
Chapter 4
Visualization Aspects

The graphical method has considerable superiority for the
exposition of statistical facts over the tabular. A heavy bank of
figures is grievously wearisome to the eye, and the popular mind is
as capable of drawing any useful lessons from it as of extracting
sunbeams from cucumbers.

Farquhar and Farquhar (1891, p. 55)

Many different types of data are related to time. Meteorological data, financial
data, census data, medical data, simulation data, news articles, photo collections,
or project plans, to name only a few examples, all contain temporal information. In
theory, because all these data are time-oriented, they should be representable with
one and the same visualization approach. In practice, however, the data exhibit spe-
cific characteristics and hence each of the above examples requires a dedicated vi-
sualization. For instance, stock exchange data can be visualized with flocking boids
(see Vande Moere, 2004 and ↪→ p. 223), census data can be represented with Tren-
dalyzer (see Gapminder Foundation, 2010 and ↪→ p. 220), and simulation data can
be visualized efficiently using MOSAN (see Unger and Schumann, 2009 and ↪→
p. 209). News articles (or keywords therein) can be analyzed with ThemeRiver (see
Havre et al., 2002 and ↪→ p. 197) and project plans can be made comprehensible
with PlanningLines (see Aigner et al., 2005 and ↪→ p. 172). Finally, meteorological
data are visualized for us in the daily weather show. Apparently, this list of visual-
izations is not exhaustive. The aforementioned approaches are just examples from
a substantial body of techniques that recognize the special role of the dimension
of time. We shall complete this list in a rich survey of information visualization
techniques in Chapter 7.

Besides these dedicated techniques, time-oriented data can also be visualized us-
ing generic approaches. Since time is mostly seen as a quantitative dimension or
at least can be mapped to a quantitative domain (natural or real numbers), gen-
eral visualization frameworks like the Xmdv-Tool, Visage, or Polaris (see Ward,
1994; Kolojejchick et al., 1997; Stolte et al., 2002) as well as standard visualization
techniques like parallel coordinates by Inselberg and Dimsdale (1990) or more or
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70 4 Visualization Aspects

less sophisticated diagrams and charts, as surveyed by Harris (1999), are applicable
for visualizing time-oriented data. For simple data and basic analysis tasks, these
approaches outperform specialized techniques, because they are easy to learn and
understand (e.g., common line plot). However, in many cases, time is treated just as
one quantitative variable among many others, not more, not less. Therefore, generic
approaches usually do not support establishing a direct visual connection between
multiple variables and the time axis, they do not communicate the specific aspects
of time (e.g., the different levels of temporal granularity), and they are limited in
terms of direct interactive exploration and browsing of time-oriented data, which
are essential for a successful visual analysis.

The bottom line is that time must be specifically considered to support the vi-
sual analysis. Different types of time-oriented data need to be visualized with ded-
icated methods. As the previous examples suggest, a variety of concepts for ana-
lyzing time-oriented data are known in the literature (see for example the work by
Silva and Catarci, 2000; Müller and Schumann, 2003; Aigner et al., 2008). This va-
riety makes it difficult for researchers to assess the current state of the art, and for
practitioners to choose visualization approaches most appropriate to their data and
tasks.

What is required is a systematic view of the visualization of time-oriented data
(see Aigner et al., 2007). In this chapter we will develop such a systematic view.
The different design options derived from the systematic view will be discussed and
illustrated by a number of visualization examples.

4.1 Characterization of the Visualization Problem

In the first place, we need a structure to organize our systematic view. But instead
of using formal or theoretical constructs, we decided to present a structure that is
geared to three practical questions that are sufficiently specific for researchers and
at the same time easy to understand for practitioners:

1. What is presented? – Time & data
2. Why is it presented? – User tasks
3. How is it presented? – Visual representation

Because any visualization originates from some data, the first question addresses
the structure of time and the data that have been collected over time. The motivation
for generating a visualization is reflected by the second question. It relates to the
aim of the visualization and examines the tasks carried out by the users. How the
data are represented is covered by the third question. The following sections will
provide more detailed explanations and refinements for each of these questions.
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4.1.1 What? – Time & Data

It goes without saying that the temporal dimension itself is a crucial aspect that
any visualization approach for representing time and time-oriented data has to con-
sider. It is virtually impossible to design effective visual representations without
knowledge about the characteristics of the given data and time domain. The charac-
teristics of time and data as well as corresponding design aspects have already been
explained in detail in Sections 3.1 and 3.2. Here, we will only briefly summarize
these aspects.

