
CS 150 Quantum Complexity Theory

Lecture : Quantum Algorithms
Feb 21, 2024

Lecturer: Saeed Mehraban Scribe: Preliminary notes

1 Overview
So far we described the quantum formalism an saw a few important protocol in quantum computing
such as Hadamard test and teleportation. We saw the role of entanglement in these protocol. We
are now ready to get started with quantum algorithms. Quantum algorithms will be a large part
of our focus during this semester. We first start with the quantum black box model, which is
an idealized way of describing input to quantum computations. We will describe algorithms due
to Deutsch-Josza, Bernstein-Vazirani and Simon. The problems these algorithms solve involve
learning properties of Boolean functions. While these problems seem very abstract, they are the
backbone of some of the algorithms we will describe later. Next, we will describe the celebrated
Shor’s algorithm for factoring large numbers. One of the main elements of this algorithm is the
so-called quantum Fourier transform which we will describe in detail. Next we describe quantum
phase estimation, Hamiltonian simulation and energy estimation. After that we will go over the
Grover’s search algorithm. We will then describe two special topics: quantum algorithms for
linear systems which have applicaitons in machine learning and the hidden subgroup problem
which generalizes the Shor’s algorithm in several ways.

2 The quantum black-box model
How do we describe the input to a quantum computation? Suppose we have a Boolean function
f : {0, 1}n → {0, 1} and would like to provide access to instances of this function to a quantum
computer. For this purpose, we use the so-called black-box model. A black-box representation for
a function is a box that takes a string of bits x ∈ {0, 1}n as input and outputs a single bit equal
to f(x). The black-box model is also sometimes called the oracle model. We immediately face
a problem. How do we query an oracle in a reversible way? the input to the back box is n bits
and the output is a single bit. It turns out we can implement the oracle in two ways: the phase
oracle and the index oracle. The phase query works according to Of : |x⟩ → (−1)f(x)|x⟩. How is
this implementation reversible? If you query this oracle twice Of (Of (|x⟩)) = (−1)f(x)Of (|x⟩) =
(−1)f(x)+f(x)|x⟩ = |x⟩. As a result the oracle is the inverse of itself and is hence reversible. The
oracle is furthermore linear: Of (|v⟩+ |w⟩) = Of (|v⟩) +Of (|w⟩). The second model we consider
for quantum oracles is the index oracle. The oralce takes two set of registers as input. In the first
set we encode the input and in the second set we input an arbitrary string that has the same size
as the size of the output of the function. For the case of f , since f outputs one bit, the second

1

register takes one bit. If the output of f was three bits the second set would take three bits. The
way the oracle acts is similar to a controlled-NOT oparation. Of takes |x,w⟩ as input and produces
|x,w ⊕ f(x)⟩. Recall that for a, b ∈ {0, 1}m, c = a ⊕ b is the bit-wise XOR of the two bits, i.e.,
ci = ai ⊕ bi for 1 ≤ i ≤ m. Why is this oracle reversible? If we query Of twice we obtain
Of (Of (|x⟩|w⟩)) = Of (|x⟩|w ⊕ f(x)⟩) = |x⟩|w ⊕ f(x) ⊕ f(x)⟩. Similar to the phase oracle, the
index oracle is also linear.

Exercise: Prove that the above two notions are equivalent by allowing ancillas.

2.1 The Deutsch-Josza Algorithm
A function is called constant if it outputs the same bit 0 or 1 on every input. It is called balanced
if the number of inputs that produce the 0 output is the same as the number of inputs that produce
1. For instance the NOT function is a balanced function. In the Deustch-Josza problem, we have
black-box access to a function f : {0, 1} → {0, 1}, and wish to see wether it is constant or
balanced, ie is αf := f(0)⊕ f(1) = 0 or 1. Classically we need to make two queries. Why? There
are four possible function : {0, 1} → {0, 1}: f(x) = 0, f(x) = 1, f(x) = x and f(x) = NOT (x).
Suppose we query the function on the 1 input and suppose we obtain the output 0. We know that
the function cannot be the constant f(x) = 1 or the balanced f(x) = x, but we can’t distinguish
between f(x) = 0 and f(x) = NOT (x). DJ showed that quantumly you can do this using 1
query: We first apply a Hadamard gate, then phase query the function, then apply the Hadamard
gate again. We can show that if the function is balanced, then we will sample 1 from the output
with probabibility 1, and otherwise 0. Here is the analysis.

|0⟩ H−→ 1√
2
(|0⟩+ |1⟩) (1)

Of−→ 1√
2
((−1)f(0)|0⟩+ (−1)f(1)|1⟩) (2)

∝ |(−1)αf ⟩ (3)
H−→ |0⟩ if constant or |1⟩ if balanced. (4)

• Generalization to multi-qubit We can consider the generalization of the Deutsch-Josza (DJ)
problem to functions taking many input bits. Similar to the {0, 1} → {0, 1} functions, we can
define constant function to be functions that output the same value, 0 or 1, on every input. Similarly,
we define the balanced function to be one for which, out of the N = 2n possible inputs, N/2 yield
0 and N/2 yield 1 (so they are called balanced). Consider the following problem.

