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Overview

This document provides an overview of the mathematical concepts that are fundamental for under-
standing and working with quantum systems. These notes summarise the required mathematical
prerequisites for the course Quantum Computer Science (CS-151) at Tufts University. The docu-
ment covers complex numbers and linear algebra, which are crucial tools for representing quantum
states and operators in a mathematical framework.

The first part of the document introduces complex numbers and their properties, such as the
complex conjugate and modulus. The second part of the document covers linear algebra basics,
including vector spaces, basis vectors, and linear transformations. It explains how these concepts
are used to represent quantum states and operators in a mathematical framework. The document
also explains the concept of inner products, which are used to compute probabilities and measure
the similarity between quantum states.

Overall, the document on preliminary mathematics in quantum computing provides a solid
foundation for understanding the mathematical concepts and tools that are necessary for working
with quantum systems. By covering complex numbers and linear algebra, the document provides
readers with the essential mathematical background required for further study in quantum comput-
ing.
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1 Complex Numbers

1.1 Complex Numbers
A complex number is a number of the form z = a+ bi, where a and b are real numbers, and i is the
imaginary unit, which has the property that i2 = −1. The set of all complex numbers is denoted
by C.

1.1.1 Real and Imaginary Parts

For a complex number z = a+ bi, the real part is denoted by Re(z) = a, and the imaginary part is
denoted by Im(z) = b.

1.1.2 Complex Conjugate

The complex conjugate of a complex number z = a+ bi is the complex number z∗ = z̄ = a− bi.
The complex conjugate has the following properties:

• (z̄)∗ = z

• zz̄ = |z|2

1.1.3 Magnitude and Argument

The magnitude (or modulus) of a complex number z = a + bi is denoted by |z| and is defined as
|z| =

√
a2 + b2.

The argument (or phase) of a complex number z = a + bi is denoted by arg(z) and is defined
as the angle θ such that z = |z|(cos(θ) + i sin(θ)). The argument is not unique, as it is defined
modulo 2π.

1.1.4 Polar Form

A complex number z = a + bi can be expressed in polar form as z = r(cos(θ) + i sin(θ)), where
r = |z| and θ = arg(z).

1.1.5 Euler’s Formula

Euler’s formula states that for any real number θ,

eiθ = cos(θ) + i sin(θ) (1)

Using Euler’s formula, we can write the polar form of a complex number as z = reiθ.
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1.2 Complex Number Arithmetic

1.2.1 Addition

The sum of two complex numbers is obtained by adding their real and imaginary parts separately:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i (2)

1.2.2 Subtraction

The difference of two complex numbers is obtained by subtracting their real and imaginary parts
separately:

(a+ bi)− (c+ di) = (a− c) + (b− d)i (3)

1.2.3 Multiplication

The product of two complex numbers is obtained by expanding and simplifying the terms:

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i (4)

1.2.4 Division

The division of two complex numbers is obtained by multiplying both the numerator and the de-
nominator by the complex conjugate of the denominator and simplifying:

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=

(ac+ bd) + (bc− ad)i

c2 + d2
(5)

1.2.5 Complex Exponentiation

Using Euler’s formula, we can define the exponentiation of a complex number:

zn = (reiθ)n = rneinθ = rn(cos(nθ) + i sin(nθ)) (6)

1.3 Complex Functions
In quantum computing, some important complex functions are used, such as complex exponential
functions and complex trigonometric functions.

1.3.1 Complex Exponential Function

The complex exponential function is defined as:

f(z) = ez = ea+bi = eaebi = ea(cos(b) + i sin(b)) (7)
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1.3.2 Complex Trigonometric Functions

The complex sine and cosine functions are defined in terms of complex exponentials as:

sin(z) =
eiz − e−iz

2i
= sin(a) cosh(b) + i cos(a) sinh(b) (8)

cos(z) =
eiz + e−iz

2
= cos(a) cosh(b)− i sin(a) sinh(b) (9)
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2 Bra-Ket Notation

2.1 Vectors in braket notation
In bra-ket notation, a column vector v is represented by a ket,

|v⟩. (10)

For example, if v is a vector in R3, we can represent it in bra-ket notation as

|v⟩ =

v1v2
v3

 (11)

where v1, v2, v3 are the components of the vector in some chosen basis.

We can represent a row vector with bra, which is the conjugate transpose of the corresponding
ket. The bra corresponding to the ket |v⟩ is denoted by ⟨v| and is defined as

⟨v| = |v⟩† =
(
v∗1 v∗2 v∗3

)
(12)

where † denotes the Hermitian conjugate, which is the transpose of the matrix with complex
conjugate entries.

The inner product of two vectors |v⟩ and |w⟩ is denoted by ⟨v|w⟩ and is defined as:

⟨v|w⟩ = v†w =
n∑

i=1

v∗iwi (13)

where n is the dimension of the vectors. |v⟩ and |w⟩ are both in Cn. i.e., they have same
dimension. Note that the inner product of two vectors is a complex number.

The norm of a vector |v⟩ is denoted by ∥|v⟩∥ and is defined as:

∥|v⟩∥ =
√
⟨v|v⟩ =

√√√√ n∑
i=1

|vi|2 (14)

where |vi| denotes the absolute value of vi.

2.2 Operators in bra-ket notation
An operator is a mathematical object that acts on a state vector to produce another state vector.
Formally, if Â is an operator and |ψ⟩ is a state vector, then Â|ψ⟩ = |ϕ⟩ where |ϕ⟩ is another state
vector. We can represent operators in bra-ket notation using a sum of outer products.

