COMP 150PP: Programming With Mature Systems

Due Tuesday, November 8, 2016 at noon

October 26, 2016

Goals

Now that we’ve had a chance to do our own language designs
and write our own inference algorithms, it’s time to compare that
experience with the experience of using a mature system that in-
fers posterior distributions using statistical methods. In principle,
these systems ought to be able to solve dice problems quickly,
but not necessarily exactly.

Your assignment is to pick a mature probabilistic programming
system and use it to solve one problem from each group of prob-
lems below. (The problems are all problems you’ve seen before.)

This assignment has two purposes:

o [t will give you information about an alternative system that
you can compare with the system you designed and built
yourself. We will compare experiences and code in class on
Wednesday, November 9.

o It will give you sufficient experience with the system so you
can decide if you want to use it for your project.

The assignment is offered on the usual terms: you may work
by yourself or with any others you wish; and the deadline is
soft—although I do expect you do have done enough to make an
in-class discussion possible. Send me your solutions by noon on
Tuesday, November 8 so we can have Code Show and Tell on
Wednesday, November 9.

Languages and systems to consider

The systems named below are hyperlinked. If your PDF reader
does not understand hyperlinks, you can also find links on the
course home page, on the syllabus, and on the HTML version
of this handout at http://www.cs.tufts.edu/comp/150PP/handouts/
10260utside-problems2c.html.

Most likely to be easy to use

The three languages WebPPL, Church, Anglican have the best
tutorials.

e WebPPL is the implementation language of the electronic
book The Design and Implementation of Probabilistic Pro-
gramming Languages.

e Church is a Scheme-like language with probabilistic seman-
tics. I have my issues with the computational model, but it is
the foundation of many other projects. An extensive tutorial
can be found in the electronic book Probabilistic Models of
Cognition.

e Anglican is inspired by Church and integrated with Clojure.
It compiles to relatively efficient code for the Java Virtual
Machine. There is a highly polished tutorial.

Possibly more powerful

The three languages Hakaru, Probabilistic C, and Wolfe each
have something more interesting to offer than the basic model
of distributions over “evaluation histories,” but they are probably
more difficult to learn. To start, depending on which system you
pick, you had better be comfortable using Haskell, C, or Scala.

e Hakaru is a probabilistic language embedded in Haskell.
Its distinctive feature is that it can do exact inference by
symbolic analysis. We will read about this inference in
class.

e Probabilistic C is intended as a compilation target for higher-
level probabilistic languages. It is surprising how much
can be accomplished by adding just a couple of primitives
to C—and by exploiting parallelism.

e Wolfe is a probabilistic language embedded in Scala. It
has a particularly clean way of talking about probabilistic
domains.

Other possibilities

A longer list, with other commentary, can be found at
probabilistic-programming.org.

The evaluation task

Using the probabilistic-programming system of your choice, in
teams of your choice, write code that answers some of the ques-
tions below. Answer at least one question from each group. On
November 9, come to class prepared to show code and to analyze
and explain your experience.

http://www.cs.tufts.edu/comp/150PP/handouts/1026outside-problems2c.html
http://www.cs.tufts.edu/comp/150PP/handouts/1026outside-problems2c.html
http://www.cs.tufts.edu/comp/150PP/handouts/1026outside-problems2c.html
http://www.cs.tufts.edu/comp/150PP/handouts/1026outside-problems2c.html
http://webppl.org
http://dippl.org/
http://dippl.org/
http://projects.csail.mit.edu/church/wiki/Church
https://probmods.org/
https://probmods.org/
http://www.robots.ox.ac.uk/~fwood/anglican/
https://bitbucket.org/probprog/ppaml-summer-school-2016
http://hakaru-dev.github.io/
http://www.robots.ox.ac.uk/~brooks/probabilistic-c/
http://www.wolfe.ml/
http://probabilistic-programming.org/

The questions

These are mostly the same questions you’ve seen before.

Simple distribution and probability questions

A. What distribution of integers results from throwing a single

B.

d6? What about a d12?

Given that you have a d6 and a d12, what’s the probability
of throwing a total of 11?

You’re given a P D (distribution over dice) representing the
ability to draw one die at random from a bag. You draw
two dice. (Assume you are drawing dice “with replace-
ment”, so that you can draw two by doing the exact same
probabilistic draw twice.)

e What’s the probability of drawing a d6 and a d12?

e What’s the probability that exactly one of the two dice
is a d20?

You draw two dice, throw them, and total the numbers.
What’s the (“joint”) probability of drawing a d6 and a d12
and throwing 117

You draw two dice and throw them. The numbers total 11.
Given that you know the total of 11, what’s the (“‘condi-
tional”’) probability that you drew a d6 and a d12?