Characteristics of time The following list briefly reiterates the key criteria of the
dimension of time that are relevant for visualization:

• Scale – ordinal vs. discrete vs. continuous: In an ordinal time model, only rela-
tive order relations are present (e.g., before, during, after). In discrete and con-
tinuous domains, temporal distances can also be considered. In discrete models,
time values can be mapped to a set of integers based on a smallest possible unit
(e.g., seconds). In continuous models, time values can be mapped to the set of
real numbers, and hence, between any two points in time, another point can be
inserted.

• Scope – point-based vs. interval-based: Point-based time domains have basic
elements with a temporal extent equal to zero. Thus, no information is given
about the region between two points in time. Interval-based time domains relate
to subsections of time having a temporal extent greater than zero.

• Arrangement – linear vs. cyclic: Linear time corresponds to an ordered model
of time, i.e., time proceeds from the past to the future. Cyclic time domains are
composed of a finite set of recurring time elements (e.g., the seasons of the year).

• Viewpoint – ordered vs. branching vs. multiple perspectives: Ordered time do-
mains consider things that happen one after the other. In branching time domains,
multiple strands of time branch out and allow for description and comparison of
alternative scenarios, but only one path through time will actually happen (e.g., in
planning applications). Multiple perspectives facilitate simultaneous (even con-
trary) views of time (as for instance required to structure eyewitness reports).

In addition to these criteria, which describe the dimension of time, aspects re-
garding the presence or absence of different levels of granularity, the time primitives
used to relate data to time, and the determinacy of time elements are relevant (see
Section 3.1 in the previous chapter).

Characteristics of time-oriented data Like the time domain, the data have a major
impact on the design of visualization approaches. Let us briefly reiterate the key
criteria for data that are related to time:

• Scale – quantitative vs. qualitative: Quantitative data are based on a metric scale
(discrete or continuous). Qualitative data describe either unordered (nominal) or
ordered (ordinal) sets of data elements.
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• Frame of reference – abstract vs. spatial: Abstract data (e.g., a bank account)
have been collected in a non-spatial context and are not per se connected to some
spatial layout. Spatial data (e.g., census data) contain an inherent spatial layout,
e.g., geographical positions.

• Kind of data – events vs. states: Events, on the one hand, can be seen as markers
of state changes, whereas states, on the other hand, characterize the phases of
continuity between events.

• Number of variables – univariate vs. multivariate: Univariate data contain only
one data value per temporal primitive, whereas in the case of multivariate data
each temporal primitive holds multiple data values.

These primary categories form a basis for finding answers to the what question
of our systematic view. But having characterized what has to be visualized is just
the first step. The subsequent step is to focus on the why question.

4.1.2 Why? – User Tasks

It is commonly accepted that software development has to start with an analysis of
the problem domain users work in (see Hackos and Redish, 1998; Courage and Bax-
ter, 2005). This applies accordingly to the development of visualization solutions for
time-oriented data.