Problem 1 (Generalized Deutsch-Josza). Given a Boolean function f : {0, 1}n → {0, 1} and the
promise that f is either constant of balanced decide which one is the case.

Out of the 22
n boolean functions taking n-bit string to one bit, there are

(
2n

2n−1

)
∼ 22

n−n/2

balanced functions. Why? Using counting argument (similar to what we did before), we can

2

Figure 1: The circuit for multi-qubit Deutsch-Josza algorithm

deduce that extereme majority of balanced functions require exponential-size circtuits. There are
however only two constant functions f(x) = 0 and f(x) = 1. The generalized DJ problem is
called a promise problem because we are “promised” that the black-box function is either constant
or balanced. There are 22

n
(1 − 1

2n/2) functions that are neither constant of balanced and we are
promised that those instances are given to us as input.

Claim 2.1. There is a quantum algorithm that decides balanced vs. constant using 1 single query.

Proof. We use the circuit in Figure 2.1.

|0⊗n⟩ H⊗n

−−→ 1√
2n

∑
x∈{0,1}n

|x⟩ (5)

Of−→ 1√
2n

∑
x∈{0,1}n

(−1)f(x)|x⟩ (6)

H⊗n

−−→ 1

2n

∑
x∈{0,1}n

(−1)f(x)
∑

y∈{0,1}n
(−1)x·y|y⟩ (7)

Now examine the amplitude for |0⊗n⟩ which appears with probability 1
4n
|
∑

x∈{0,1}n(−1)f(x)|2. If
f is constant this probability is 1, and if balanced it is 0.

Remark 2.2. Since there are doubly-exponentially different balanced functions one needs exponen-
tial queries to solve the generalized DJ problem classically. Another way to see this is by noticing
that if we query f on any subset of inputs less than 2n−1 and we get the same value say 0, we can-
not be still sure whether the function is constant or balanced. We hence get an exponential-to-one
query improvement.

Exercise: What is the randomized query complexity of the Deutszch-Josza problem?

2.2 The Bernstein-Vazirani Algorithm
For x, y ∈ {0, 1}n, we use the notation x · y = x1 · y1 ⊕ . . . ⊕ xn · yn. The Bernstein-Vazirani
Problem is the following problem

3

Figure 2: The circuit for Simon’s algorithm (from Wikipedia)

Problem 2 (Bernstein-Vazirani). Given a Boolean function f : {0, 1}n → {0, 1} with f(x) = s ·x
for a secret s ∈ {0, 1}n, find s.

We need Θ(n) classical queries. To see the O(n) upper-bound note si = f(0i−110n−i+1). For
the lower-bound we use an information theoretic argument: if we make less than n queries there is
always more than one candidates for s that are consistent with all the queries.

Claim 2.3. There is a quantum query algorithm that achieves the goal with only 1 query.

Proof. We use the circuit in Figure 2.1 again. Note the output of the circuit is

|ψout⟩ =
1

N

∑
x,y∈{0,1}n

(−1)f(x)−x·y|y⟩. (8)

using f(x) = s · x we obtain

|ψout⟩ =
1

N

∑
x,y∈{0,1}n

(−1)(s−y)·x|y⟩ = |s⟩. (9)

Here we used the observation that
∑

x∈{0,1}n e
a·x = N if a = 0 and 0 otherwise.

2.3 Simon’s Algorithm
We wish a problem that we witness exponential speedup for a quantum algorithm. Simon’s prob-
lem exactly achieves this:

Problem 3. Given f : {0, 1}n → {0, 1}n and the promise that f(x) = f(y) iff x = y ⊕ s for a
secret key s. Find s.

Example 2.4. s = 110

f(000) = 1,

f(001) = 2,

f(010) = 3,

f(011) = 4,

f(100) = 3,

f(101) = 4,

f(110) = 1,

f(111) = 2

4

Claim 2.5. There is a quantum algorithm that achieves this using polynomially many queries.

Proof. We use the query model to create |0n⟩ ⊗ |0n⟩ → 1√
N

∑
x |x⟩|f(x)⟩ we then measure the f

register to obtain |x⟩+|y⟩√
2

where x · s = y · s. We then apply Hadamard H⊗n to the state to obtain
state ∝ (1 + (−1)(x−y)·z)|z⟩ ∝ (1 + (−1)s·z)|z⟩ we measure to obtain z knowing that z · s = 0.
Taking many independent samples we end up with a system of equations:

z1 · s = 0

z2 · s = 0

...
zn · s = 0

Exercise: Show classically we need Θ(2n/2).

3 Shor’s problem
• Simon’s problem does not really solve a real-world problem. It provides oracle separation

but not a real separation for an artificially designed problem.

• After Simon’s algorithm, Shor observed that with some (perhaps non-trivial) amount of work,
one can transform the algorithm in to an algorithm for factoring on a quantum computer.

