
CS 150 Quantum Computer Science

Lecture notes on error correcting codes
Spring 2024

Lecturer: Saeed Mehraban Scribe: Preliminary notes

These notes are closely aligned with the topics presented in Nielsen Chuang and the quantum
computer science course by David Mermin. For more details please read relevant chapters from
those references.

1 Classical repetition code
Suppose we want to encode a bit 0 or 1 assuming a model of noise where each bit has a probability
p of being flipped. If we encode information using naive encoding, then with probability p, infor-
mation gets corrupted; this error channel is known as the binary symmetric channel. Such a way of
encoding information is not reliable. The repetition code instead repeats each bit at the encoding.
For instance, suppose we encode 0 with 000 and 1 with 111. We furthermore decode information
by taking a majority vote. In this way, we can correct one bit getting flipped. However, if two or
more bits are flipped, our decoding procedure does not give the correct answer. The probability of
two or more bits getting flipped is 3p2(1−p)+p3 = O(p2). As a result, we suppress the probability
of error by a quadratic factor. More generally, if we use the encoding 0 → 0k and 1 → 1k and
decode using majority vote, then assuming p < 1/2, the probability of error decays exponentially
fast in k.

Exercise: Prove this.

2 Correcting quantum bit flips
Initially, it may appear that error correction is impossible when comparing classical and quantum
information processing due to significant differences between the two frameworks. For instance,
due to the no-cloning theorem, we may not copy information. Also, quantum measurements de-
stroy quantum information. Furthermore, the space of errors is continuous and corresponds to a
much larger space than the classical domain. For instance, a quantum state may experience Z error,
X error, or an error as a linear combination of the two. It is an outstanding discovery that besides
all these limitations, quantum error correction is still possible.

Suppose, for now, our noise model is that on each qubit, we have equal probability p of getting
an unwanted bit flip X . Let’s choose an encoding:

0 → |0̄⟩ := |000⟩ , 1 → |1̄⟩ := |111⟩ .

1



we can perform this encoding using a CNOT between first and second and a CNOT between first
and third qubits. The circuit implementing this operation is givne in Figure 1. A nice observation
is that if we input an arbitrary quantum state |ψ⟩ = α |0⟩ + β |1⟩, we obtain |ψ̄⟩ = α |0̄⟩ + β |1̄⟩.
The main observation is that any quantum state like |ψ̄⟩ belongs to a two-dimensional subspace
spanned by |000⟩ and |111⟩. Let’s call this subspace, V0, the error-free subspace. Suppose we
apply a bit flip to the first qubit of |ψ̄⟩ and obtain α |100⟩ + β |011⟩. Any such quantum state
belongs to the subspace of quantum states spanned by |100⟩ and |011⟩. Let’s call this subspace
V1. Similarly, if we apply a bit flip operation to the second or third qubit, we obtain a quantum
state in V2 = span{|010⟩ , |101⟩} and V3 = span{|001⟩ , |110⟩}. It is crucial to observe that sub-
spaces V0, V1, V2, V3 are mutually orthogonal. To correct the incident error, we need to measure the
subspace Vi (i = 0, 1, 2, 3) where the quantum state belongs to. To do this, we use the following
POVM

Π0 = |000⟩ ⟨000|+ |111⟩ ⟨111| (1)
Π1 = |100⟩ ⟨100|+ |011⟩ ⟨011| (2)
Π2 = |010⟩ ⟨010|+ |101⟩ ⟨101| (3)
Π2 = |001⟩ ⟨001|+ |110⟩ ⟨110| . (4)

To see why this set of operators corresponds to a POVM, we note that Πi ≥ 0, and Π0+Π1+Π2+
Π3 = I . Once we perform this POVM measurement and obtain a label i, we can correct the error.
If i = 0, we don’t need to do anything. But if i ∈ {1, 2, 3}, then we can correct the quantum state
by applying Xi (X on qubit i).