To specify the problem domain, so-called task models are widely used in the
related field of human-computer interaction (see Constantine, 2003). A prominent
example of such task models is the ConcurTaskTree (CTT) by Paternò et al. (1997).
It describes a hierarchical decomposition of a goal into tasks and subtasks. Four
specific types of tasks are supported in the CTT notation: abstract tasks, interaction
tasks, user tasks, and application tasks. Abstract tasks can be further decomposed
into subtasks (including abstract subtasks). Leaf nodes are always interaction tasks,
user tasks, or application tasks. They have to be carried out either by the user, by the
application system, or by interaction between user and system. The CTT notation is
enriched with a set of temporal operators that define temporal relationships among
tasks and subtasks (e.g., independent concurrency, concurrency with information
exchange, disabling, enabling). Usually, CTT models are constructed manually by a
domain expert, and mostly for the purpose of driving automatic user interface gen-
eration (see for example Paternò and Santoro, 2002). First approaches have begun
to use this notation for visualization purposes. For instance, Winckler et al. (2004)
apply the CTT notation for structured tests and for the evaluation of interactive vi-
sualization techniques.

In the visualization domain, however, tasks are usually given at a lower level
in the form of informal verbal lists only. An accepted low-level task description
specifically addressing the temporal domain has been introduced by McEachren
(1995). The tasks are defined by a set of important questions that users might seek
to answer with the help of visual representations:
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• Existence of data element
Question: Does a data element exist at a specific time?
Starting point: time point or time interval
Search for: data element at that time
Example: “Was a measurement made in June, 1960?”

• Temporal location
Question: When does a data element exist in time?
Starting point: data element
Search for: time point or time interval
Example: “When did the Olympic Games in Vancouver start?”

• Time interval
Question: How long is the time span from beginning to end of the data element?
Starting Point: data element
Search for: duration, i.e., length of time of a data element from its beginning to
its end
Example: “How long was the processing time for dataset A?”

• Temporal pattern
How often does a data element occur?
Starting point: interval in time
Search for: frequency of data elements within a certain portion of time and based
on this the detection of a pattern
Example: “How often was Jane sick last year?”

• Rate of change
Question: How fast is a data element changing or how much difference is there
from data element to data element over time?
Starting point: data element
Search for: magnitude of change over time
Example: “How did the price of gasoline vary in the last year?”

• Sequence
Question: In what order do data elements occur?
Starting point: data elements
Search for: temporal order of different data elements
Example: “Did the explosion happen before or after the car accident?”

• Synchronization
Question: Do data elements exist together?
Starting point: data elements
Search for: occurrence at the same point or interval in time
Example: “Is Jill’s birthday on Easter Monday this year?”

This list of tasks covers two basic cases. First, having at hand one or more data
values, the user is searching for time primitives that exhibit these values, and sec-
ond, having at hand one or more time primitives, the user seeks to discern the data
values associated with them. This reflects the well-established distinction between
identification (i.e., looking for data values) and localization (i.e., looking for when
and where in time and space).
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This distinction is also the basis for the formal task model by Andrienko and
Andrienko (2006). They describe tasks using two basic notions: references, which
constitute the domain (spatial or temporal) in which the data values have been col-
lected, and characteristics, which are the data values that were collected. On the
first level, the Andrienko model is subdivided into two classes of tasks: elementary
and synoptic tasks. Elementary tasks address individual data elements. This may
include individual values, but also individual groups of data. The main point here
is that data are taken into account separately; they are not considered as a whole.
Synoptic tasks, on the other hand, involve a general view and consider sets of values
or groups of data in their entirety.

Elementary tasks are further divided into lookup, comparison, and relation seek-
ing. The lookup task includes direct and inverse lookup, which stand for searching
for data values and searching for points in space and time, respectively. Relation
seeking tasks address the search for occurrences of relations specified between data
characteristics or references, for example, looking for courses that are scheduled on
Mondays. In a broader sense, comparison can also be seen as relation seeking, but
the relations to be determined are not specified beforehand. Direct comparison tasks
interrelate characteristics, whereas inverse comparison tasks interrelate references.

