COMP 150PP Class Exercise: The Probability Monad

September 28, 2016

Questions are based on Stochastic Lambda Calculus and Monads
of Probability Distributions by Norman Ramsey and Avi Pfeffer.

Design review

If P is a probability monad, then the Haskell code presented in
this paper offers these functions:

return a —>P a
(>>=) Pa->(a->PDb) —>PbDb

—— pronounced "bind"
choose Probability -> P a -> P a -> P a
support :: P a -> [a]
expectation:: (a —-> Double) -> P a —-> Double
sample RandomGen g => P a -> g —-> (a, 9)

A design alternative: Bernoulli

Many probabilistic languages take as primitive the Bernoulli
distribution, named after Jacob Bernoulli, who discovered the
law of large numbers. The Bernoulli distribution is equivalent to
a biased coin; bernoulli pis a distribution that is True with
probability p and False with probability 1 — p:

bernoulli Probability -> P Bool

Answer these questions:

1. Give algebraic laws for support and expectation
when applied to a Bernoulli distribution.

2. If we remove choose from the set of primitive functions
and replace it with bernoulli, have we lost any expres-
sive power? Justify your answer in one of two ways:

e If we have not lost any expressive power, then you
must be able to show how to implement choose using
bernoulli.

o If we have lost some expressive power, then you must
be able to construct, using the functions in the paper,
a distribution that can no longer be constructed once
choose is replaced by bernoulli.

3. If we add bernoulli to the functions given in the paper,
have we gained any expressive power? Justify your answer
in one of two ways:

e If we have not gained any expressive power, then you
must be able to show how to implement bernoulli
using choose.

e If we have gained some expressive power, then you
must be able to exhibit a distribution constructed with
bernoulli that cannot also be constructed using the
functions in the paper.

4. If you wish, give algebraic laws for sample when applied
to a Bernoulli distribution.

Comparing designs

Our own designs for finite probability distributions F a offer
these functions:

unit a > F a

uniform :: [a] -> F a

weighted [(Probability, a)] -> F a

pthen Fa->(a->FDb) —>F (a, b)
pmap (a =—> b) —> (F a —> F Db)

join2 Fa->Fb->((Fa->Db->F«c) —>

It is not too difficult to prove that the set of functions from the
paper is minimal. It is very easy to show that the set of functions
from our design is not minimal. But now it’s time to compare the
designs more closely:

5. What functions are identical in both designs (except for
possibly having different names)?

6. What functions in the paper’s design are missing from our
design but can be simulated using our functions? When
simulations exist, please show them.

7. What functions in our design are missing from the paper’s
design but can be simulated using the paper’s functions?
Just sketch one or two simulations.

8. What functions in the paper’s design, if any, can’t be simu-
lated using our functions?

9.

10.

What functions in our design, if any, can’t be simulated
using the paper’s functions?

We haven’t yet solved all the dice problems. And the paper’s
design can’t. What crucial piece or pieces are missing from
the paper’s design, or from our design, that prevent either
design from being able to do all the dice problems?

Deeper analysis of the paper

11.

12.

13.

Explain Figure 2. (Think of Figure 2 as the specification
for an interpreter; in particular, think of P as a recursive
function that might be called eval. You might begin by
asking about that function’s type.)

In the first paragraph of Section 8 on page 163, what’s being
claimed? Are you convinced?

Section 5.1 talks about the performance of expectation
queries over product spaces. You have intimate experience
with product spaces from the dice world. Can you think of an
expectation query that would take O (] X | x |Y'|) time in the
expectation monad but could be computed in O(| X| + |Y)
time using some other technique?

Questions to take home

14.

15.

16.

17.

18.

Unless you happen to know the related work already, sec-
tions about related work are usually boring. But there’s a
different reading of Section 7 than simply who did what.
Looking through Section 7, what different language-design
choices can you identify? What choices appeal to you?
What choices do you find distasteful?

Section 3.2 mentions sampling functions. For a distribution
with finite support, what would a sampling function look
like?

What role should abstract integration play in a probabilistic
programming language?

What, if any, is the computational consequence of equation
(2) at the bottom of page 1567

At the end of Section 4 on page 158, the paper says that in
the paper’s calculus, it is not safe to duplicate a redex. Why
not? Is there a simple explanation in terms of what kind of
language design is being described?

	Design review
	A design alternative: Bernoulli
	Comparing designs
	Deeper analysis of the paper
	Questions to take home