An operator is said to be Hermitian if it is equal to its own adjoint, i.e., Â† = Â. In braket
notation, a Hermitian operator Â is represented as:
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A unitary operator is an operator that preserves the inner product of vectors, i.e., it satisfies the
condition:

⟨u|U †U |v⟩ (15)

for all vectors |u⟩ and |v⟩. Equivalently, a unitary operator Û is defined as satisfying

UU † = U †U = I (16)

where I is the identity operator, and U † is the conjugate transpose of U .

2.3 Examples
Here are some examples of how bra-ket notation is used in linear algebra:

• The projection operator onto a subspace V of a vector space W is given by:

P̂V =
n∑

i=1

|vi⟩⟨vi| (17)

where |vi⟩ are the basis vectors of V .

• The identity operator in a vector space is given by:

Î =
n∑

i=1

|ei⟩⟨ei| (18)

where |ei⟩ are a set of basis vectors of the vector space.

• The Pauli matrices in quantum mechanics are given by:

σx =

(
0 1
1 0

)
= |0⟩⟨1|+ |1⟩⟨0| (19)

σy =

(
0 −i
i 0

)
= −i|0⟩⟨1|+ i|1⟩⟨0| (20)

σz =

(
1 0
0 −1

)
= |0⟩⟨0| − |1⟩⟨1| (21)
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3 Scalars, Vectors, and Matrices

3.1 Scalars
Scalars in quantum computing are complex numbers, denoted as c ∈ C. Scalars are used to
represent the probability amplitudes of quantum states and the elements of matrices that represent
quantum operators. Complex numbers can be written in the form c = a+ bi, where a, b ∈ R and i
is the imaginary unit, satisfying i2 = −1.

3.2 Vectors
Vectors in quantum computing are elements of a complex vector space. Quantum states are rep-
resented as column vectors called state vectors. For a quantum system with n basis states (e.g.,
qubits), the quantum state vector is an element of Cn. The quantum states can be expressed as
linear combinations of the orthonormal basis vectors:

|ψ⟩ =
n∑

i=1

ci|ei⟩ (22)

where ci ∈ C are the complex coefficients, and |ei⟩ are the basis vectors.

3.3 Matrices
Matrices in quantum computing are used to represent linear operators that act on quantum states.
A quantum operator is represented by a square matrix A ∈ Cn×n, which acts on a quantum state
vector |ψ⟩ ∈ Cn to produce a new quantum state vector |ϕ⟩ ∈ Cn:

|ϕ⟩ = A|ψ⟩ (23)

Quantum observables are represented by Hermitian matrices, which are matrices that are equal
to their conjugate transpose. Unitary matrices are used to represent quantum gates and time evolu-
tion operators. A unitary matrix U satisfies UU † = U †U = I , where I is the identity matrix and
U † is the conjugate transpose of U .

3.3.1 Basic Matrix Operations

In this section, we briefly review some basic matrix operations that are important in quantum
computing.

3.3.2 Matrix Addition and Subtraction

Two matrices of the same size can be added or subtracted element-wise:

(A±B)ij = Aij ±Bij (24)
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3.3.3 Matrix Multiplication

Matrix multiplication is a binary operation that takes a pair of matrices and produces another
matrix. If A ∈ Cn×m and B ∈ Cm×p, then their product AB ∈ Cn×p is defined as:

(AB)ij =
∑

k = 1mAikBkj (25)

Matrix multiplication is associative but not, in general, commutative, meaning that (AB)C =
A(BC), but AB ̸= BA in general.

3.3.4 Conjugate Transpose

The conjugate transpose of a complex matrix A ∈ Cn×m, denoted as A†, is obtained by taking the
transpose of the matrix and then taking the complex conjugate of each element:

A†
ij = Aji (26)

where Aji is the complex conjugate of Aji.

3.4 Matrix representation of Quantum computations
Using the matrix representation of computations, we see that a classical state is a vector of zeros
and ones such that one entry is 1 and the rest of zeros. We could view this as a vector of zeros and
ones such that the sum of (squares) of entries is 1. We saw that a probability vector is a vector of
non-negative numbers that sum to 1. Classical states were special cases of probability vectors. If
we ask a state to have complex number square summing to 1 we get quantum states. Physically,
we can encode a quantum bit within the degrees of freedom of a physical system: Electron spin up
or down, photon polarization being clockwise or counter clockwise. Mathematically we have.

• Vector notation |0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
. E.g. |0⟩ could mean spin up and |1⟩ spin down.

• Superposition: |ψ⟩ =
(
α
β

)
= α

(
1
0

)
+ β

(
0
1

)
satisfying |α|2 + |β|2 = 1.

• Example: |+⟩ := 1√
2

(
1
1

)
and |−⟩ := 1√

2

(
1
−1

)

• Normalization |ψ⟩ =


α0

α1

. . .
αN−1

 then
∑

i |αi|2 = 1
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4 Vector Space

A vector space is a set of objects (vectors) that can be added together and multiplied by scalars
(complex numbers in quantum computing), and it follows a set of rules called axioms. In quantum
computing, vector spaces are used to represent the state space of quantum systems.

4.1 Hilbert Space
In quantum computing, a complex Hilbert space is used as the vector space to describe quantum
states. A Hilbert space is a complex vector space equipped with an inner product, which allows
us to define the distance and angle between vectors. It also has the property that it is complete,
meaning that any Cauchy sequence of vectors in the space converges to a limit in the space.

