys tem whenever changes are
made to it.

We have successfully used the SPIN verifier in a number
of situations. They include:

D e v e l o p m e n t o f R e t r a n s m i s s i o n P r o t o c o l . The retrans-
mission protocol (a simple sliding window protocol with pig-
gyback acknowledgement) was developed entirely using the
SPIN simulator. The SPIN test code used was 65 lines.
Once debugged, the retransmission protocol was compiled
into the firmware. It ran successfully on the network card
without encountering any new bugs. The retransmission
protocol in the earlier implementat ion required about 10
days to get a working version. Since we developed our code
using SPIN, it required 2 days.

C h e c k i n g M e m o r y Sa fe ty . Since memory safety is a lo-
cal property of each process, each process can be checked
separately for memory safety. To verify the memory safety
of the biggest process in the firmware required 40 lines of
test code. The entire s ta te space was 2251 states and could
be explored using exhaustive search mode in the SPIN veri-
tier. I t took 0.5 second to complete and required 2.2 Mbytes
of memory. It should be noted tha t an exhaustive search
would not only catch all the memory safety bugs but also
some memory leaks. The result is a safe system that does
not incur the overhead of garbage collection.

The firmware had been debugged by the time our memory
safety verifier was developed. So we ran the verifier on an
earlier version of the system tha t had a bug. The bug was
identified by the verifier. We also introduced a variety of
memory allocation bugs that access data. that was already
freed or introduce memory leaks. The verifier was able to
find the bug in every case.

State-space explosion prevented us from checking for system-
wide properties like absence of deadlocks. We are currently

working on extract ing more abs t rac t models so thal the
state-space search is more tractable. This hags allowed us
to find several bugs in the firmware that, can cause dead-
locks [15].

6. GENERATING EFFICIENT FIRMWARE
As described earlier (Figure 4), the ESP compiler uses C

as baekend and generates C code that can be used to gener-
ate the firmware. In this section, we describe the ESP com-
piler and then compare the performance of the new VMMC
implementation using ESP with the earlier implementation.

6.1 ESP Compiler

P r o c e s s e s . The ESP compiler requires the entire program
for compilation. It, does whole-program analysis and gen-
erates one big C function that implements the entire con-
current program. One approach is t,o t reat each process a~s
an automaton and t,o combine them to generate one large
automaton [3, 18]. Although this approach provides zero-
overhead context switching, it can result in exponential growth
in code size [11]. The ESP compiler takes a simpler ap-
proach. I t generates the code for the processes separately
and context, switches between them. Since these processes
are essentially s ta te machines, the stack does not. have t,o be
saved during a context switch---only the program counter
needs to be saved and restored. This has a fairly low over-
head and involves only a few instructions.

The generated code has an idle loop tha t polls for mes-
sages on external channels. When a message is available, it:
checks to see if a process is waiting for that message. If there
is, it restar ts tha t process by .jumping to the location where
the process was blocked. The process then executes till it
reaches a synchronization point. If one or more processes are
blocked waiting to synchronize, it picks one randomly and
completes the message transfer. At this point, both the syn-
chronizing processes can continue executing. ESP currently
uses a simple stack-based scheduling policy. This schedul-
ing policy picks one of these two processes to continue ex-
ecution and adds the other one to the ready queue (queue
of processes tha t are waiting to execute). The processes
are executed non-preemptively. When the running process
eventually blocks, the next process in the ready queue is ex-
ecuted. This is repeated till there are no more processes to
run and the program returns to the idle loop.

The ESP compiler performs some of tlw *radii irma] ~1~I i-
mizations like copy propagation and dead code elimination
on each process separately be[ore combining them to gen-
erate the C code. Although, the C compiler also perIbrms
these optimizations, the semantic information lost when the
processes are combined to generate the C code makes it hard
for the C compiler to perfbrm these opt imizat ions effectively.

C h a n n e l s . One way of implementing channeIs is to have
a set of queues (one lbr each pa t te rn used on the channel)
that writers can wait on. 9 This approach makes (,,lt fairly
expensive. This is because, before blocking on an air state-
ment, tile process has to be added to nmltiple queues (one
for each case in the alt). When it is later unblocked, it has to

9Although there can be multiple readers on a channel, there
can only be one reader per -pa t te rn on a channel. So a queue
is not needed for the readers.

316

be removed from all these queues (which can require look-
ing through the queue since it might be in the middle of the
queue).