Another way to understand the error measurement is through the framework of observable
measurements. Consider two observables O1 = Z1Z2 and O2 = Z2Z3. If |w⟩ ∈ V0 then O1 |w⟩ =
|w⟩ and O2 |w⟩ = |w⟩, if |w⟩ ∈ V1 then O1 |w⟩ = − |w⟩ and O2 |w⟩ = |w⟩, if |w⟩ ∈ V2 then
O1 |w⟩ = − |w⟩ and O2 |w⟩ = − |w⟩ and if |w⟩ ∈ V3 then O1 |w⟩ = |w⟩ and O2 |w⟩ = − |w⟩. In
other words, if we measure O1, O2 and obtain x, y ∈ ±, then +,+ corresponds to no error, −,+
corresponds to bit flip on the first qubit, −,− corresponds to an error on the second qubit and +,−
corresponds to an error on the third qubit. We can correct each error correspondingly. This step is
known as syndrome measurement.

To implement this measurement using the circuit model, we can use two extra ancillary qubits,
both initialized at 0. We perform CNOT between the first qubit and the first ancilla qubit and
another CNOT from the second qubit to the first ancillary qubits. This way, we store the parity
between the first two qubits in the first ancillary qubit. Similarly, we apply CNOT from the second
qubit onto the second ancillary qubit and another CNOT from the third qubit onto the second
ancillary qubit. As a result, we obtain the parity between the second and third qubits in the second
ancillary qubits. We then measure the ancillary qubits. If we obtain 00 we apply nothing I . If we
obtain 10 we apply X1. If we obtain 11 we apply X2 and if we obtain 01, we apply X3. We can
implement this step using the SELECT operation we discussed before (using Toffoli gates). See
Figure 2 for the implementation.

Exercise: Analyze an explain what happens to this error correcting code if two errors occur.

2



|b⟩

|0⟩

|0⟩

Figure 1: The encoding map which maps |b⟩ to |b̄⟩ = |bbb⟩ for b ∈ {0, 1}. We note that the
same map can be used for decoding, i.e., it transforms the quantum state α |000⟩ + β |111⟩ to
(α |0⟩+ β |1⟩) |00⟩.

|ψ′⟩ |ψ⟩

|0⟩ |d1⟩

|0⟩ |d2⟩

X

X X

Figure 2: The error correcting map. The input is the quantum state |ψ′⟩ which is equal to |ψ⟩ after
going through the noise channel. Assuming at most one bit flip has been applied we can correct
this error. If d1 = d2 = 0 then no correction is needed. If d1 = 1, d2 = 0 we correct by applying
an X operator on the first qubit of |ψ⟩. If d1 = 1, d2 = 1 we correct by applying an X operator on
the second qubit of |ψ⟩. If d1 = 0, d2 = 0 we correct by applying an X operator on the third qubit
of |ψ⟩.

3 Correcting quantum phase flips
In the previous section we showed how we can correct one phase error. What happens if we
consider phase flip errors i.e. receiving an unwanted Z error on one of the qubits. As we have seen
before the Z operator can be obtained from X by the Hadamard change of basis: Z = HXH .
Using this observation we consider the following encoding

0 → |0̄⟩ := |+++⟩ , 1 → |1̄⟩ := |− − −⟩ .

we can implement this map using the circuit in Figure 5
The decoding map is according to the inverse of this map (and tossing out the two right-most

ancillary qubits). The following figure captures this map:
We show that we can correct up to one Z error using this encoding. To see this we observe that

the dencoding from previous seciton works exactly the same way if we replace 0 with + and 1 with
−. For instance, if we start with a quantum state |ψ⟩ = α |0⟩+β |1⟩, after the encoding step we get
|ψ̄⟩ = α |+++⟩+β |− − −⟩. If we apply a Z gate to the first qubit we get Z1 |ψ̄⟩ = α |−++⟩+
β |+−−⟩. So, the subspace corresponding to no error is V Z

0 = Span{|+++⟩ , |− − −⟩}, the

3



|b⟩

|0⟩

|0⟩

H

H

H

Figure 3: The encoding map which maps |0⟩ to |0̄⟩ = |+++⟩ and |1⟩ to |1̄⟩ = |− − −⟩.