4.2 Basis Vectors and Linear Combinations
A basis of a vector space is a set of linearly independent vectors that span the entire space. In
other words, every vector in the space can be expressed as a unique linear combination of the basis
vectors. For a quantum system with n basis states (e.g., qubits), the quantum state vector is an
element of Cn. The quantum states can be expressed as linear combinations of the orthonormal
basis vectors:

|ψ⟩ =
n∑

i=1

ci|ei⟩ (27)

where ci ∈ C are the complex coefficients, and |ei⟩ are the basis vectors.

4.3 Superposition
Superposition is a fundamental concept in quantum mechanics, which is a direct consequence of
the vector space structure of quantum states. Superposition states that a quantum system can exist
in multiple states simultaneously. Mathematically, this means that a quantum state vector can be a
linear combination of basis vectors:

|ψ⟩ = c0|0⟩+ c1|1⟩ (28)

where c0, c1 ∈ C are probability amplitudes, and |0⟩ and |1⟩ are basis vectors.

4.4 Linear Combinations and Span
A linear combination of a set of vectors v1,v2, . . . ,vn is an expression of the form:

c1v1 + c2v2 + · · ·+ cnvn (29)
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where c1, c2, . . . , cn are scalars. The span of a set of vectors is the set of all possible linear
combinations of those vectors:

spanv1,v2, . . . ,vn = c1v1 + c2v2 + · · ·+ cnvn : c1, c2, . . . , cn ∈ F (30)

where F is the field of scalars (usually the real numbers R or the complex numbers C). The
span of a set of vectors is always a subspace of the vector space.

4.5 Linear Independence and Dependence
A set of vectors v1,v2, . . . ,vn is linearly independent if the only linear combination that equals
the zero vector is the trivial linear combination (i.e., all coefficients are zero):

c1v1 + c2v2 + · · ·+ cnvn = 0 =⇒ c1 = c2 = · · · = cn = 0 (31)

If there exists a non-trivial linear combination that equals the zero vector, the set of vectors is
linearly dependent.

4.6 Basis and Dimension
A basis of a vector space is a set of linearly independent vectors that spans the vector space. In
other words, every vector in the vector space can be uniquely expressed as a linear combination of
the basis vectors.

The dimension of a vector space is the number of vectors in any basis of the vector space. The
dimension is denoted as dim(V ).

4.7 Orthogonality and Orthonormality
Two vectors are orthogonal if their dot product (inner product) is zero:

u · v =
n∑

i=1

uivi = 0 (32)

A set of vectors is orthogonal if every pair of distinct vectors in the set is orthogonal.
A set of vectors is orthonormal if it is orthogonal and all the vectors in the set have a norm

(magnitude) of 1.
An orthogonal basis is a basis in which all the basis vectors are orthogonal. An orthonormal

basis is a basis in which all the basis vectors are orthonormal.

4.8 Gram-Schmidt Process
The Gram-Schmidt process is a method for orthogonalizing a set of vectors in an inner product
space. It is commonly used in linear algebra and is particularly useful for constructing orthonormal
bases.
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4.8.1 Description

Given a set of n linearly independent vectors v1,v2, . . . ,vn in an inner product space, the Gram-
Schmidt process produces a set of n orthogonal vectors u1,u2, . . . ,un, where u1 = v1 and ui is
obtained by subtracting from vi its projection onto the subspace spanned by u1,u2, . . . ,ui− 1
and then normalizing the result:

u1 = v1 ui = vi−
∑

j = 1i−1 ⟨uj,vi⟩
⟨uj,uj⟩

uj, i = 2, 3, . . . , n.

Here, ⟨·, ·⟩ denotes the inner product, which is a bilinear form that satisfies certain properties,
such as linearity in the first argument and conjugate symmetry.

After applying the Gram-Schmidt process, the resulting set of vectors u1,u2, . . . ,un is an
orthonormal basis for the subspace spanned by the original set of vectors v1,v2, . . . ,vn.

4.8.2 Instructions

To apply the Gram-Schmidt process to a set of vectors, follow these steps:

1. Start with the first vector v1 and set u1 = v1.

2. For i = 2, 3, . . . , n, compute ui using the formula above, where ⟨·, ·⟩ denotes the inner
product.

3. Normalize each ui by dividing it by its norm: ui =
ui

|ui| , where | · | denotes the norm induced
by the inner product.

4. The resulting set of vectors u1,u2, . . . ,un is an orthonormal basis for the subspace spanned
by the original set of vectors v1,v2, . . . ,vn.
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5 Inner Product, Norm, and Outer Product

5.1 Inner Product
The inner product is a function that takes two vectors as input and returns a scalar. In quantum
computing, we deal with complex vector spaces, so the inner product is defined as follows:

⟨ψ|ϕ⟩ =
n∑

i=1

cidi (33)

where |ψ⟩ =
∑n

i=1 ci|ei⟩ and |ϕ⟩ =
∑n

i=1 di|ei⟩ are quantum states, and ci is the complex
conjugate of ci.

The inner product has the following properties:

• Conjugate symmetry: ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩

• Linearity: ⟨ψ|(aϕ1 + bϕ2)⟩ = a⟨ψ|ϕ1⟩+ b⟨ψ|ϕ2⟩

• Positivity: ⟨ψ|ψ⟩ ≥ 0

• Definiteness: ⟨ψ|ψ⟩ = 0 if and only if |ψ⟩ = 0

5.2 Norm
The norm of a vector is a measure of its magnitude or length. In quantum computing, the norm of
a quantum state vector |ψ⟩ is given by the square root of the inner product of the vector with itself:

∥|ψ⟩∥ =
√
⟨ψ|ψ⟩ (34)

A quantum state is said to be normalized if its norm is equal to 1. Normalized quantum states
are important because their coefficients (probability amplitudes) can be used to compute probabil-
ities of measurement outcomes.