The ESP compiler takes a different approach. It uses a
bit-mask per process--one bit tbr every channel the process
may block on. Blocking at an all statement requires simply
setting the right bit mask for the process, while unblocking
requires zeroing out all the bits. This approach can have
two problems. First , checking if a channel has a writer now
requires checking the bit masks of multiple processes (as op-
posed to just checking the corresponding queue). However,
since each process uses only a. few bits (much fewer than 32),
the bit masks for several processes can be colocated on a sin-
gle integer at compile time. Colocating the right processes
can reduce the number of different masks to be checked to 1
or 2. Second, we lose the FIFO ordering of the queues, and
extra effort must be made to avoid introducing starvation.
I h~wever, most of the t, ime only one other process is waiting.
No extra overhead is incurred in the common case.

Another simple optimization that helps agt's performance
is postponing as much computation as possible until after
the rendezvous. For instance, if an object has to be allo-
cated before being sent over the channel, the allocation is
postponed so that the allocation does not happen if one of
the other alternatives succeeds.

M e s s a g e s on channe l s . Semantically, messages sent. over
the channels require deep copies to be handed to the re-
ceiving processes However. the implementation can simply
increment the reference count of the objects to be sent over
channel and jus t send pointers to those objects. This works
because only immutable objects can be sent over channels.

The ESP compiler also avoids some unnecessary allocation
associated with pat tern matching. For instance, if a process
wants to send more that one value over a channel, it has to
put, it in a record. If the receiving process is using a pattern
to access the components, the compiler can avoid allocating
the record. This is possible because the static design of
the language allows the compiler to look at all the patterns
being used to receive messages on a channel along with all
lh(, s e l l (l e t s ol l tlla.t c h a n l l e l .

6.2 Case Study: VMMC Firmware
b'igure 5 compares the perlbrmance of the earlier VMMC

implementa~tion (vmmcOrig) with the performance of the
new implementation using ESP (vmmcESP) using 3 mi-
crobenchmarks. In addition, we also present the perfor-
mance of the earlier implementation with the fast paths dis-
abled (vmmcOrigNoFastPaths). The ESP implementation
currently does not implement fast paths.

The first microbenchmark measures the latency of mes-
sages of different sizes between applications running on 2
chllerent, machum~. This ~s measured by running a sim-
ple pingpong application that send messages back and forth
between 2 machines. Figure 5(a) shows that vmrncESP is
around ~wme as slow as vmmcOmg fbr 4 byte messages and
38 % slower for 4 Kbyte messages. However, vmracESP is
only 35 % slower than vramcOrQNoFastPaths in the worst
case (for 64 byte messages) but has comparable performance
for 4 byte and 4 Kbyte messages.

The second microbenchmark measures the bandwidth be-
tween two machines for different message sizes. In this case,
an application running on one machine continuously sends

140--

120 - - - -

1 0 0 - -

80--

6 0 - -

4 0 - -

20 -E

0

vmmcESP
~ - vmmcOrig ,)5

- -4-- vmmcOrigNoFastPaths / o

• .

.z

F _ . , .0_ _ O _ _ 0 _0.. _ . D - - - - -

I I I I I I I I I I
8 16 32 64 128 256 512 IK 2K 4K

Message Size (in bytes)

(a) Latency

I00 - -

80 - -

6 0 - -

4 0 - -

20 - -

0 i.

vmmcESP
- -o- vmmcOrig ~1: ~ ~ : : =til
- -+- vmmcOrigNoFastPaths / ~ ' ~ - - - - ~

' " 7 ~ - - ~ " "i , ~ , ~ , , , s , ' ~ " " " J
8 16 32 64 128 256 512 IK 2K 4K 8K 16K 32K 64K

Message Size (in bytes)

(b) One Way Bandwidth

100--

80 - -

6 0 - -

40 - -

2 0 - -

0 [

4

- - - o - - vmmcESP
- ~ - vmmcOrig p.,,. ÷ - ±
- 4 - vmmcOrigNoFastPaths //~_.. .~j. . :Q" ~ - "~

/ / / /~/ -

.S 7
• ~ T I I I I I I I I I I I

8 16 32 64 128 256 512 IK 2K 4K SK 16R 32K 64K

Message Size (in bytes)

(C) Bidirect ional Bandwidth

F i g u r e 5: M i c r o b e n c h m a r k s P e r f o r m a n c e . T h e
g r a p h s h a v e s o m e d i s c o n t i n u i t i e s a t t h e 3 2 / 6 4 b y t e
b o u n d a r y as wel l as a t 4 / 8 K b y t e b o u n d a r y . T h e for-
m e r i s b e c a u s e s m a l l m e s s a g e s o f 32 b y t e s a n d l e s s
a r e h a n d l e d s e p a r a t e l y as a s p e c i a l c a s e . T h e l a t t e r
i s b e c a u s e t h e p a g e s i z e is z lKby te s .

