COMP 150PP Class Exercise: Semantics

September 21, 2016

Semantics review: A simple functional language
Let’s imagine a little functional language of expressions, with this syntax:
e:>)\x.e}6162|x|v|if616263

Let’s further imagine that this languages is endowed with a rich collection of values, including booleans, lists, primitive
functions, closures, pairs, sums, and several kinds of numbers. And let’s assume that the initial basis contains everything
necessary for the basic types, plus a rich set of arithmetic and relational primitives.

1. Please give the language an operational semantics using the judgment form (e, p) | v.

A simple probabilistic language
Please tackle the three questions in this section:

2. Extend our language so it can encode probabilistic simulations. You may add syntax, primitive functions, or
both. Do not try to support inference.

3. Think about what could reasonably be considered an operational semantics for a probabilistic language. I can
imagine two reasonable alternatives.

Then, write the evaluation judgment and rules of such a semantics.

Another way to define a language is by translating it into a known formalism. This is the technique used in denotational
semantics. And we have spent the last three class periods developing a suitable formalism for expressing probabilistic
computation. (Actually, three very similar formalisms.) Allow me to extend the in-class formalism with the following:

Type Exp The syntax of the functional language above
Type Value The values of the functional language above
Constructor Clo :: Name -> Exp -> Value Builds closures
Type Env Finite map from Name to Value
Function applyDPrim :: Value -> Value -> Value Deterministic primitives
Function applyPrim :: Value -> Value -> Dist Value General primitives (if needed)

4. Write the translation eval :: Exp -> Env -> Dist Value. You can start with the deterministic language,

then add the probabilistic extensions.

Bonus question

This one is intended for you to think about at home, although if you get stuck writing semantics, it may help you get
unstuck:

5. Design a type system for our language. To keep things simple, write nondeterministic typing rules, so that we
can imagine type inference without requiring any annotations.

	Semantics review: A simple functional language
	A simple probabilistic language
	Bonus question

