
COMP 150PP Class Exercise:
A Probabilistic Language Based on Sampling Functions

October 5, 2016

Comparing designs, again

If P is a probability monad, then the Haskell code presented by
Ramsey and Pfeffer offers these functions:

-- functions in all probability monads:
return :: a -> P a
(>>=) :: P a -> (a -> P b) -> P b

-- pronounced "bind"
choose :: Probability -> P a -> P a -> P a

-- function only in the support monad:
support :: P a -> [a]

-- function only in the expectation monad:
expectation:: (a -> Double) -> P a -> Double

-- function only in the sampling monad:
sample :: RandomGen g => P a -> g -> (a, g)

The language λ◦ of Park, Pfenning, and Thrun is described in
Figures 1 and 2 on page 4:8. A sampling semantics is given
in Figure 3 on page 4:9. I also recommend close scrutiny of
the example at the end of Section 8.2 on page 4:35, particularly
the derivation of Update Equation (4)—for me, this example
illuminates both the strengths and the limitations of λ◦.

1. If you’re given a Haskell expression in the sampling monad,
how would you translate it into λ◦? (Assume that you are
given a translation from pure Haskell expressions into terms
of λ◦. For our purposes, a pure expression is one whose type
does not mention the probability monad, and all of whose
subexpressions are also pure.)

If you need to extend λ◦ to express the translation, do so.

2. If you’re given an expression or a term in λ◦, how would
you translate it into Haskell code that uses the probability
monad?

If you need to extend the probability monad to express the
translation, do so.

Deeper analysis of the paper

3. Park, Pfenning, and Thrun claim that their representation
scheme is “sufficient for all practical purposes.” Using all
of the example problems from the dice world, say whether
you agree or disagree.

4. On page 4:13, Park, Pfenning, and Thrun list their major
achievements as

• A unified representation scheme for probability distri-
butions

• Rich expressiveness (can encode a lot of distributions)

• High versatility in encoding probability distributions

Is there anything missing here that you would like a proba-
bilistic language to have or to do?

An observation and some questions to
ponder as class ends

5. In the last paragraph of Section 3.2, which spans pages
4:10 and 4:11, I observe some old wine in new bottles:
once you get into the I/O monad, you can’t escape the I/O
monad. Something similar appears to be true of the proba-
bility monad. . . except for that pesky expectation thing.

6. Language people like abstraction, and this paper talks about
it a lot. In light of the discussion on page 4:25, how much
abstraction do you see, really?

7. Can inference from observation be encoded using the
bayes operator? Can the bayes operator be encoded
using inference from observation?

8. What, really, is the contribution of this paper?

9. What is the most important problem left unsolved?

1


	Comparing designs, again
	Deeper analysis of the paper
	An observation and some questions to ponder as class ends