Synoptic tasks are further divided into descriptive and connectional tasks. De-
scriptive tasks specify the properties of either a set of references or a set of char-
acteristics. The first case belongs to the group of identification tasks. Here, a set of
references is given, and the task is to find a pattern that describes the behavior of the
given reference points. The second case belongs to the group of localization tasks.
Here, a concrete pattern is given, and the task is to search for those reference points
in time and space that exhibit the pattern. Besides specifying the properties of a set
of characteristics or references, the comparison of those sets is highly relevant. As
in the case of elementary tasks, we have to distinguish between direct and inverse
comparison tasks, depending on whether sets of references or sets of characteris-
tics are compared. Moreover, the synoptic relation seeking task considers two sets
of characteristics or references to come up with relationships between these sets.

Fig. 4.1: Taxonomy of visualization tasks.
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In contrast to descriptive tasks, connectional tasks establish connections between at
least two sets, taking into account the relational behavior of two or more variables.
Depending on the set of underlying references – either variables are considered over
the same set or over different sets of references – homogeneous and heterogeneous
behavior tasks are distinguished.

To illustrate how the different tasks of the Andrienko model are related, we ar-
ranged them into a task taxonomy. Figure 4.1 shows more clearly how the visual-
ization tasks are organized. The quasi-hierarchical structure of this taxonomy allows
the later refinement of classes of tasks depending on application-specific needs. The
following list provides illustrative examples of the different types of tasks:

Elementary tasks:

• Direct lookup: What was the price of Google stocks on January 14?
• Inverse lookup: On which day(s) was the lowest stock price for Amazon in 2010?
• Direct comparison: Compare the stock prices of Sun and Oracle on January 14.
• Inverse comparison: Did the price of Apple stocks reach $200 before or after

January 14?
• Relation seeking: On which days was the price of Adobe stocks higher than the

price of AOL stocks?

Synoptic tasks:

• Direct lookup (pattern definition): What was the trend of Oracle stocks during
January?

• Inverse lookup (pattern search): Find months in which the price of Novell stocks
decreased.

• Direct (pattern) comparison: Compare the behavior of the stock price of Hewlett-
Packard in January and June.

• Inverse (pattern) comparison: How is a decreasing trend of Dell stocks related
to the period of summer vacation?

• Relation seeking: Find two contiguous months with opposite trends in the stock
price of Lenovo.

• Homogeneous behavior: Is the behavior of Nokia stocks influencing the behavior
of Motorola stocks?

• Heterogeneous behavior: Do the phases of the moon influence the behavior of
Intel stocks?

From a practical perspective, the verbal task descriptions by McEachren (1995)
are very helpful because they are easy to understand. They can serve as a guide-
line when designing visual representations of time and time-oriented data. However,
when shifting to a more scientific or theoretical point of view, a more formal notation
is desirable. In order to go beyond the guideline character and to automate the de-
sign process, formal task descriptions are indispensable. Andrienko and Andrienko
(2006) made a significant contribution in this regard. Later in this chapter, we will
examine the impact that user tasks (i.e., the why aspect) can have on the visualiza-
tion design. But before, we shall complete the description of visualization aspects
by focusing on the how perspective.
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4.1.3 How? – Visual Representation

The answers to the questions what the data input is and why the data are analyzed
very much determine the answer to the last remaining question: How can time-
oriented data be represented visually? More precisely, the question is how time and
associated data are to be represented. Chapter 7 will show that a large variety of
visual approaches provide very different answers to this question. To abstract from
the subtle details of this variety, we concentrate on two fundamental criteria: the
mapping of time and the dimensionality of the presentation space.

Mapping of time

Like any data variable that is to be visualized, the dimension of time has to pass the
mapping step of the visualization pipeline. Usually, abstract data are made visually
comprehensible by mapping them to some geometry (e.g., two-dimensional shapes)
and corresponding visual attributes (e.g., color) in the presentation space. On top
of this, human perception has an intrinsic understanding of time that emphasizes
the progression of time, and visualization can make use of this fact by mapping the
dimension of time to the dynamics of a visual representation.