5.3 Cauchy-Schwarz Inequality
The Cauchy-Schwarz inequality is an important result relating the inner product and the norm. It
states that for any two vectors u and v in an inner product space:

|⟨u|v⟩|2 ≤ |u|2|v|2 (35)

5.4 Orthogonality
Two vectors are orthogonal if their inner product is zero:

⟨u|v⟩ = 0 (36)
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5.5 Projection
The projection of a vector |u⟩ onto another vector |v⟩ is defined as:

Pv(|u⟩) =
⟨v|u⟩
⟨v|v⟩

|v⟩ (37)

We can represent this projection operator using a matrix Pv =
|v⟩⟨v|
⟨v|v⟩ , such that Pv(|u⟩) = Pv|u⟩. In

particular, if |v⟩ is a unit vector, then Pv is the outer product |v⟩⟨v|.

5.6 Outer Product
The outer product is a function that takes two vectors as input and returns a matrix. In quantum
computing, the outer product of two quantum state vectors |ψ⟩ and |ϕ⟩ is defined as:

|ψ⟩⟨ψ| =


ψ1ψ1 ψ1ψ2 · · · ψ1ψn

ψ2ψ1 ψ2ψ2 · · · ψ2ψn
...

... . . . ...
ψnψ1 ψnψ2 · · · ψnψn

 (38)

where |ψ⟩ =
∑n

i=1 ci|ei⟩ and |ϕ⟩ =
∑
i = 1ndi|ei⟩ are quantum states.

The outer product has the following properties:

• Linearity: (a|ψ1⟩+ b|ψ2⟩)⟨ϕ| = a|ψ1⟩⟨ϕ|+ b|ψ2⟩⟨ϕ|

• Linearity: |ψ⟩⟨(aϕ1 + bϕ2)| = a|ψ⟩⟨ϕ1|+ b|ψ⟩⟨ϕ2|
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6 Tensor Product

The tensor product, also known as the Kronecker product or the outer product, is an essential
mathematical tool in quantum computing. It is used to describe the combined state of multiple
qubits and to construct multi-qubit gates. In this document, we present the definition, properties,
and applications of the tensor product in quantum computing.

6.1 Definition
Given two matrices A of size m× n and B of size p× q, the tensor product of A and B, denoted
by A⊗B, is a matrix of size (mp)× (nq) defined as:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... . . . ...

am1B am2B · · · amnB

 . (39)

6.2 Properties
The tensor product has several important properties, including:

1. Bilinearity: The tensor product is bilinear, meaning it is linear in both factors:

(A+ A′)⊗B = A⊗B + A′ ⊗B (40)
A⊗ (B +B′) = A⊗B + A⊗B′ (41)

for any matrices A, A′, B, and B′ of compatible dimensions.

2. Associativity: The tensor product is associative when applied to vector spaces, meaning:

(A⊗B)⊗ C = A⊗ (B ⊗ C) (42)

for any matrices A, B, and C of compatible dimensions. Note that this does not imply that
the tensor product of matrices is associative.

3. Distributivity over Matrix Multiplication: The tensor product distributes over matrix mul-
tiplication:

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (43)

for any matrices A, B, C, and D of compatible dimensions.

4. Identity: The identity element for the tensor product is the 1× 1 identity matrix I1:

A⊗ I1 = I1 ⊗ A = A (44)

for any matrix A.
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5. Transpose: The transpose of a tensor product is given by:

(A⊗B)T = AT ⊗BT (45)

for any matrices A and B.

6. Conjugate: The conjugate of a tensor product is given by:

(A⊗B)∗ = A∗ ⊗B∗ (46)

for any matrices A and B.

7. Adjoint: The adjoint of a tensor product is given by:

(A⊗B)† = A† ⊗B† (47)

for any matrices A and B.

8. Determinant: The determinant of a tensor product of square matrices is given by:

det(A⊗B) = (det(A))m(det(B))n (48)

where A is an n × n matrix, B is an m × m matrix, and both A and B have compatible
dimensions.

9. Trace: The trace of a tensor product is given by:

Tr(A⊗B) = Tr(A)Tr(B) (49)

for any square matrices A and B of compatible dimensions.

6.3 Multi-Qubit States
In quantum computing, the tensor product is used to represent the combined state of multiple

qubits. Given two qubits in states |ψ⟩ =
(
α
β

)
and |ϕ⟩ =

(
γ
δ

)
, their combined state is described

by the tensor product |ψ⟩ ⊗ |ϕ⟩, which is a 4× 1 column vector:

|ψ⟩ ⊗ |ϕ⟩ =
(
α
β

)
⊗

(
γ
δ

)
=


αγ
αδ
βγ
βδ

 (50)

For n qubits, the combined state is an 2n × 1 column vector, which can be written as the tensor
product of the individual qubit states. For example, for three qubits in states |ψ⟩, |ϕ⟩, and |χ⟩, the
combined state is:
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|ψ⟩ ⊗ |ϕ⟩ ⊗ |χ⟩ =
(
α
β

)
⊗
(
γ
δ

)
⊗
(
ϵ
ζ

)
=



αγϵ
αγζ
αδϵ
αδζ
βγϵ
βγζ
βδϵ
βδζ


(51)