H

H

H

Figure 4: The dencoding map which maps |0⟩ to |0̄⟩ = |+++⟩ and |1⟩ to |1̄⟩ = |− − −⟩.

subspace corresponding to Z1 error is V Z
1 = Span{|−++⟩ , |+−−⟩}, the subspace correspond-

ing to Z2 error is V Z
2 = Span{|+−+⟩ , |−+−⟩}, the subspace corresponding to Z3 error is

V Z
3 = Span{|++−⟩ , |− −+⟩}. Similar to before, we can detect this error using the following
POVM :

ΠZ
0 = |+++⟩ ⟨+++|+ | − −−⟩ ⟨− − −| (5)

ΠZ
1 = | −++⟩ ⟨−++|+ |+−−⟩ ⟨+−−| (6)

ΠZ
2 = |+−+⟩ ⟨+−+|+ | −+−⟩ ⟨−+−| (7)

ΠZ
2 = |++−⟩ ⟨++−|+ | − −+⟩ ⟨− −+| . (8)

Also similar to before, to detect this error we can measure the operators OZ
1 = X1X2 and OZ

2 =
X2X3. We can see that the subspaces V Z

i correspond to specific eigenspaces of OZ
1 and OZ

2 . For
V Z
0 we obtain +,+ for the eigenvalues of OZ

1 and OZ
2 , respectively. For V Z

1 we obtain −,+, for
V Z
2 we obtain +,+, and for V Z

3 we obtain +,−. The error correcting map is similar to Figure 2
except that we have to apply Hadamard gates in the begining and in the end to all qubits of |ψ′⟩.

4 Shor’s 9-qubit code
We already saw how to correct errors in two (incompatible) basis. How can we design a quantum
code that corrects both X and Z errors at the same time? The Shor’s 9-qubit code achieves this
objective. As expected, the code is a combination of blocks involving phase flip correcting code
and bit flip correcting code. The code is obtained by first mapping |0⟩ → |+++⟩ and |1⟩ →
|− −−⟩ and then mapping each of the three qubits according to the bit flip encoding map and

4



obtain

|0L⟩ = (
|000⟩+ |111⟩√

2
)(
|000⟩+ |111⟩√

2
)(
|000⟩+ |111⟩√

2
)

and

|1L⟩ = (
|000⟩ − |111⟩√

2
)(
|000⟩ − |111⟩√

2
)(
|000⟩ − |111⟩√

2
)

The main observation is that if we apply one X or Z gate we move to mutually orthogonal sub-
spaces. This allows us to detect and correct error.

|ψ⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

H

H

H

Figure 5: The encoding map for the Shor’s code.

To describe the error detection and correction step we use the syndrome measurement language.
Now suppose a bit flip occurs on the first qubit. We can detect this error by measuring the syndrome
observables Z1Z2 and Z2Z3 and verifying that we get −1 on the first observable and +1 on the
second. Similarly to detect bit flip error on the second block by measuring Z4Z5, Z5Z6, and on
the third block by measuring Z7Z8, Z8Z9. We can correct this error by applying X operator to the
faulty bit.

Now we analyze what happens if a phase flip error Z gets applied to one of the qubits. We
claim by measuring the syndromes X1X2X3X4X5X6 and X4X5X6X7X8X9 we can detect and
correct phase flip error.

Exercise: Explain how and why this syndrome measurement works. Give a procedure to correct
this indecent error.

5



Exercise: Suppose a Y operation is applied to the first qubit. Analyze the Shor’s code and explain
how we can detect and correct this error. (Hint: Y = iXZ.)

Exercise: Suppose we apply a T =

(
1 0
0 eiπ/4

)
to the first qubit. Show that Shor’s code is

capable of correcting this error.
It turns out that any general quantum operation that involves affecting only one qubit can be

corrected using Shor’s code. For instance, if we apply a unitary operation U =
∑

i αiAi where Ai

is a single qubit operation, we can correct this error using Shor’s code. The code can correct more
general forms of (non-unitary) errors, which is beyond the scope of this course.