• He uses a tool now known is quantum Fourier transform. As a matter of fact all other
algorithms we have been talking use a form of Fourier analysis. They in particular use
Fourier transform over Zn

2 . Shor used Fourier transform over integers (the cyclic group in
particular).

• Simon’s problem involved a function f and a secret key s such that f(x+ s) = f(x), for all
x. In a way, Simon’s problem finds the period of this function.

• Shor’s algorithm concerns ZN : f : [N] → [N], with the promise f(x) = f(x + r) =
f(x+ 2r) = . . . arguments mod N : Period Finding over integers.

• In what follows, we first introduce Fourier analysis and quantum Fourier transform.

• We then move to defining the problem of Factoring and describe Shor’s quantum algorithm
for it.

5

3.1 Quantum Fourier Transform
Let ω = e2πi/N , be the N ’th root of 1. Let f : [N] → C be complex numbers. We define the Fourier
transformation of f as

f̂(k) =
1√
N

N−1∑
j=0

f(j)ωjk

It is insightful to note ω satisfies the following identity

1 + ω + ω2 + . . .+ ωN−1 = 0.

To see this, let S = 1 + ω + . . .+ ωN−1. Therefore 1 + ωS = S + ωN . Hence

S =
1− ωN

1− ω
(10)

since ωN = 1, therefore S = 0. Next consider the following sum for some integer l:

Sl := 1 + ωl + ω2l + . . .+ ω(N−1)l.

First we observe that if l is an integer multiple of N then ωl = 1, therefore Sl = N . Otherwise,
using Equation 10 (replacing ω with ωl):

Sl =
ωlN − 1

ω − 1
= 0.

therefore
1

N
Sl =

{
1 if l is an integer multiple of N
0 otherwise

(11)

One of the implications of the above Harmonic identity is that

f(j) =
1√
N

N−1∑
k=0

f̂(k)ω−jk

To see this, we perform the following calculation

1√
N

N−1∑
k=0

f̂(k)ω−jk =
1√
N

N−1∑
k=0

(
1√
N

N−1∑
l=0

f(l)ωlk)ω−jk (12)

=
1

N

N−1∑
k=0

N−1∑
l=0

f(l)ω(l−j)k (13)

=
N−1∑
l=0

f(l)
1

N
(
N−1∑
k=0

ω(l−j)k) (14)

=
N−1∑
l=0

f(l)(
1

N
Sl−j) (15)

= f(j) (16)

6

To see the last line (Equation 16) we note that the only possibility for l−j to be an integer multiple
of N is that l = j. We now use Equation 11 to conclude that the only term that survives in the sum∑N−1

l=0 f(l)(1
N
Sl−j) is f(j).

The Fourier transform maps the constant function to pulses and vice-versa. In particular, let δ
be such that

δ(j) =

{
1 j = 0

0 j ̸= 0

and c : [N] → C be such that c(j) = 1/
√
N for all j ∈ [N], then ĉ = δ and δ̂ = c. In other words,

if a function is very flat, then its Fourier tranform will be highly spiked (and vice versa).

The quantum Fourier transform: Based on this background, we can now define the quantum
Fourier transform. The Hilbert space is CN . QFT acts on this Hilbert space. In particular, it
maps the basis according to

QFT : |j⟩ → 1√
N

N−1∑
k=0

ωjk|k⟩ (17)

QFT =
1√
N

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

...
...

... . . .
...

1 ωN−1 ω2(N−1) . . . ω(N−1)2

 (18)

Exercise: Show that this map is unitary.
Let’s solve some simple examples. Let’s compute

QFT |0⟩ = 1√
N

N−1∑
k=0

ω0×k|k⟩ = 1√
N

N−1∑
k=0

|k⟩ (19)

We obtain a uniform superposition. Now imagine |ψ⟩ = 1√
N

∑N−1
j=0 |j⟩. Then

QFT |ψ⟩ = 1√
N

N−1∑
j=0

QFT |j⟩ (20)

=
1

N

N−1∑
j=0

N−1∑
k=0

ωjk|k⟩ (21)

=
1

N

N−1∑
k=0

(
N−1∑
j=0

ωjk)|k⟩ (22)

= |0⟩. (23)

7

Next, imagine we start with a superposition over even numbers. For simplicity let N = 2L

|ψ⟩ = 1√
L

L−1∑
l=0

|2l⟩ (24)

Now we apply the Quantum Fourier Transform

QFT |ψ⟩ = 1√
L

L−1∑
l=0

QFT |2l⟩ (25)

=
1√
LN

L−1∑
l=0

N−1∑
k=0

ω2kl|k⟩ (26)

=
1√
LN

N−1∑
k=0

(
L−1∑
l=0

ω2kl)|k⟩. (27)

In the sum above only two terms survive k = 0 and k = L = N/2; the reason is that at these
two points ωk = 1 and the corresponding amplitude becomes 1√

NL

∑L−1
l=0 1 = 1√

2
; for other terms

we get zero because ω2k is a nontrivial (̸= 1) L’th root of identity. therefore the output becomes
1√
2
(|0⟩+ |N/2⟩). In general, using similar ideas, we can show for N = s · L, if

|ψ⟩ = 1√
L

L−1∑
l=0

|s · l⟩

then

QFT |ψ⟩ = 1√
s

s−1∑
j=0

|j ·N/s⟩.