6.4 Multi-Qubit Gates
The tensor product is also used to construct multi-qubit gates by combining single-qubit gates or
other multi-qubit gates. For example, given two single-qubit gates U and V , their combined action
on a two-qubit state can be represented as:

(U ⊗ V )|ψ⟩ ⊗ |ϕ⟩ = U |ψ⟩ ⊗ V |ϕ⟩. (52)

As an example, the combined action of two Hadamard gates H on a two-qubit state is given
by:

(H ⊗H)|ψ⟩ ⊗ |ϕ⟩ = H|ψ⟩ ⊗H|ϕ⟩. (53)

For controlled gates, such as the CNOT gate, the tensor product is used to express the gate as a
matrix that acts on the combined state of the control and target qubits:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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7 Matrix Operations

7.1 Matrix Addition and Subtraction

Matrix addition and subtraction are performed element-wise. If A ∈ Cn×m and B ∈ Cn×m, then
their sum A+B and difference A−B are given by:

(A±B)ij = Aij ±Bij (54)

7.2 Matrix Multiplication
Matrix multiplication is the primary operation in quantum computing, as it is used to describe
the action of quantum gates and operators. If A ∈ Cn×m and B ∈ Cm×p, then their product
AB ∈ Cn×p is defined as:

(AB)ij =
m∑
k=1

AikBkj (55)

Matrix multiplication is associative but not commutative, meaning that (AB)C = A(BC), but
AB ̸= BA in general.

7.3 Transpose

The transpose of a matrix A of size m × n is a matrix AT of size n × m, and its elements are
defined as:

AT
ij = Aji (56)

for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
The transpose operation has the following properties:

(AT )T = A (A+B)T = AT +BT (cA)T = c(AT ) (AB)T = BTAT (57)

7.4 Matrix Inversion

The inverse of a square matrix A of size n × n is a matrix A−1 of the same size, such that their
product is the identity matrix In:

AA−1 = A−1A = In (58)

Not all matrices have an inverse; a matrix is called invertible or nonsingular if it has an inverse,
and non-invertible or singular if it does not. If a matrix is invertible, its inverse is unique.

The matrix inversion operation has the following properties:
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(A−1)−1 = A (AB)−1 = B−1A−1 (AT )−1 = (A−1)T (cA)−1 =
1

c
A−1 for nonzero c (59)

7.5 Determinant
The determinant is a scalar function that takes a square matrix and returns a scalar value. The
determinant of a 2× 2 matrix A is defined as:

det(A) =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 (60)

For an n× n matrix A, the determinant can be calculated using the Laplace expansion, which
is a recursive formula:

det(A) =
n∑

j=1

(−1)i+jaij det(Aij) (61)

where Aij is the (n− 1)× (n− 1) matrix obtained by deleting the i-th row and j-th column of
A.

The determinant has the following properties:

det(AT ) = det(A) det(AB) = det(A) det(B) det(A−1) =
1

det(A)
if A is invertible (62)

7.6 Trace
The trace of a matrix is an important concept with various applications. The trace of a square
matrix A of size n× n is defined as the sum of its diagonal elements:

Tr(A) =
n∑

i=1

Aii. (63)

In the context of quantum mechanics, the trace often appears in calculations involving density
matrices, which describe the state of a quantum system. For instance, the trace of a density matrix
ρ is always equal to 1, representing the total probability of the system:

Tr(ρ) = 1. (64)

Moreover, the trace operation is used to compute expectation values of observables, which are
represented by Hermitian matrices. Given an observable O and a quantum state represented by a
density matrix ρ, the expectation value of the observable is given by:

⟨O⟩ = Tr(Oρ). (65)
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7.7 Identity Matrix

The identity matrix I ∈ Cn×n is a square matrix with ones on the diagonal and zeros elsewhere:

Iij =

{
1, if i = j

0, otherwise
(66)

The identity matrix has the property that AI = IA = A for any matrix A ∈ Cn×n.

7.8 Conjugate Transpose

The conjugate transpose of a complex matrix A ∈ Cn×m, denoted as A†, is obtained by taking the
transpose of the matrix and then taking the complex conjugate of each element:

A†
ij = Aji (67)

where Aji is the complex conjugate of Aji.

7.9 Hermitian Matrices

A Hermitian matrix H ∈ Cn×n is a square matrix that is equal to its conjugate transpose:

H = H† (68)

Hermitian matrices have real eigenvalues and play an important role in quantum mechanics, as
they represent observable quantities in quantum systems.
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8 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are essential concepts in linear algebra that provide insight into the
behavior of linear transformations. Given a square matrixA of size n×n, a scalar λ is an eigenvalue
of A if there exists a non-zero vector v such that:

Av = λv (69)

The vector v is called an eigenvector corresponding to the eigenvalue λ.

8.1 Characteristic Equation
To find the eigenvalues of a matrix A, we can rewrite the eigenvalue equation as follows:

(A− λIn)v = 0 (70)

where In is the identity matrix of size n×n. For a non-trivial solution v, the matrix (A−λIn)
must be singular, which means that its determinant is zero:

det(A− λIn) = 0 (71)

This equation is called the characteristic equation of the matrix A. Solving it yields the eigen-
values of A.

8.2 Finding Eigenvectors
Once the eigenvalues have been found, the corresponding eigenvectors can be obtained by solving
the following system of linear equations:

(A− λIn)v = 0 (72)

for each eigenvalue λ.