5 Stabilizer codes
In this section, we introduce “stabilizer codes” as an important framework for error correction that
formally generalizes the three codes discussed so far. Recall the insights we obtained so far. The
code space corresponds to a subspace in the Hilbert space. Once an error occurs, the quantum state
in the error-free subspace gets mapped to an error subspace, which is orthogonal to the error-free
subspace, and hence, they can be perfectly distinguished from each other. Furthermore, we would
like each Z orX error on each qubit to map the subspace to subspaces that are mutually orthogonal
to each other. Let’s do a simple evaluation of how many qubits one needs to correct arbitrary single
qubit gates. We saw that this is possible using the 9-qubit Shor’s code. Can we do better? There are
3n single qubit operators (X, Y, Z on each qubit), so we need 3n+ 1 two-dimensional subspaces.
Hence, 2n ≥ 2(3n + 1). We can see that to satisfy this criterion, we need n ≥ 5. We will indeed
give a five-qubit error-correcting code.

Before we get there, let’s make a few simple observations about the bit flip code. Recall that
the syndrome observables for this code are Z1Z2 and Z2Z3. We observe the following features:
(1) these syndromes are tensor products of Pauli operators; hence they have eigenvalues ±1, (2)
they commute with each other (hence allow mutual eigenbasis), (3) they stabilize the code space
(i.e., any quantum state of the form α |000⟩ + β |111⟩, (4) at least one of the syndrome operators
anti-commutes with each of the bit flip errors which they can correct (they, however, commute with
the Z errors and they are not able to correct these errors).

Let’s study the syndromes of Shor’s 9-qubit code Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, for
bit flip errors and X1X2X3X4X5X6, X4X5X6X7X8X9 for phase flip errors. We note that these
syndrome operators satisfy all the mentioned criteria. This inspires us to define a more general
family of codes, namely the stabilizer codes that generalize all the codes discussed so far.

6



5.1 The stabilizer formalism
We define the Pauli group Pn as the group of Pauli strings of size n with phases ±,±i. For
instance, iX ⊗ Y ∈ P2 and −X ⊗X ⊗ Z ∈ P3

1. All elements in a Pauli group either commute
or anti-commute with each other. A quantum state is a stabilizer state if a subgroup of Pauli exists
that stabilizes it. In other words,

Definition 5.1. A quantum state |ψ⟩ is a stabilizer state if there exists a subgroup G ⊴ Pn s.t.
∀g ∈ G, g |ψ⟩ = |ψ⟩. More generally, a subspace of the Hilbert space is a stabilizer subspace if a
subgroup of Pauli stabilizes it.

To see why the set of vectors V ⊆ H stabilized by a subgroup of Pauli constitute a linear
subspace, note that if |ψ⟩ , |ϕ⟩ ∈ H, for any α, β ∈ C, α |ψ⟩ + β |ϕ⟩ ∈ V . Note that if the
subgroup contains −I,−iI, iI , elements that have eigenvalues other than ±1 or elements that anti-
commute with each other, then the stabilizer state is trivially the 0 state. Why? We saw before
that the elements of the Pauli group either commute or anti-commute with each other. Therefore,
nontrivial stabilizer subgroups are commutative. Conversely, we can define a stabilizer group for
a linear subspace V ⊆ H.

Definition 5.2. The stabilizer group GV corresponding to the linear subspace of the Hilbert space
V ⊆ Cn, is defined as the largest subgroup G ⊴ Pn that stabilizes V , i.e., for all |v⟩ ∈ V , g ∈ GV ,
g |v⟩ = |v⟩.

To see why the set of elements that stabilize a subspace correspond to a group, we note that if
two elements g and h stabilize a subspace, so does their multiplication. Furthermore, if g stabilizes
V , so does g−1, and clearly, the identity element stabilizes any element. Any subspace of the
Hilbert space has a stabilizer subgroup because I by itself is a subgroup of Pauli.