317

data of part icular size to the second machine which sin>
ply receives it. Figure 5(b) shows that vmmcESP delivers
4 1 % less bandwidth as vmmcOri 9 for 1 Kbyte messages
and 14 % for 64 Kbyte messages. However, vmmcE SP is
only 25 % slower than vmmcOrigNoFastPaths for 1 Kbyte
messages and 12 % for 64 Kbyte messages.

The final microbenchmark measures the total bandwidth
between two machines for different message sizes in a dif-
ferent scenario. In this case, applications on two machines
continuously send da ta to each other simultaneously. Fig-
ure 5(c) shows that vmmcESP delivers 23 % less bandwidth
as vmmcOri 9 for 1 Kbyte messages but similar performance
for 64 Kbyte messages. Also, vmmcESP is 20 % slower
than vmmcOrigNoFastPaths for 1 Kbyte messages but sim-
ilar performance for 64 Kbyte messages.

The microbenchmark performance shows tha t vmmcESP
performs significantly worse tha t vmmcOrig in certain cases
(latency of small messages). However, most of the perfor-
mance difference is due to the bri t t le fast paths. Also, the
performance difference is significantly less in the bidirec-
tional bandwidth microbenchmark where the firmware has
to deal with messages arriving on the network as well as the
host at the same time. In the other two microbenchmark,
the firmware has to deal with only one type of message at a
given instant.

The microbenchmarks represent the worst case scenario.
The impact of the performance difference on real applica-
tions should be much smaller [17, 5] for a number of reasons.
First , the vmmcOr'ig numbers represent the performance of
some hand-opt imized fast pa ths in the system. These fast
paths tend to be fairly brit t le and applications often fall
off the fast path. While some applicat ions [16] (which re-
peatedly send very large messages) tha t have very simple
communication pat terns benefit from the fast paths, a lot
of applications do not. SVM applicat ions [4] experience a
lot of contention in the network and the actual latency mea-
sured by the different applicat ions varied between 3 times
to 10 times slower than the microbenchmarks numbers for
small messages. So, for most applications, the vmmcOr'igNo-
FastPaths is a more accurate representat ive than vmrncOri 9
when comparing performance with vmmcESP.

Second, the microbenchmarks represent applications that
spend 100 °70 of their t ime communicating, while most real
applications spend only a fraction of their time communi-
cating and are, thereibre, less sensitive to firmware perfor-
mance [17, 51.

Finally, we plan to implement more aggressive optimiza-
tions that should decrease the performance gap. For in-
stance, data-flow analysis is currently perl0rmed on a pet'
process basis. We plan to extend data-flow analysis across
processes.

7. RELATED W O R K
Devices are usually programmed using event-driven s tate

machines in languages like C, and sometimes, in assembly.
We are not aware of any other high-level language for pro-
gramming network devices.

C o n c u r r e n c y T h e o r y . A number of languages like CSP [13]
and Squeak [61 have been designed to gain bet ter under-
standing of concurrent programming. Both of these lan-
guages suppor t processes communicat ing with each other.
However, they were not designed with efficient implementa-

t;ion in mind,

C o n c u r r e n t L a n g u a g e s . A number of languages like CML [191.
Java [1] and OCCAM [20] suppor t concurrency. CML [191
provides first-class synchronous operations. OC(:;AM [20]
was designed to implement concurrent prograrn;~ that nm
on a parallel machine. Java [1}, like most other program-
mint languages, provides user-level threads to express con-
currency. All these systems are fairly expressive and hard
to be compiled efficiently for devices.

C o d e G e n e r a t i o n + V e r i f i c a t i o n . A number of other lan-
guages [3, 8, 2] have taken a similar' approach of generating
efficient executables as well as specifications tha t can be used
by a verifier. However, they differ from ESP significantly.