Implementation of the quantum Fourier transform: Recall the binary notation for numbers;
a number j ∈ N can be represented by j = j02

0 + j12
1 + . . . + jn−12

n−1, where jl ∈ {0, 1} and
jn−1 . . . j1j0 is the binary representation. Similarly, 0.jl . . . jm = jl

2
+ . . . + jm

2m−l+1 . We can show
that the quantum Fourier transform maps:

|j1, . . . , jn⟩ 7→
1√
2n

(|0⟩+ e2πi0.jn|1⟩)(|0⟩+ e2πi0.jn−1jn|1⟩) . . . (|0⟩+ e2πi0.j1...jn−1jn|1⟩) (28)

For proof, see Nielsen-Chuang chapter 5. We can implement this using a number of controlled
rotations like

Rk =

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi
2k

2n

 (29)

Figure represents a recursive implementation of the quantum Fourier transform. QFT can be
implemented using O(n2) elementary gates.

8

Figure 3: Recursive implementation of QFT

Exercise: Show the above recursive implementation of the quantum Fourier transform works.

3.2 The factoring problem
Problem 4 (Factoring). Given a composite number N output its prime factorization, i.e.,p, q s.t.
N = pq, in time polynomial in |N | number of digits in N in, say, binary representation.

• Basis for the RSA cryptosystem.

• The cyclic group: ZN := {x : gcd(x,N) = 1}.

• The size of ZN

– If N is prime then |ZN | = N − 1.

– If N is the product of two distinct primes p, q then |ZN | = ϕ(N) := (p− 1)(q − 1).

• The order of x in ZN is the smallest integer r s.t. xr mod N = 1.

• Let fx(l) = xl mod N the period of fx is the same as the order of x in ZN .

Problem 5 (Period finding). Find the order of x in ZN in polynomial time |N |.

Theorem 3.1 (Miller ’70). With constant probability a uniform random element x of ZN has order
2r such that both gcd(N, xr + 1) and gcd(N, xr − 1) are non-trivial factors of N .

Corollary 3.2. There is a reduction from Factoring to Period finding.

• Note the similarity with the Simon’s problem: We have f : [N] → [N], fx(l) = xl mod N ,
and the promise that fx(a) = fx(b) iff a− b is a period of f .

9

3.3 Shor’s algorithm
Here we outline the steps of the Shor’s algorithm. We only keep the high-level idea. We note that
these steps are very similar to the steps in Simon’s algorithm. We first query the function f(l) =
xl mod N on all relevant inputs, then measure the funciton register to obtain a superposition
over all pre-images of a specific value f(r). We then use quantum Fourier transform (and extra
postprocessing) to learn the period. The quantum Fourier transform is in place of the Hadamard
transform in Simon’s algorithm.

• In the first step of the algorithm we findQ (a power of 2) that is essentially close toN2. logQ
is the number of qubits we use to store the input register. The reason for this choice is to
have enough number of qubits to produce a superposition over all relevant input instances.

• Next we prepare
1√
Q

Q−1∑
r=1

|r⟩|fx(r)⟩ =
1√
Q

Q−1∑
r=1

|r⟩|xr mod N⟩ (30)

Note xr mod N can be prepared using repeated squaring.

• Next we measure the second register to obtain

1√
l

l−1∑
i=1

|r0 + is⟩|fx(r0)⟩ (31)

where l = Q−r0−1
s

.

• Apply QFT to the first register

1√
lQ

l−1∑
i=0

Q−1∑
r=0

ωr(r0+is)|r⟩|fx(r0)⟩ (32)

QFT can be applied using a circuit of size log2N composed of Hadamards and controlled
phases.

• Now measure and obtain |r1⟩|fx(r0)⟩ with probability

1

Ql
|
l−1∑
i=0

ωr1(r0+is)|2 = 1

Ql
|
l−1∑
i=0

ωir1s|2 (33)

If r1s is close to a multiple ofQ then the above probability is close to 1 otherwise 0. Assuming
we obtain one of these instances, once we measure the register we obtain r1s = mQ for some
integer m. We divide r1 by Q and obtain m/s we can obtain s using a procedure known as
the continued fraction procedure as we will outline below.

10

Continued Fraction: The continued fraction is a method which given a real number, r, computes
an approximation of this number as a fraction of integers of the form

r ≈ a0 +
1

a1 +
1

a2+
1

a3+
1

...+ 1
an

=:
Pn(r)

Qn(r)

I like this example in Vazirani’s lecture notes. We try this approximation for the number π. We can
do it for the estimation π ≈ 3.14.

π ≈ 3.14 (34)

= 3 +
1
100
14

(35)

= 3 +
1

7 + 2
14

(36)

≈ 22/7 (37)

We can obtain other candidates by considering more decimals in π.