How large is the stabilizer subspace for a given subgroup of Pauli? Suppose a GV subgroup
of Pn has k generators2 g1, . . . , gk and stabilizes the subspace V ⊆ (C)⊗n. To get a nontrivial
subspace, furthermore assume that all elements of GV commute with each other and furthermore
g2 = I , for all g ∈ GV ; furthermore, except for the identity element, all elements of GV have zero
traces. Our first observation is that the projector onto V is given by

ΠV =
1

2k

∑
g∈GV

g

To see this, for each g ∈ GV , since g2 = I then I+g
2

is the projector onto the +1 eigenspace of
g. (Similarly, I−g

2
corresponds to the −1 subspace.) Since all elements in GV commute, ΠV =∏

g∈G(
I+g
2
). We know that dim(V ) = Tr(ΠV ). Therefore,

Lemma 5.3. If the stabilizer subgroup of V has k generators, then dim(V ) = 2n−k.

1Recall that a group is a collection of objects with a multiplication rule, which is (1) closed under multiplication
and is associative, (2) has an identity element, and (3) has an inverse element

2By ⟨g1, . . . , gk⟩, we mean the set of elements generated by compositions of g1, . . . , gk; a generator is the smallest
set of group elements that generates that group

7



Intuitively, what this lemma is saying is that each generator of GV divides the 2n-dimensional
Hilbert space C⊗n into two halves, hence the +1 subspace of k generators has dimension 2n−k.

Let’s work out a few examples. For the Hilbert space of one qubits, ⟨Z⟩ is a stabilizer subgroup
with k = 1 generator. The dimension of the subspace stabilized by this group is 21−1 = 1 dimen-
sional. We can see that this subspace is exactly the set of vectors spanned by |0⟩. Similarly ⟨−Z⟩
stabilizes the subspaces |1⟩. Now let us look at the quantum state |0 . . . 0⟩ (n zeros). What is the
stabilizer group corresponding to this state? Clearly, the subspace is one-dimensional, so 2n−k = 1
only when k = n. Hence, we need to find n generators. It is easy to see that ⟨Z1, . . . , Zn⟩ is the
stabilizer group. Let us consider the subgroup ⟨XX⟩. The stabilizer subspace corresponding to
this group has 2n−k = 2 elements. One of the elements will be |00⟩+|11⟩√

2
and the other |01⟩+|10⟩√

2
.

Let us consider the subgroup ⟨XZ⟩. Like the previous example, its stabilizer subspace is a 2-
dimensional subspace. This subgroup stabilizes |00⟩+|10⟩√

2
and |01⟩−|11⟩√

2
. Next, consider the stabilizer

subgroup ⟨XX, Y Y ⟩. XX and Y Y commute with each other, and we have a 1-dimensional sta-
bilizer subspace which is spanned by |01⟩+|10⟩√

2
. Finally, consider the example ⟨Z1Z2, Z2Z3⟩, which

corresponds to the syndrome operators for the bit flip error. We expect a 23−2 = 2-dimensional
subspace, which not surprisingly happens to be the code subspace for the bit flip error, i.e., the set
of vectors spanned by |000⟩ , |111⟩.

Lastly, we present a useful lemma in the stabilizer formalism:

Lemma 5.4. Let GV be the stabilizer subgroup corresponding to a linear subspace V , and let U
be any unitary operator, then GUV = UGVU

−1.

Here UV = {U |v⟩ : |v⟩ ∈ V }, and UGU−1 = {UgU−1 : g ∈ G}. We leave the proof as an
exercise. For instance, ⟨Z1, Z2⟩ is the stabilizer subspace of |00⟩. Now let U = CNOT12H1. We
know that U |00⟩ = 1√

2
(|00⟩+ |11⟩). We also know that the stabilizer subgroup for 1√

2
(|00⟩+ |11⟩)

is ⟨XX,ZZ⟩.

Exercise: Verify that UZ1U
2 = X1X2, UZ2U

−1 = Z1Z2.