Esterel [3] was designed to model the control of synchronous
hardware and has been used recently to efficiently impl~,-
ment a subset of TCP protocol {7]. It adopts the s:l/.,.-
chronous hypothes~s--the reaction to an external event is
ins tan taneous- -and ensures tha t every reaction has a unique,
and therefore, determinist ic reaction. This makes the pro-
grams easier to analyze and debug. The esterel programs
can be compiled to generate both soft:ware and hardware m>
plementations. However, using esterel to implement device
firmware has several drawbacks. First. the reactions are not
instantaneous in practice. For instance, if a DMA becomes
available while an event was being processed, it cannot be
used to process the current event. The "DMA available"
event would be registered on the next clock tick and woHld
be then available for rise. This results in inefficient use of the
DMA. Second, the synchronous hypothesis b rces some con-
straints on valid programs. For instance, every i teration of
a loop has to have a "time consuming" operation like signal
emission. In addition, this constraint has to be w~rifiable by
the compiler. This disallows simple loops that initialize an
array. Finally, the language is designed to encode only the
control portion of the program. The da t a handling has to
be performed externally using the C interface. This forces
some of the complex tasks including memory management
to be implemented in C.

Teapot [8] is a language fbr writing coherence protocols
that can generate efficient protocols as well as \'erifly cor-
rectness. It uses a s ta te machine to keep track of the state
of a coherence unit (a cache line or a page). The state ma-
chine is specified using a set of handlers similar to the C
interface described in Section 2.2. However. they use con-
tinuations to reduce the number states tha t the programmer
has to deal with. While this approach works well when ap-
plied to coherence protocol, it suffers fbr some of the same
problems described in Section 2.2 when used to irnplen,ent
device firmware. Teapot Mso does not provide any support
for complex da ta types and dynamic memory management

P romela++ [2] is a language designed I.o mlplemcnt la.y.-
ered network protocols. The adjacent layers communicate
using F IFO queues. Although, the layered framework works
well for writing network protocols, they are too restrictive
for writing firmware code where the different modules have
much more complex interactions. Also, they do riot provide
any support for dynamic memory management.

S o f t w a r e T e s t i n g . Some systems [12, 9] have been suc-
cessful in finding bugs in existing software written m tra.d>
tional languages like C. Verisoft [121 does this by modifying

318

the scheduler of the concurrent system to do a state-space
exploration. Meta-level Compilation [9] attempts to verify
s.ystem-specffic invariants at compile ume. However, these
systems do not, simplify the task of writing concurrent pro-
gralub.

8. CONCLUSIONS
We have presented the design and implementation of ESP-,-

a language for programmable devices. ESP has a number
of language features that allow development of compact and
modular concurrent programs. ESP programs can be devel-
oped and debugged using the SPIN model-checking verifier.
The compiler automatically generates SPIN specifications
from ESP programs. Once debugged, ESP programs can
be compiled into efficient firmware that runs on the pro-
grammable device,

We have reimplemented VMMC firmware for the Myrinet
network interlace cards using ESP. Our main conclusions
are the following'

* Programnfing event-driven state machines can be lairly
easy with the right language support. We found that
the firmware can be programmed with significantly
fewer lines of code. In addition, since C eode is used
only to perform simple operation& all the complexity is
localized to a small portion of the code (about 300 lines
in our implementation). This is a significant improve-
ment over the earlier implementation where complex
lUbetaCblOllb were scatbered over the entire G program
(15600 lines).

® Model-checking verifiers like SPIN can be used to ex-
t, ensivety test the firmware. However, state-space ex-
plosion limits the size of the models that can be checked.
SPIN was used to develop and debug a retransmission
protocol. The new implementation took around 2 days
(compared to the earlier implementation which took
around 10 days). SPIN was also used to exhaustively
check the memory safety on the firmware.

® The performance overhead of using ESP is relatively
small. Our microbenchmarks measurements indicate
that most of the per[brmance difference with the ear-
lier implen~entation of VMMC is due to brittle fast,
paths that rarely benefit applications. Based on ear-
lier application studies [17, 5], we expect the impact of
the ext, ra performance overhead to be relatively small.

9. ACKNOWLEDGEMENTS
We would like to thank Rudrajit Samant, a, Tammo Spalink,

Daniel Wang, Dirk Balfanz and the anonymous reviewer
whose comments have helped improve the paper.

10. REFERENCES
[11 K. Arnold. J. Gosling, and D. Holmes. The Java

Progra,mmm9 Language, Thwd Edition.
Addison-Wesley Publications, 2000.

[2] A. Basu, T. yon Eicken, and G. Morrisett.
Promela++. A language for correct and efficient
protocol construction. In Infocom, 1998.