π ≈ 3.1415 (38)

= 3 +
1

10000
1415

(39)

= 3 +
1

7 + 95
1415

(40)

= 3 +
1

7 + 1
14+ 1

85
95

(41)

= 3 +
1

7 + 1
14

(42)

≈ 311/99 (43)

Lemma 3.3. If r is rational equal to P/Q then Q = Qn(r) for some n = O(logQ).

Back to the Shor’s algorithm. Recall that we have stored an estimation of m/s in the output of
our quantum algorithm. It turns out that if we obtain m/s with good enough accuracy then using
the above lemma, s can be obtained using s′ = Qn(r) for some n = O(logN). The point is that
we can verify that s′ is indeed the period; otherwise we try again.

4 Quantum phase estimation
Another application of the quantum Fourier transform is phase estimation. The problem is as
follows:

11

Figure 4: The circuit for phase estimation (from Wikipedia)

Problem 6 (Phase estimation). Given black-box access to controlled-U for a unitary U and one of
the eigenvectors of U , output an estimation to the corresponding eigenvalue.

Let |u⟩ be the corresponding eigenvector. The algorithm is as follows: We start with |0t⟩⊗|u⟩ (t
is large enough to store the final value for the eigenvalue with appropriate precision). We number
the registers containing zeros by 1 to t. We apply Hadamards to the zeros (i.e., qubits 1 to t) to
prepare a uniform superposition. We then apply controlled-U2j , controlled on the j’th qubit, to
|u⟩. After this operation, we will obtain

1√
2n

(|0⟩+ e2πi0.ϕt |1⟩)(|0⟩+ e2πi0.ϕt−1ϕt |1⟩) . . . (|0⟩+ e2πi0.ϕ1...ϕt−1ϕt|1⟩)|u⟩ (44)

We then apply the inverse Fourier transform to the first t qubits and read an estimation of ϕ.

Solving period finding via phase estimation: We consider U to be the following unitary U :
|y⟩ 7→ |xy mod N⟩. Like before, let r be the period of x in N , i.e., xr = 1 mod N . We can show
that

|us⟩ =
1√
r

r−1∑
k=0

exp(
−2πisk

r
)|xk mod N⟩

is an eigenvector of U with eigenvalue
e

2πis
r

the main challenge is to implement |us⟩. Well, if we don’t know r, we can do that, but that is the
same as solving the original period-finding question. The main observation is that

|1⟩ = 1√
r

r−1∑
s=0

|us⟩ (45)

Therefore, the output state is within close distance to 1√
r

∑r−1
s=0 |us⟩ ⊗ |s/r⟩. So for each s we

obtain an estimate of s/r with probability ∼ 1/r within O(logN) bits of accuracy. We can use the

12

continued fraction algorithm to find the closest rational number to s/r and obtain s′ and r′ such
that s/r = s′/r′. Assuming s and r are relatively prime, we obtain r = r′; we can test if r′ is the
real r and if it was not we can try again.

5 Energy estimation
We saw that using quantum phase estimation we can estimate eigenvalues of a unitary matrix U ,
given access to powers of controlled-U operations and the specific eigenvectors. Can we use this
algorithm to estimate the eigenvalues of physical observables? Recall that a physical observable
O is a Hermitian operator whose eigenvalues model the attainable physical measurements out of
a physical observable. In particular if O has eigenvalues and eigenvectors λi, |i⟩, respectively,
then if we measure O in the eigenstate |ψj⟩ we obtain ⟨j|O|j⟩ = λj . One of the most important
observables in physics is the Hamiltonian or energy observable. A Hamiltonian is an observable
whose eigenvalues are a system’s energy levels. It is important to note that the Hamiltonian also
describes the time evolution of a closed physical system. It turns out that if a system is described
according to a Hamiltonian H then after t steps it has evolved according to the unitary matrix

e−iHt

Recall that if A is a Hermitian matrix, then eiA is unitary. To get a better sense of why that
happens, we note the well-known Schrödinger equation describing the time evolution of a system
is according to the differential equation

i∂t|ψ(t)⟩ = H|ψ(t)⟩

If the system at time zero starts with |ψ(0)⟩ then the solution to the Schrödigner equation at time t
is according to |ψ(t)⟩ = e−iHt|ψ(0)⟩.

Suppose we are given one of the eigenstates of a system with Hamiltonian H . How do we
measure the energy of the system at that level? If we can prepare the unitary e−iH and controlled
operations based on it, then we can input the eigenstate to the phase estimation circuit to estimate
and measure the energy. The reason this works is that if Ej is an eigenvalue of H with eigenvector
|j⟩ then e−iEj is an eigenvalue of e−iHt. The reason is due to the spectral decomposition. Recall
the spectral decomposition of H =

∑
j Ej|j⟩⟨j|. We discussed that for any function f of H we get

f(H) =
∑

j f(Ej)|j⟩⟨j|.
It remains to explain how we can implement U = e−iHt using basic quantum gates. This is

the topic of the quantum simulation algorithm, which we will discuss next. Let me remark that
assuming we can implement U using basic two-qubit gates, we can also implement controlled-U j

for j ≥ 1. To get from controlled-U to controlled-U j we just repeat the former j times. Suppose
U = gT . . . g1 where each gi is a two-qubit gate. We notice that c− U =

∏
i c− gi. To see this, we

observe that for any operation A, c−A = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗A. Each gates c− gi is a quantum
gate acting on constant (3) qubits and can be implemented using constant many elementary gates;
the reason is that any quantum circuit acting on l qubits can be implemented using 2O(l) elementary
gates.