8.3 Diagonalizing a matrix

Here is how you diagonalize a matrix: For a complex matrix A ∈ Cd×d the eigenvalues of A are
numbers λ such thatA−λI is singular. That means det(A−λI) = 0; that means you have to solve
this equation for λ. For a 2 × 2 matrix, the determinant is the product of entries on the diagonal
minus the product of off-diagonal entries. For instance in order to find the eigenvalues of X you
should solve det(X−λI) = 0 which gives you (−λ)(−λ)− (1)(1) = 0. Which gives you λ = ±1
as its solution.

Once you have found the eigenvalues, it is time to find eigenvectors. The eigenvector |v⟩
corresponding to eigenvalue λ satisfies (A − λI)|v⟩ = 0. You should write this as a system of
equations. If λ is a unique eigenvalue, you will find the entries of |v⟩ up to a free parameter.
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You can set that free parameter to make |v⟩ have a unit norm. For instance, in order to find the
eigenvector corresponding to eigenvalue +1 for X , you have to solve(

−1 1
1 −1

)(
a
b

)
= 0

Solving this you will find that a = b, and in order to normalize the vector you can choose
a = b = 1/

√
2.

The next step is to find a unitary matrix O that diagonalizes A, ie, OAO−1 = D where D is
the diagonal matrix with the eigenvalues of A. If you think about it, O−1 needs to be a matrix that
maps the basis A is defined to its eigenbasis. So to construct O, we place each eigenvector as its
columns. For instance, in the case of X , the eigenvectors are |+⟩ and |−⟩. So

O = (|+⟩|−⟩) = 1√
2

(
1 1
1 −1

)
Which is the Hadamard matrix, as we expected.

8.4 Eigenvalues and Matrix Powers
If a matrix A is diagonalizable, its powers can be computed easily using the diagonal form:

Ak = PDkP−1 (73)

for any positive integer k. This property is useful for computing the exponential of a matrix,
which has applications in solving systems of linear differential equations.
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9 Unitary Matrices

A unitary matrix U ∈ Cn×n is a square matrix that satisfies the following condition:

UU † = U †U = I (74)

where U † denotes the conjugate transpose of U , and I is the identity matrix. Unitary matrices
preserve the inner product and norms of vectors, making them essential for describing the evolu-
tion of quantum states in quantum computing.

Unitary matrices are the complex analogs of orthogonal matrices, which are matrices with real
entries satisfyingATA = AAT = In. Unitary matrices preserve the inner product between vectors,
which means that for any vectors v,w ∈ Cn, the following holds:

⟨Uv, Uw⟩ = ⟨v,w⟩ (75)

where ⟨·, ·⟩ denotes the inner product in the complex vector space Cn.

9.1 Properties of Unitary Matrices
Unitary matrices have several important properties:

• The product of two unitary matrices is unitary:

(UV )∗UV = V ∗U∗UV = V ∗V U∗U = In (76)

• The inverse of a unitary matrix is unitary:

(U−1)∗U−1 = U∗U = In (77)

• The determinant of a unitary matrix is a complex number with absolute value 1:

| det(U)| = 1 (78)

• The eigenvalues of a unitary matrix are complex numbers with absolute value 1.

9.2 Hermitian Matrices
A square matrix A of size n×n with complex entries is called Hermitian if its conjugate transpose
A∗ (also denoted as A†) is equal to itself:

A∗ = A (79)

Hermitian matrices are the complex analogs of symmetric matrices, which are matrices with
real entries satisfying AT = A. The eigenvalues of a Hermitian matrix are always real.
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9.3 Unitary Diagonalization
A Hermitian matrix A of size n× n can be diagonalized by a unitary matrix U :

A = UDU∗ (80)

where D is a diagonal matrix with the eigenvalues of A on its diagonal, and the columns of
U are the eigenvectors of A corresponding to the eigenvalues in D. This process is called unitary
diagonalization.

The diagonalization process can be summarized as follows:

1. Find the eigenvalues λi of the Hermitian matrix A.

2. For each eigenvalue λi, find a corresponding eigenvector vi by solving the equation (A −
λiIn)vi = 0.

3. Normalize the eigenvectors and form the unitary matrix U with the normalized eigenvectors
as its columns.

4. Form the diagonal matrix D with the eigenvalues λi on its diagonal.

5. Verify that A = UDU∗.

9.4 Unitary Transformations
Unitary matrices represent unitary transformations, which are linear transformations that preserve
the inner product of vectors. Given two vectors |ψ⟩ and |ϕ⟩ in a complex vector space, a unitary
transformation U satisfies the following property:

⟨Uψ|Uϕ⟩ = ⟨ψ|ϕ⟩ (81)

Unitary transformations preserve the orthogonality and norms of vectors, ensuring that quan-
tum states remain normalized after the application of quantum gates.

9.5 Unitary Matrices and Quantum Gates
In quantum computing, unitary matrices are used to represent quantum gates, which are the basic
building blocks of quantum circuits. Quantum gates operate on quantum states, which are repre-
sented as unit vectors in a complex Hilbert space. Since unitary matrices preserve inner products
and norms, they ensure that quantum gates maintain the normalization of quantum states.