[3! G Berry and G. Gonthier The ESTEREL
synchronous programming language : design,
semantics, implementation. Science of Computer
Prvgrammzng, 19(2), 1992.

[4] A. Bilas, C. Liao, and J. Singh. Using network
interface support to avoid asynchronous protocol
processing in shared virtual memory systems. In
International Symposium on Computer Architecture,
June 1999.

[5] A. Bilas and J. P. Singh. The effects of' communication
parameters on end performance of shared virtual
memory clusters, in SC97 cor~ference, Nov 1997.

[6] L. Cardelli and R. Pike. Squeak: a language for
communicating with mice. Computer Graphics,
19(3):199-204, July 1985.

[7] C. Castelluccia, W. Dabbous, and S. O'Malley.
Generating efficient protocol code from an abstract
specification. In SIGCOMM, 1996.

[8] S. Chandra, B. E. Richards, and J. R. Larus. Teapot:
Language support for writing memory coherence
protocols. In Programming Language Design and
Implementation, 1996.

[9] A. Chou. B. Chelf. D. Engler. and M. Heinrich. Using
mete-level compilation to check flash protocol code. In
Architectural Support)br Programming Languages and
Operating Systems, 2000.

[10] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and
K. Li. VMMC-2: efficient support for reliable,
connection-oriented communication, tn Proceedings of
Hot Interconnects, Aug. 1997.

[11] S. A. Edwards. Compiling esterel into sequential code.
Ill Design Auto'rnat~on Confer'ence, 2000.

[12] P. Godefroid. Model checking for programming
languages using VeriSoft. In Principles of
Programming Languages, Paris, Prance, 1997.

[13] C. A. R. Hoare. Communicating sequential processes.
Communications of the A CM, 21(8):666-677, Aug.
1978.

[14] G. J. Holzmann. The SPIN model checker. IEEE
Transaction on Software Engineering, 23(5):279-295,
May 1997.

[15] S. Kumar. ESP: A language for programmable
devices. Ph.D. thesis, Dept. of Computer Science,
Princeton University, In Preparation.

[16] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook,
S. Damianakis, C. Essl, A. Finkelstein, T. Funkhouser,
A. Klein, Z. Liu, E. Praun, R. Samanta, B. Shedd,
J. P. Singh, G. Tzanetakis, and J. Zheng. Early
experiences and challenges in building and using a
scalable disptay wall system. IEEE Computer
Graphics and Applications, 20(4):671-680, 2000.

[171 t~. P. Martin, A. M. Vahdat, D. E. Culler, and T. E.
Anderson. Effects of communication latency, overhead,
and bandwidth in a cluster architecture. In
International Symposium on Computer Architecture,
1997.

[18] T. A. Proebsting and S. A. Watterson. Filter fasion.
In Principles of Programming Languages, 1996.

[19] J. Reppy. Concurrent Programming in ML. Cambridge
University Press, 1999.

[20] B. SGS-Thomson Microelect, ronics. OCCAM 2.1
Reference Manual. 1995.

319

A P P E N D I X
A. C EXAMPLE

We present a code fragment tha t illustrates the task of'
programming with event-driven s ta te machines in C. It uses
a typical event-driven s tate-machines programming interface
in C which includes the following functions:

s e t H a n d l e r (s m , s , e , f) Sets function f r o be the handler for
event e when the s ta te machine s m is in s ta te s.

s e t S t a t e (s m , s) Moves s ta te machine sm to s ta te s.
i s S t a t e (s m , s) Checks if s tate machine sm is in s ta te s.
d e l i v e r E v e n t (s m , e) Deliver event e to state machine sin.

The C code fragment presented in this section implements
the following functionality. The s ta te machine s g l is respon-
sible for handling requests from applications. On receiving a
request to send data , it DMAs the da ta from the users mem-
ory onto the network card and hands it over to s ta te machine
SM2 (which is responsible for sending it over the network).
Then, Sgl waits for the next request. While processing the
send request., SM1 might need t.o block if the DMA is busy
or if SM2 is not ready to accept the request.