13

I would like to remark that if, instead of one of the eigenstates, we feed the phase estimation
algorithm with an arbitrary quantum state |ψ⟩, we obtain the following. We find the decomposition
of ψ =

∑
j ψj|j⟩ according to the orthonormal eigenbasis of H; recall that because H is Her-

mitian, its eigenstates can be made orthonormal. The quantum phase estimation algorithm maps
|0⟩|ψ⟩ 7→≈

∑
j λj|0⟩|Ẽj⟩, where Ẽj is an estimation of the energy Ej . If we sample from this

distribution we will obtain Ẽj with probability |λj|2. By taking many samples and obtaining an
average over them we get an estimation of the value

∑
j |ψj|2Ẽj ≈ ⟨ψ|H|ψ⟩. In order to make the

error less that ϵ we need to make around Ω(∥H∥2∞
ϵ2

) measurements.

6 Quantum simulation algorithm
In the previous section, we discussed the energy observable known as Hamiltonians, which capture
the energy levels of the system and also describe the time evolution of a closed system. Let H be
the Hamiltonian of a system. We explained that after time t the evolution of a system is described
according to the unitary matrix U = e−iHt. We say a Hamiltonian is k-local if it can be written as
H =

∑
iHi, where each Hi acts upon k qubits. Quantum simulation, which is Feynman’s original

idea of simulating quantum physics using quantum computers, can be captured according to:

Problem 7 (Quantum simulation). Given access to terms Hj of a k-local Hamiltonian H =∑m
j=1Hj , with maxj ∥Hj∥∞ = h prepare an efficient unitary circuit that estimates the unitary

e−iH . Suppose further more for any terms Hj there are at most K terms that don’t commute with
it.

The main idea is based on a formula due to Trotter, also known as the Lie product formula. In
particular, for two matrices A and B, the Trotter formula is

eA+B = lim
N→∞

(eA/NeB/N)N (46)

In what follows, we prove this formula, analyze its rate of convergence, and explain how we can
use it to simulate quantum Hamiltonians. If A and B are two matrices that commute, then eA+B =
eAeB. So if the terms of the HamiltonianH commute with each other, then e−iH =

∏
j e

−iHj . Since
each e−iHj acts at most on k qubits, then we can prepare it using a quantum circuit of size at most
2O(k). So we can implement this unitary using m · 2O(k) steps.

What happens when the terms of the Hamiltonian do not commute with each other? For matri-
ces A and B, if they don’t commute, then eA+B ̸= eAeB. In particular

eA+B − eAeB =
∞∑
k=0

(A+B)k

k!
−

∞∑
k=0

Ak

k!

∞∑
k=0

Bk

k!
(47)

=
(A+B)2

2
− A2

2
− B2

2
− AB + h.o. (48)

= −1

2
[A,B] + h.o. (49)

14

In general, we can show

e
∑

i Ai −
∏
i

eAi = −1

2

∑
i<j

[Ai, Aj] + h.o. (50)

The main idea is to simulate approximately e−iH/N and repeat N times. This way the commutation
between two terms in the Hamiltonian decays as ∥[Hi

N
,
Hj

N
]∥∞ ∼ h2

N2 . For an appropriately chosen
N we show that this simulation gives a good estimation. In particular,

∥e−iH/N −
∏
j

e−iHj/N∥∞ = O(
Kmh2

N2
) (51)

Next, we have to repeat the above procedure for N times. There is a well-known observation in
quantum information that the error in quantum circuits grows linearly.

Lemma 6.1. Let A =
∏N

j=1Aj and B =
∏N

j=1Bj be unitary matrices such that ∥Ai − Bi∥∞ ≤ ϵ
for all 1 ≤ i ≤ N then ∥A−B∥∞ ≤ Nϵ.

Exercise: Prove this lemma.
Applying this lemma to the Equation 52 we obtain

∥e−iH − (
∏
j

e−iHj/N)N∥∞ = O(
Kmh2

N
) (52)

Error analysis: If we choose N = Ω(Kmh2

ϵ
) we can estimate e−iH within error ϵ. We can

implement (
∏

j e
−iHj/N)N in time T = mN2O(k). As a result, we can simulate e−iH within error ϵ

in time T = Km2h22k

ϵ
.