A quantum gate U is a unitary matrix acting on a quantum state |ψ⟩:

|ψ′⟩ = U |ψ⟩ (82)

where |ψ′⟩ is the resulting quantum state after applying the gate.
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9.5.1 Examples of Quantum Gates

Some common quantum gates represented by unitary matrices include:

• Identity gate (I):

I =

(
1 0
0 1

)
(83)

• Pauli-X gate (X), also known as the NOT gate:

X =

(
0 1
1 0

)
(84)

• Pauli-Y gate (Y ):

Y =

(
0 −i
i 0

)
(85)

• Pauli-Z gate (Z):

Z =

(
1 0
0 −1

)
(86)

• Hadamard gate (H):

H =
1√
2

(
1 1
1 −1

)
(87)
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10 Special Matrices in Quantum Computation

10.1 Pauli Matrices
The Pauli matrices are a set of three 2 × 2 matrices that are widely used in quantum computing.
They are defined as follows:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (88)

The Pauli matrices have the following properties:

• They are Hermitian: σ†
x = σx, σ†

y = σy, σ†
z = σz.

• They are unitary: σ†
xσx = σ†

yσy = σ†
zσz = I .

• Their square is the identity matrix: σ2
x = σ2

y = σ2
z = I .

• They anti-commute: σxσyσz = −σyσxσz = −σzσyσx = −σyσzσx = −σxσzσy = −σzσxσy.

10.2 Hadamard Gate
The Hadamard gate is a 2 × 2 matrix that is used to create superpositions in quantum computing.
It is defined as:

H =
1√
2

(
1 1
1 −1

)
. (89)

The Hadamard gate has the following properties:

• It is Hermitian: H† = H .

• It is unitary: H†H = I .

• Its square is the identity matrix: H2 = I .

10.3 Phase Gates
Phase gates are a family of 2× 2 matrices that introduce a relative phase between the basis states.
The most common phase gates are the S and T gates, defined as:

S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
(90)

In general, a phase gate can be represented as:
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Rθ =

(
1 0
0 eiθ

)
where θ is the phase angle.

Phase gates have the following properties:

• They are Hermitian: S† = S, T † = T , and P (θ)† = P (θ).

• They are unitary: S†S = T †T = P (θ)†P (θ) = I .

• The S and T gates satisfy: S2 = σz, T 4 = σz, and T 8 = I .

10.4 Controlled Gates
Controlled gates act on two qubits and perform an operation on the target qubit if the control qubit
is in the |1⟩ state. The most common controlled gate is the Controlled-NOT (CNOT) gate, which
is defined as:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The controlled version of a unitary matrix U is given by:

CU =

(
I 0
0 U

)
where C is the controlled gate.

Controlled gates have the following properties:

• They are unitary: CNOT†CNOT = I and C(U)†C(U) = I .

• The CNOT gate can be expressed in terms of the Pauli matrices as CNOT = I ⊗ 1
2
(σz +

I) + σx ⊗ 1
2
(σz − I).

10.5 SWAP Gate
The Swap gate exchanges the states of two qubits. It is represented by the following 4× 4 matrix:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
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The Swap gate has the following properties:

• It is Hermitian: SWAP† = SWAP.

• It is unitary: SWAP†SWAP = I .

• Its square is the identity matrix: SWAP2 = I .
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11 Measurements in Quantum Computing

Measurements play a crucial role in quantum computing as they extract information from quantum
states, collapsing them into classical outcomes. This section presents a comprehensive and detailed
overview of measurements in quantum computing, including the postulates of quantum mechanics,
types of measurements, and the measurement process.

11.1 Postulates of Quantum Mechanics
Quantum mechanics is governed by a set of postulates that describe the behavior of quantum
systems. The following postulates are relevant to measurements in quantum computing:

1. Quantum states are represented by vectors in a complex vector space called the Hilbert space.
For a qubit, the Hilbert space is a two-dimensional complex vector space, and its state can
be represented as |ψ⟩ = α|0⟩+ β|1⟩, where α and β are complex numbers satisfying |α|2 +
|β|2 = 1.

2. Observables are represented by Hermitian operators acting on the Hilbert space. An observ-
able Â has a set of eigenvectors {|ai⟩} and eigenvalues {ai}, satisfying Â|ai⟩ = ai|ai⟩.

3. The outcome of a measurement is one of the eigenvalues of the observable being measured.
The probability of obtaining a particular eigenvalue ai when measuring the state |ψ⟩ is given
by p(ai) = |⟨ai|ψ⟩|2.

4. After a measurement yielding the outcome ai, the quantum state collapses to the correspond-
ing eigenvector |ai⟩.

11.2 Types of Measurements
In quantum computing, the most common type of measurement is the projective measurement, also
known as the von Neumann measurement. This type of measurement is based on the eigenvalues
and eigenvectors of the observable being measured. For qubits, the most common observables are
the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (91)

Other types of measurements include generalized measurements, such as positive operator-
valued measures (POVMs), which allow for a more general description of the measurement pro-
cess, including the effects of noise and decoherence.
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11.3 Projective Measurements
Projective measurements are a specific type of measurement in quantum computing that project the
measured quantum state onto one of the eigenvectors of the measurement operator. The outcome
of a projective measurement is a classical bit of information, and the post-measurement state is one
of the eigenvectors corresponding to the obtained classical outcome.

11.3.1 Mathematical Representation

A projective measurement is represented by a set of projectors {Pi}, where each projector Pi

corresponds to a possible outcome i of the measurement. A projector is an idempotent, Hermitian
operator, satisfying the following conditions:

P †
i = Pi (92)

P 2
i = Pi (93)

The projectors must also be orthogonal and sum up to the identity operator:

PiPj = δijPi (94)∑
i

Pi = I (95)

where δij is the Kronecker delta, and I is the identity operator.

