
COMP163 Homework Assignment 2: Due Friday, October 4, 2022 at
11:59pm

Reading: Review the “Marriage Before Conquest” Convex Hull Algorithm in the lecture notes as well as
the Convex Hull section of “Computational Geometry: A User’s Guide.” Read Chapters 2-3 in the Text
and begin reading Chapter 6 in the text on Point Location, as well as the Planar Point Location section
of “Computational Geometry: A User’s Guide.” Begin reading Chapter 6 in the text on Point Location.
General Information: When describing an algorithm, do not forget to analyse its running time and explain
why the algorithm is correct. Although you may discuss these problems in the preliminary stages with others,
work submitted should be done individually. If you have any discussions with others (students, friends, TAs,
faculty, ...) relative to a homework problem or if you gain information from a written source other than your
own notes from lecture, you are expected to identify your collaborator/source.

Problems

1. Maxima Finding: A two-dimensional point p = (p.x, p.y) is said to dominate another two-dimensional
point q = (q.x, q.y) if and only if p.x ≥ q.x AND p.y ≥ q.y. A point p ∈ S = {p1, ..., pn} is maximal in
S if there is no point q ∈ S such that q dominates p. The maxima of S form the set M = {p ∈ S : p
is maximal in S}.

a. Draw a set S of 10 points in the first quadrant of the cartesian plane. For each of these points,
draw the largest rectangle within the first quadrant that is dominated by that point. Outline the
boundary of the union of these rectangles. Color in those points that represent the maxima of S.

b. Describe and analyse an incremental algorithm for computing the maxima of a set S that contains
n points. Assume that all points in S are distinct.

c. Describe and analyse a divide-and-conquer algorithm for computing the maxima of a set S that
contains n points. Assume that all points in S are distinct.

d. Describe and analyse a dynamic algorithm for computing the maxima of a set S.

e. Describe and analyse a marriage-before-conquest algorithm for computing the maxima of a set S.

2. Line Sweep and Augmented Data Structures

Let S be a set of n disjoint triangles in the plane. We want to find a set of n − 1 segments with the
following propoerties:

• Each segment connects a vertex of one triangle to a vertex on the boundary of another triangle.

• The interiors of the segments are pairwise disjoint and they are disjoint from the triangles.

• Together they connect all triangles to each other, that is by walking along the segments and the
triangle boundaries it must be possible to walk from any triangle to any other triangle.

Develop a plane sweep algorithm for this problem that runs in O(n log n) time. State the events and
the data structures that you use explicitly, and describe the cases that arise and the actions required
for each of them. Also state the sweep invariant.

[N.B. Consider adding two edges into the mix: (xmin − 1, ymax +1), (xmax +1, ymax +1) and (xmin −
1, ymin − 1), (xmax + 1, ymin − 1). ]

3. Convex Polygons and Monotone Polygons.

Given a polygon P made of up vertices vi = (xi, yi) in counterclockwise order, we want to determine
whether it is (a) convex or (b) monotone.

a. Convex Polygon? For each edge of the polygon P extending from vi to vi+1, direct the edge from
vi to vi+1 and translate it to the origin. What needs to be true about these vectors emanating
from the origin for P to be a convex polygon? How long does it take to check it?

b. Monotone Polygon? Again, translate each directed edge of polygon P to the origin. What needs to
be true about these vectors for P to be monotone in some direction? Describe the most efficient
algorithm that you can to check whether P is monotone.

4. DCEL data structure. The pockets of a simple polygon are the areas outside the polygon but inside its
convex hull. Let P1 be a simple polygon with m vertices and assume that a triangulation of P1 as well
as its pockets is given. Let P2 be a convex polygon with n vertices. Show that the intersection of P1

with P2 can be computed in O(m+ n) time.

1