Remark 6.2. In order to simulate e−iHt we need to replace Hj with Hjt and hence in the error
analysis we need to replace h with ht. Assuming k, h = O(1) we conclude that the Hamiltonian
system after t time steps can be simulated in time T = O(Km2t2

ϵ
). Our intuition suggests that we

should be able to simulate the system in a time linear in t. Using more careful analysis of recent
work has been able to achieve the optimal bound O(ts + log 1

ϵ
), where s is the sparsity, ie, the

maximum number of nonzero terms in each row of the Hamiltonian in the computational basis.
See e.g. Berry-Childs-Kothari 2015 and Low-Chuang 2016.

7 Grover’s search
The search problem can be phrased according to

Problem 8 (Search). Given oracle access to f : [N] → {0, 1} such that ∃x, f(x) = 1, find such x.

Remark 7.1. Any classical algorithm needs at least N − 1 queries in the worst case and N/2 on
average.

15

Figure 5: The circuit for Grover’s algorithm

Figure 6: The effect of the reflection operator Grover’s algorithm

We assume we have an oracle Of :
∑

x αx|x⟩ 7→
∑

x αx(−1)f(x)|x⟩. The following algorithm
is due to Grove and solves the search problem in O(

√
N) times. It is interesting to note that this

bound is tight but applies to unstructured searches.

The Grover Algorithm:

1. Prepare |ψ⟩ := 1√
N

∑
x |x⟩.

2. Query f and get: 1√
N

∑
x(−1)f(x)|x⟩

• We define a diffusion (also known as reflection) operation

D = 2|s⟩⟨s| − I = H⊗n(2|0⟩⟨0| − 1)H⊗n (53)

This operator serves as a reflection. For |α⟩ =
∑

x αx|x⟩ Define S :=
∑

i αi

N
. Then D maps

this state to
∑

x α
′
x|x⟩ where α′

x = 2S − αx.

3. apply the reflection operator

4. Repeat for O(
√
N) time

Theorem 7.2 (Analysis of Grover). Grover’s algorithm succeeds after time O(
√
N).

Proof. Let x0 be the solution to our search. We look at the space spanned by |ω⟩ := |x0⟩ and
|s′⟩ := 1√

N−1

∑
x ̸=x0

|x⟩. Let |s⟩ = 1√
N

∑
x |x⟩. See Figure 7. The effect of the oracle query is

16

Figure 7: Analysis of Grover (from Wikipedia)

given by Uω := (I − 2|ω⟩⟨ω|); geometrically the effect of this operator is tantamount to reflecting
the sign for the component of the state along the direction |ω⟩. Similarly the effect of the diffusion
(or reflection) operator is given by Us = (2|s⟩⟨s| − I), geometrically equivalent to reflecting along
|s⟩. Initially, after applying the Hadamard operation, the state of the quantum computer is in

|A0⟩ := |s⟩ = 1√
N
|ω⟩ +

√
N−1
N

|s′⟩. In each round we first query then function then the diffusion.
Let G = UsUω. The state of our quantum computer after t iterations of G is |At⟩ := Gt|A0⟩.

Initially, the overlap between |A0⟩ and |ω⟩ is ⟨A0|ω⟩ = 1√
N

. Geometrically, this is the same as

saying that the angle between this state with the |s′⟩ is sin∆ =
√

1
N

. In each iteration the angle

will increase by 2∆. Hence after ∼
√
N iterations we obtain an angle around π/2 and hence we

are at state |ω⟩. It is important to note that if we keep repeating this algorithm we will deviate from
the correct answer.

8 Solving systems of linear equations (Optional)
One of the most important computational problems throughout sciences and engineering is solving
linear systems. The problem is, given a square matrix and a target vector b⃗, find vector x⃗ such that
Ax⃗ = b⃗. We consider the following versions of this problem for which we can gain exponential
quantum speedup.

Problem 9 (Linear systems). Given a N × N Hermitian matrix A, and a unit vector |b⟩, and
another Hermitian matrix M , find vector ⟨x|M |x⟩, where |x⟩ is such that A|x⟩ = |b⟩.

• In 2008 Harrow Hassidim Lloyd proposed a quantum algorithm that runs in logN ·O(κ2).

17

• Best classical algorithm runs in time O(Nκ) (or O(N
√
κ) for PSD matrices).

The Algorithm: Let λi, |ui⟩ be the eigenvalue and eigenvectors of A. Consider the decomposi-
tion of |b⟩ =

∑N
i=1 βi|ui⟩ in the eigenbasis of A.

1. Use quantum simulation to prepare eiAt.

2. Use quantum phase estimation mapping : |b⟩ ⊗ |0⟩ 7→≈
∑N

j=1 βj|uj⟩ ⊗ |λj⟩.