11.3.2 Measurement Outcomes and Probabilities

When a quantum state |ψ⟩ is measured using a set of projectors {Pi}, the probability of obtaining
the outcome i is given by:

p(i) = ⟨ψ|Pi|ψ⟩ (96)

After the measurement, the quantum state collapses to the eigenvector corresponding to the
outcome i. The post-measurement state |ψi⟩ is given by:

|ψi⟩ =
Pi|ψ⟩√
⟨ψ|Pi|ψ⟩

(97)

11.3.3 Example: Measurement in the Computational Basis

A common projective measurement in quantum computing is the measurement in the computa-
tional basis, which uses the standard basis vectors |0⟩ and |1⟩. The projectors for this measurement
are:
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P0 = |0⟩⟨0| (98)
P1 = |1⟩⟨1| (99)

Given a quantum state |ψ⟩ = α|0⟩ + β|1⟩, the probabilities of obtaining the outcomes 0 and 1
are:

p(0) = |α|2 (100)
p(1) = |β|2 (101)

The post-measurement states for the outcomes 0 and 1 are:

|ψ0⟩ =
|0⟩⟨0|(α|0⟩+ β|1⟩)√

|α|2
=

α|0⟩√
|α|2

= |0⟩ |ψ1⟩ =
|1⟩⟨1|(α|0⟩+ β|1⟩)√

|β|2
=

β|1⟩√
|β|2

= |1⟩

(102)

11.3.4 Properties of Projective Measurements

Projective measurements have several important properties that are essential for quantum comput-
ing:

• Irreversibility: Projective measurements are inherently irreversible, meaning that once a
quantum state has been measured, it is not possible to recover the original state. This prop-
erty is a consequence of the projection postulate and the probabilistic nature of quantum
mechanics.

• Non-destructive Measurements: Projective measurements can be non-destructive if the
measured quantum state is already an eigenvector of the measurement operator. In this case,
the state remains unchanged after the measurement. However, if the state is not an eigen-
vector, the measurement will collapse the state to one of the eigenvectors, destroying the
original state in the process.

• Measurement-induced Entanglement: Projective measurements can induce entanglement
between two or more quantum systems. This property is useful for preparing entangled states
and implementing quantum algorithms that rely on entanglement.

• No-cloning Theorem: Due to the irreversibility of projective measurements, it is not pos-
sible to create a perfect copy of an unknown quantum state. This property, known as the
no-cloning theorem, is a fundamental constraint in quantum information theory and has im-
portant implications for quantum cryptography and quantum error correction.
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11.4 POVM Measurements
This section provides a detailed description of POVM (Positive Operator-Valued Measure) mea-
surements in quantum computing. Unlike projective measurements, which are based on the eigen-
states of a Hermitian operator, POVMs are a more general way to describe measurements in quan-
tum mechanics. They can be applied to scenarios where the measurement process is not ideal or
where the measurement outcomes are not orthogonal. This description covers the fundamentals of
POVM measurements, their mathematical representation, and their properties. Unlike projective
measurements, POVM measurements can describe non-orthogonal measurement outcomes and
non-unitary measurement processes.

11.4.1 Mathematical Representation

A POVM measurement is represented by a set of positive semi-definite operators {Ei}, called
POVM elements, which act on the quantum state space. These elements must satisfy the following
conditions:

Ei ≥ 0 (103)∑
i

Ei = I (104)

where I is the identity operator.

11.4.2 Measurement Outcomes and Probabilities

When a quantum state |ψ⟩ is measured using a POVM {Ei}, the probability of obtaining the
outcome i is given by:

p(i) = ⟨ψ|Ei|ψ⟩ (105)

The post-measurement state |ψi⟩ can be obtained by applying an appropriate quantum oper-
ation, which may be different for each outcome. However, unlike projective measurements, the
post-measurement state is not uniquely determined by the POVM elements alone.

11.4.3 Properties of POVM Measurements

POVM measurements have several important properties that make them useful in quantum com-
puting:

• Generality: POVM measurements are more general than projective measurements, as they
can describe non-orthogonal measurement outcomes and non-unitary measurement processes.
This makes them suitable for a wide range of scenarios, including open quantum systems,
quantum error correction, and quantum cryptography.
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• Optimality: In some situations, POVM measurements can provide optimal discrimination
between non-orthogonal quantum states. This property is important for various quantum
information processing tasks, such as quantum state discrimination, quantum cloning, and
quantum communication.

• Physical Realizability: POVM measurements can be realized using a combination of uni-
tary operations, ancillary quantum systems, and projective measurements. This makes them
physically realizable in practice, which is essential for implementing quantum algorithms
and protocols that rely on generalized measurements.

• Connection to Projective Measurements: Every projective measurement can be repre-
sented as a POVM measurement, making POVMs a natural generalization of projective
measurements. In particular, a projective measurement can be described by a POVM with
elements Ei = Pi, where Pi are the projectors corresponding to the measurement operator’s
eigenvectors.

11.5 Entangled States and Measurements
When measuring entangled states, the outcomes of the measurements on the individual qubits are
correlated. For example, consider the Bell state:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩). (106)

When measuring the σz observable on both qubits, the possible outcomes are:

• Both qubits yield λ0 = 1 with probability | 1√
2
|2 = 1

2
, resulting in the state |00⟩.

• Both qubits yield λ1 = −1 with probability | 1√
2
|2 = 1

2
, resulting in the state |11⟩.

Notice that the outcomes are perfectly correlated, i.e., if one qubit yields λ0, the other qubit
will also yield λ0, and if one qubit yields λ1, the other qubit will also yield λ1. This correlation is
a result of the entanglement between the qubits.
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