Dice and coins

F. You throw a d6 to get number N, then toss that number

of coins. What’s the probability of observing exactly three
heads?

You throw a d6 to get number NV, then toss that number
of coins. What’s the probability of observing at least three
heads?

You throw a d6 to get number NN, then toss that number of
coins. The coins land in a row. What’s the probability that
the row contains three consecutive heads?

I throw a d6 to get number NV, then toss that number of coins.
I don’t tell you what N is, but I do tell you that exactly three
of the coins came up heads. What’s the probability that
N =3?

I throw a d6 to get number N, then toss that number of coins.
I tell you that N > 4. What’s the probability that exactly
three of the coins come up heads?

I throw a d6 to get number N, then toss that number of coins.
I don’t tell you what N is, but I do tell you that exactly three
of the coins came up heads. What’s the probability that
N =3?

L. Ithrow a d6 to get number NV, then toss that number of coins.
I don’t tell you what NV is, but I do tell you that exactly one
of the coins came up heads. What’s the most likely value
of~N?

M. Ithrow a d6 to get number N, then toss that number of coins.
I don’t tell you what NN is, but I do tell you that exactly three
of the coins came up heads. What’s the posterior distribution
of~N?

Tally-sheet questions

In all these questions, you throw a tally sheet (draw two dice,
throw 30 times, mark left column for totals less than 16, the
middle column for totals of exactly 16, and the right column for
totals of more than 16).

N. What’s the probability that you have drawn two d12’s and
put 3 marks in the right column of the tally sheet?

O. What'’s the probability that all marks are in the left column?

P. On average, how many marks can you expect to put in the
right column of the tally sheet?

Gambling questions

Probability was invented by gamblers for gamblers. Let me
describe the tally-sheet game:

The tally-sheet game has two players: the thrower and
the guesser.

o The thrower creates a tally sheet by drawing two
dice and throwing them 30 times using the proce-
dure you know.

o The guesser sees the tally sheet but not the dice
and has three chances to try to guess the dice.

It’s not gambling unless you play for money. Here are
the payouts:

o If the guesser gets the right dice on the first try, the
guesser wins one dollar ($1.00) from the thrower.

o If the guesser gets the right dice on the second
try, the guesser wins fifty cents ($0.50) from the
thrower.

o If the guesser gets the right dice on the third
try, the guesser wins a quarter ($0.25) from the
thrower.

o If the guesser fails to get the right dice in three
tries, the guesser loses and pays a dime ($0.10) to
the thrower.

Write code to answer the following questions about the tally-sheet
1
game:

Q. Who is likely to win money: the guesser or the thrower?

R. You have your choice of playing guesser or thrower for a
series of 1000 games. You choose whichever is more likely
to win. How much do you expect to win?

S. You’re playing thrower, and I ask if you’d be willing to
change the rules so that instead of throwing 30 times, you
throw 50 times. Assuming we’re going to play 1000 games,
what’s the minimum amount you should insist on charging
me for this privilege?

T. As guesser, I hate it that I can never tell the difference
between d6+d8 and d6+d6. 1 want the option to change
the rules so that the middle column corresponds to 13, not
16. (The left and right columns change correspondingly.)
Assuming I’m going to play 1000 games as guesser, what’s
the most I should be willing to pay for the privilege of
exercising this option?

U. Suppose that in addition to the original dice, I add 12 d4’s
(four-sided dice) that I kept out of the original experiment.
Now putting the middle at 16 is even less helpful. Where
should the split be to maximize the expected return for the
guesser? (Assume the guesser always picks the most likely
guess in the posterior distribution, which is the maximum a
posteriori choice.)

The slips problem

V. Somebody gives Norman a hat containing five slips of paper,
numbered 1 to 5 respectively. Norman draws a slip from
the hat. The number on the slip is called n. Norman then
repeats the following procedure ten times:

e Take n dice from the bowl, throw them, report the total
t, then put the dice back in the bowl.

The totals reported are 21, 15, 34, 12, 18, 38, 46, 13, 24, and
27. The question is, what is the number on the slip Norman
drew? (That is, what is n?) We will call this problem the
slip problem.

Here are the initial contents of the bowl:

Number of sides Number of those dice in the bowl

d4 —
dé 9
ds 9
d10 —
di2 14
d20 14

'In all these questions, please assume that the cost of throwing dice and the
cost of computing answers are both zero. In other words, the questions should
consider only the payouts from the game; all actions in the real world are free.

3

	Goals
	Languages and systems to consider
	Most likely to be easy to use
	Possibly more powerful
	Other possibilities

	The evaluation task
	The questions
	Simple distribution and probability questions
	Dice and coins
	Tally-sheet questions
	Gambling questions
	The slips problem