3. Add an additional ancilla and rotate it conditioned on the value of the |λ⟩ register and obtain

≈
N∑
j=1

βj|uj⟩ ⊗ |λj⟩(

√
1− C2

λ2j
|0⟩+ C

λj
|1⟩)

4. Uncompute the |λ⟩ register and obtain

≈
N∑
j=1

βj|uj⟩(

√
1− C2

λ2j
|0⟩+ C

λj
|1⟩)

5. Measure the ancilla register and condition on obtaining a 1 to obtain the state

≈
√

1∑N
j=1C

2|βj|2/|λj|2

N∑
j=1

βj
C

λj
|uj⟩

6. Up to normalization we obtain some state ≈
∑N

j=1 βj/λj|uj⟩ = A−1|b⟩ = |x⟩. The normal-
ization is the probability of obtaining 1.

7. Measure POVM {M, I −M} to obtain ⟨x|M |x⟩

Analysis:

• Assuming A is s−sparse, we can perform quantum simulation for eiAt in time O(logN)s2t.

• If A is not Hermitian, then define

Λ =

(
0 A
A† 0

)
and solve Λ|y⟩ =

(
|b⟩
0

)
, where |y⟩ =

(
0
|x⟩

)
.

• If f(i, j) =
∑j

k=i |⟨k|b⟩|2 is efficiently computable, then we can prepare |b⟩ efficiently; oth-
erwise we can assume |b⟩ is given to us as a subroutine in some other algorithm.

• in order to succeed we need to choose C = O(1/κ) and succeed with probability Ω(1/κ2).

18

9 The hidden subgroup problem (Optional)
The most immediate generalization of Shor’s problem which involves the (Abelian) cyclic group
is to extend it to families of problems known as the “Hidden-Subgroup Problems” over arbitrary
groups. Shor and Kitaev showed that we get quantum polynomial-time algorithms for Abelian
groups. We don’t know if the same is possible for arbitrary groups.

Problem 10 (The Hidden Subgroup Problem). Let (G, ·) be a group and H ≤ G be a subgroup.
Suppose f : G→ [N] is such that for x, y ∈ G, f(x) = f(y) iff x = hy for some h ∈ H . (In other
words of x, y belong to a left coset of H .) Find the generators of H .

• The Simon’s problem is a special case: G = (ZN
2 ,+) and H = {0, s}.

• Shor’s problem is also a special case: G = (ZN ,+) and H = {. . . ,−2s,−s, 0, s, 2s, . . .}
and fx(l) = xl mod N .

Theorem 9.1 (Shor-Kitaev). The Hidden subgroup problem over finite Abelian groups can be
solved within BQP.

• We know if SAT is reducible to HSP then the polynomial Hierarchy collapses.

• HSP is within NP ∩ coAM

Theorem 9.2. Graph Isomorphism ≤ HSP

Proof. For a graph C let Automorphism group of C be the set of permutations Aut(C) := {π ∈
Sn : π(C) ∼= C}. Given two graphs C1, C2 let C = C1 ∪ C2. Now if C1 ≇ C2 then Aut(C) =
Aut(C1)× Aut(C2). Here is the reduction G = Sn, H = Aut(C), fC(π) = π(C).

9.1 Query complexity of HSP (optional)
Theorem 9.3 (Ettinger-Höyer-Knill). HSP can be solved using polynomial many queries to f :
G→ N, where f satisfies ∀x, y ∈ G, f(x) = f(y) iff x = hy for some h ∈ H ⊴ G.

Proof sketch. Suppose we have

1. Prepare the superposition: 1√
|G|

∑
x∈G |x⟩

2. Query f to prepare: 1√
|G|

∑
x∈G |x⟩|f(x)⟩

3. Measure the second register to get a superposition: |C⟩ = 1√
|H|

∑
h∈H |hy⟩

4. Repeat this for K ≈ log2 |G| times to get: |C1⟩, . . . , |CK⟩.

19

We claim is that there is a measurement to give usH . The measurement is not necessarily efficient.
We observe there are at most |G|log |G| different subgroups ofG. The reason is that there are at most
log |G| generators for G, and there are, therefore at most

(|G|
log |G|

)
many distinct subgroups.

1. Prepare |ψH⟩ = |C1⟩ ⊗ . . .⊗ |CK⟩.

We observe that if H ̸= H ′ ⊴ G then |H ∩ H ′| ≤ |H|/2. To see this, we observe that since
H ̸= H ′ there exists a nontrivial x ∈ H/H ′. Therefore for any y ∈ H ∩ H ′, xy ∈ H/H ′.
Therefore |H ∩H ′| ≤ |H/H ′| and since |H| = |H ∩H ′|+ |H/H ′|, |H ∩H ′| ≤ |H|/2. Therefore
|⟨H,H ′⟩| ≤ 1

2
. This because if |H⟩ = 1√

|H|

∑
h∈H |hy⟩ and |H ′⟩ = 1√

|H′|

∑
h′∈H′ |h′y′⟩ then

⟨H,H ′⟩ = |H∩H′|√
|H||H′|

. That means if two subgroups are all the same, they are exactly the same.

Therefore |⟨ψH , ψH′⟩| ≤ 1
2K

. There are at most |G|log |G| different such ψH’s, therefore, it is
enough to take K ≈ log2 |G| to reduce the error below the required amount.

Exercise: How can we perform the measurement above?

20

