COMP 150PP: Language Design for the monad of measures

November 2, 2016

Prelude: algebra of characteristic functions

(At the board)

Measures (background)

A measure is a mathematical object that may be defined in two
ways:

* A measure may be defined as a function from a measurable
set to a nonnegative extended real number (zero to infinity).
The function must be countably additive: the measure of a
countable union of disjoint sets is the sum of their measures.

The choice of measurable sets depends on the applications,
but in a discrete space, typically every set is measurable,
and on the real line, we typically take the Borel sets, which
are formed by taking countable unions, intersections, and
complements of intervals. (At higher dimensions, a slightly
more complicated construction is required, but the ideas are
the same.)

In every case, the empty set is measurable and has measure
zero, and the complement of the empty set—which is to say
the entire space—is measurable. Sets with infinite measure
are not merely permissible; they are commonplace.

* A measure may be defined as an integrator, which is a
higher-order function. In the simple case, a measure of type
M a defines an integrator that can be applied to any function
f whose type is a —> Real.![The codomain (“range”) of
f may actually be any vector space over the real numbers,
but if you understand the integration of real functions, it’s
The type variable a may be instantiated at a continuous
space, a discrete space, or a hybrid.

An integrator [m];, when applied to function f, computes
the integral of f according to the measure denoted by m.
Like all integrals, [m]; is a linear operator, and so it satisfies
the following algebraic laws:

[ml:(f +9) = [m]:(f) + [m]1(9)
[m]i(c- f)=c-[m]:(f)

These two definitions are equivalent:

* Given an integrator, you can recover a measure function by
integrating the characteristic function of a measurable set.

* Given a measure function, you can integrate any nonnegative
measurable function by a countable sequence of approxi-
mations. The integrand f is approximated below by a sum
of characteristic functions, where the domain of each func-
tion is a finite interval. To integrate an arbitrary function,
integrate the positive and negative parts separately.

Lebesgue measure and counting measure

Lebesgue measure is the unique measure on the real line that
maps each interval to its length. Integration against the Lebesgue
measure is usually called “Lebesgue integration.” Whenever the
Lebesgue integral of a function is defined, the Riemann integral
is also defined, and they are equal.

Given any countable set of points, the counting measure is the
unique measure that assigns measure 1 to each point. The inte-
grator takes a (countable) sum.

Probability distributions and ‘“unnormalized dis-
tributions”

A probability distribution is a measure that assigns the entire
space a measure of 1.

An “unnormalized distribution” is a measure that assigns the
entire space a finite, nonzero measure.

Given any finite, nonzero measure, we can produce the expecta-
tion of a function f using the following equation:

_ Il (f)
E(f) = [m]r(A_1)°

Language design and the monad of measures.

Today’s plan is to think about language design and the monad of
measures. In addition to the usual unit and bind operations, we
have our familiar u operator (for the uniform distribution over
the unit interval), plus the Lebesgue measure:



u :: M Real Integrates a function over the unit
interval

A :: M Real Integrates a function over the real
line (the Lebesgue measure)

N :: M Nat Counting measure on the natural

numbers
We also have

observe Bool -—> M ()

You might think about what mathematical object corresponds
to a function of type () —> Real, and what it might mean to
integrate such a function.

Today’s exercise has several parts:

» Using what we know about the monad of probability distri-
butions, define an “integrator semantics” for the monad of
measures

» Using what we know about integration and about operations
on integrators, extend our monadic language to be able to
express such operations

* Figure out where and how to use probability-density func-
tions

Integrator semantics

Using some of the techniques of denotational semantics, we’ll
define the meaning of a monadic language by translating each
monadic term into an integrator:

L [uli(f) = fy f(a)dz
2. [AL(f) =
3. [N]:(f) =

Here f has type Nat —> Real, where Nat is the type of
natural numbers.

4. [returnv];(f) =

(Recall that if v is a value of type a, then return v has type
M a, and therefore it can integrate any nonnegative measur-
able function of type a —> Real. When you have an idea,
verify that it satisfies the algebraic laws for integrators.)

5. [m>>= Aem))];(f) =
Here are the types:

m M a
T a

m Mb

b -> Real

f

An alternative way to write the term is do {x < m;m'}.

6. [observe v];(f) =

I want to alert you that in the presence of continuous vari-
ables this one is dodgy, but for today it shouldn’t matter.

Here are the types:

v Bool
observev M ()
f () —> Real

It may help to know that the term
observe e >>= \() -> m
is more commonly written

do { observe e; m }

Vector-space properties

The integral of a function~ f can be an element of a vector space.
In particular, this means that two integrals can be summed and
that an integral can be multiplied by a real constant. Also, every
vector space has a zero element.

7. Extend our language with a term whose denotation (transla-
tion) involves the sum of two integrals.

8. Extend our language with a term whose denotation involves
multiplying an integral by a constant.

9. Extend our language with a term whose denotation involves
the zero element of the vector space.

Application in practice

10. Write a term in the language to describe the distribution
of rolls of a four-sided die. The term need not denote a
probability measure.

11. Using your previous answer and your equations above, ver-
ify that the expected value of rolling a 4-sided die is 2.5.

12. Write a term in the language to describe a biased coin that
comes up heads with probability 2/3 and tails with probabil-
ity 1/3.

data Coin = H | T

13. Using your previous answer and your equations above,

* Write a term that models flipping the biased coin twice.

 Using your equations, calculate the expected value of
the function
\ (face, face') -> if face == face'
then 0 else 1

* Verify, by informal argument, that your answer gives
the probability of getting different faces on two throws.



Probability-density functions

14. Consider a probabilistic computation in which a fair coin is
flipped until it comes up heads.

Define a suitable probability-density function for use
with measure N.

Define an integrand function f whose expected value
is the probability that at most three flips are required.
Calculate E(f).

Define an integrand function g whose expected value
is the expected number of flips required to get heads.

Define a term in our language that can be used to
integrate either f or g to get the right answers. In other
words, figure out how to code the probability-density
function.
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