5.2 Stabilizer formalism for error correction
Let us get back to the bit flip code. As portrayed in the previous section, the code (no errors)
subspace corresponds to the stabilizer subspace for the group G0 = ⟨Z1Z2, Z2Z3⟩. Now consider
the error X1 being applied to a quantum state |ψ⟩ being initially stabilized by G0. We will obtain
|ψ′⟩ = X1 |ψ⟩. Using Lemma 5.4 is now stabilized by X1Z1Z2X1 = −Z1Z2 and X1Z2Z3X1 =
Z2Z3. That is why the syndrome Z1Z2 detects a −1 and Z2Z3 keeps detecting +1. More generally,
the syndrome g detects +1 if the incident error commutes with g and −1 if it anti-commutes.
We can deduce the pattern of +1,−1 in syndrome measurements for other bit-flip errors using
this window of reasoning. Furthermore, we can understand why these syndromes cannot detect Z
errors. That is because Z errors commute with the syndromes. Moreover, we can understand why
these syndromes fail to detect X1X2 errors correctly. That is because, for instance, this error term
commutes with Z1Z2 and anti-commutes with Z2Z3, so it incorrectly detects X1 error. Let’s look

8



at the syndromes of Shor’s code. Recall the syndromes are Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9,
for bit-flip errors and X1X2X3X4X5X6, X4X5X6X7X8X9. As an exercise, show that if a single
qubit X or Z error occurs, we measure −1 when the error anti-commutes with a syndrome and +1
when it commutes.

Suppose we measured the syndrome, and we are sure that not more than one error has been
applied. How should we decide what correction circuit we should apply? We need to find the set
of Pauli operators that anti-commute with the syndromes that are measured to be −1 and commute
with those operators we measured to be +1. In the case of the example above, X1 is specifically
the operator that anti-commutes with Z1Z2 and commutes with Z2Z3.

How do we find the correction circuit systematically? We will do this next. But before that,
let’s define some notation. Let a ∈ Fn and Xa = Xa1

1 . . . Xan
n (similarly for Z). Let’s use the

notation Pa,b = i−a·bXaZb to capture arbitrary Pauli strings, where a · b = a1b1 + . . .+ anbn is the
usual inner product. We chose c = i−a·b as the overall phase so that P 2

a,b = I3. How do we capture
Y using this notation? We leave it as an exercise. We can show that

Pa,bPa′,b′ = (−1)a·b
′+a′·bPa′,b′Pa,b

Let

Λ :=

(
0 I
I 0

)
.

then a · b′ + a′ · b = (a, b)Λ

(
a′

b′

)
. This is called the symplectic inner product. As a result

P(a,b) commutes with P(a′,b′) iff (a, b) is orthogonal to (a′, b′) according to the Symplectic inner
product. The question of finding a Pauli string that commutes with a given set of syndromes and
anti-commutes with others can be, therefore, captured according to a linear algebra problem over
Fn
2 , Aa = s where s is the vector of syndromes (0 for +1 and 1 for −1).

5.3 The five qubit code
As promised, in this section, we describe an error-correcting code encoding one logical qubit and
correcting single-qubit errors with five qubits. To encode a two-dimensional error-free subspace,
we need to provide k = 4 syndrome measurements; to see this, recall 2n−k is the dimension of
the stabilized subspace, so k = n − 1 = 4 gives us a two-dimensional subspace). Consider the
syndrome measurements:

⟨XZZXI, IXZZX,XIXZZ,ZXIXZ⟩

Fortunately, you have all the tools to analyze this code. So we leave it as an exercise to you.

Exercise: Prove the following features

1. Prove that all syndrome elements commute.
3We equate c2XaZbXaZb = c2(−1)a·b = I , So c = i−a·b works

9



2. Write an expression for the projector onto the code subspace.

3. Suppose there is a bit-flip error on one of the qubits; find the pattern of ± in syndrome
measurements. Repeat the same with phase-flip errors.

4. Show that XXXXX performs logical X and ZZZZZ performs logical Z.

5. Find an expression for the logical 0 and 1. (Disclaimer: this may be a lengthy expression).

10