During initialization, the handlers for different events are
set up and the s ta te machine is initially in s ta te Waitgeq.
When a request from the user arrivers (event UserReq). the
corresponding handler handleReq is triggered. Since the
user specifies vir tual address of the data, it is first t ranslated
into physical address by calling function t r a n s l a t e A d d r tha t
performs a table lookup. Then, it checks if the DMA is
available. If it is, it calls f e t c h D a t a directly. Otherwise, it
sets the s ta te of the s ta te machine SM1 to WaitForDMA and
blocks. In this case, f e t c h D a t a will be called when the DMA
becomes available (because it is the handler)

When f e t c h D a t a is invoked, it DMAs the da ta from the
applications memory onto the network card by calling dmaData () .
Then, it checks to see if the s ta te machine SM2 is ready to
accept data. If it is, it calls syncSM2 directly. Otherwise,
it sets the s ta te of the s ta te machine SM1 to WaitSM2 and
blocks. In this case, syncSM2 will be called when SM2 is
finally ready to accept data.

When syncSM2 is invoked, the request is handed over to
SM2 by updat ing global variable reqSM2. Then an event
SM1Ready is delivered to SM2. This will eventually cause the
corresponding handler in sg2 to be invoked. Finally, it sets
the state of SM1 to waitReq and waits for the next request.

e n u m SCateMachineT { SM1, SM2 };
e n u m StateT { Waitgeq, WaitDMA, WaitSM2, WaitSMl, ,,.};
enum EventT { UserReq, DMAFree, SM2Ready, SMIReady };
enum UserReqT { SendReq, UpdateKeq };

ReqSMl *reqSMl ;
ReqSM2 *reqSM2;
int pAddr, *sendData;

maln() {

" / / Initiab:ze s tate 'machine SM1
setHandler(SMI, WaitReq, UserReq, handleReq);
setHandler(SM1, WaitDMA, DMAFree, fetchData) ;
setHandlsr(SMI, WaitSM2, SM2Ready, syncSM2) ;
setState(SMI, WaitReq); // [nitial State

void h~ndleReq() { // Req Aas armved
switch (r e q S M l - > t y p e) {
case SendReq:

pAddr = tr~islateAddr(reqSMl->vAddr);
if (dmaIsFree()) fetchData();
else setState(SMi, WaitForDMA);
r e t u r n ; / / Block State machine

ease UpdateReq:
upda t eAddrTrans (reqSMl->vAddr, reqSMl->pAddr) ;

}
void fetchData() { // DMA ~s available

sendData = dmaData(pAddr, reqSMi->size);
if (isState(SM2,WaitSM1)) syncSM2();
else setState(SMi, WaitSM2);

}

void syncSM2() { // SM2 is ready for next Teques~
reqSM2->data = sendData;
reqSM2->dest = reqSMl->dest;
deliverEvent(SM2, SMiReady);
setState(SMI, WaitReq); // Wazt ~ r r~ex~ ~wquesf

}

B. ESP EXAMPLE
This section presents ESP code fragment that is used to

i l lustrate different aspects of the ESP language throughout
this paper. It implements some of the same functionality
described in Appendix A.
t y p e da taT = a r r a y o f i n t
t y p e sendT = r e c o r d o f { d e s t : i n t , vAddr: i n t , s i z e : in t}
t y p e updateT = r e c o r d o f { vAddr: i n t , pAddr: in t}
type userT = union of { send: sendT, update: updateT }

channel ptReqC: record of { ret: int, vAddr: int}
channel ptReplyC: record of { ret: int, pAddr: int}
channel dmaReqC: record of { ret: int, pAddr: int, size: int}
channel dmaDataC: record of { ret: int, data: dataT}
channel SM2C: record of { dest: int, data: dataT}
channel userReqC: userT // Ezternal (aka O) writer

p r o c e s s pageTab le { / / virtual to physical address "mappzn9
S t a b l e : # a r r a y o f i n t = #{ TABLE_SIZE -> 0, . . . };
w h i l e (t r u e) {

a i r {
case(in(ptKeqC, { $ret, $vAddr})) {

// Request to lookup a mapping
o u t (p tReplyC, { r e t , t a b l e [v A d d r] }) ;

}
c a s e (i n (userReqC, { u p d a t e t> { $ v t d d r , $pAddr}})) {

/ / Request to update a mapping
t a b l e [vAddr] = pAddr;

}
}

}
}

p r o c e s s SM1 {
w h i l e (t r u e) {

in(userReqC, { send I> { $dest, $vAddr, $slze}});
out(ptReqC, { @, vAddr});
in(ptReplyC, { @, $pAddr});
out(dmaReqC, { @, pAddr, size});
in(dmaDataC, { @, $sendData});
out(SM2C, { dest, sendData});
u n l i n k (sendData);

}

320