So practically, there are two options for mapping time: the mapping of time to
space and the mapping of time to time. When speaking of a mapping from time
to space, we mean that time and data are represented in a single coherent visual
representation. This representation does not automatically change over time, which
is why we call such visualizations of time-oriented data static. In contrast to that,
dynamic representations utilize the physical dimension of time to convey the time
dependency of the data, that is, time is mapped to time. This results in visualizations
that change over time automatically (e.g., slide shows or animations). Note that the
presence or absence of interaction facilities to navigate in time has no influence on
whether a visualization approach is categorized as static or dynamic.

Static representations There are various ways of mapping time to visual variables
(see Bertin, 1983 and Figure 4.2). Most visualization approaches that implement a
time-to-space mapping use one display dimension to represent the time axis. Classic
examples are charts where time is often mapped to the horizontal x-axis and time-
dependent variables are mapped to the vertical y-axis (see Figure 4.3). More com-
plex mappings are possible when two or more display dimensions are used for repre-
senting time. Mappings that generate two-dimensional spirals or three-dimensional
helices are examples that emphasize the cyclic character of time. The different gran-
ularities of time are often illustrated by a hierarchical subdivision of the time axis.

The actual data can then be visualized in manifold ways. It is practical to use
a data mapping that is orthogonal to the mapping of time. For example point plots
(↪→ p. 152), line plots (↪→ p. 153), or bar graphs (↪→ p. 154) map data values to
position or size relative to the time axis. Time-dependency is immediately perceived
and can be recognized easily, which facilitates the interpretation of the temporal
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Fig. 4.2: Examples of static visual mappings of time.
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Fig. 4.3: Mapping time to position. The horizontal axis of the chart encodes positions of points in
time, whereas the vertical axis encodes data values.

character of the data. In fact, for quantitative variables (discrete or continuous time
and data), using position or length is more efficient than using color or other visual
variables such as texture, shape, or orientation (see Mackinlay, 1986). For ordinal
variables, color coding is a good alternative. Each point or interval on the time axis
can be visualized using a unique color from a color scale. But, as Silva et al. (2007)
demonstrate, care must be taken when using color for visualization. It is absolutely
mandatory that the applied color scale be capable of communicating order1. Only
then are users able to interpret the visualization and to relate data items to their
temporal context easily.

Because time is often considered to be absolute, position or length encodings are
predominant and only rarely is time mapped to other visual variables. When time is
interpreted relatively rather than absolutely, for instance, when considering the age
of a data item or the duration between two occurrences of a data item, then visual
variables such as transparency, color, and others gain importance. An example of
encoding duration to color is given in Figure 4.4.

Instead of encoding data to basic graphical primitives such as points, lines, or
bars that are aligned with the time axis, one can also create fully fledged visual rep-
resentations and align multiple thumbnails of them along the time axis – a concept
that Tufte (1983) refers to as small multiples (↪→ p. 236). The advantage is that a
single thumbnail may contain much more visual information than basic graphical
primitives. But this comes at the price that the number of time primitives (i.e., the
number of thumbnails) that can be shown on screen simultaneously is limited. This

1 Borland and Taylor (2007) warn that this is not the case for the most commonly used rainbow
color scale. The ColorBrewer tool by Harrower and Brewer (2003) is a good source of useful color
scales.
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Fig. 4.4: Mapping time to color. Color encodes the time it takes to travel from a location on our
planet to the nearest major city.
Source: Nelson (2008). Used with permission.

reflects the general need to find a good trade-off between the complexity of the vi-
sual encoding of time and that of the data. In Chapter 7, we will see that a variety of
suitable solutions exist, each with an individually determined trade-off depending
on the addressed data and tasks.

Dynamic representations In cases where much screen space is required to convey
characteristics and relationships of data items (e.g., geographical maps, multivariate
data visualization, visualization of graph structures), it is difficult to embed the time
axis into the display space as well. As an alternative, physical time can be utilized
to encode time. To this end, several visualizations (also called frames) are rendered
successively for the time steps in the data. In theory, a one-to-one mapping between
time steps and frames can be implemented, which means that the dynamic visualiza-
tion represents time authentically. In practice, however, this is only rarely possible.
More often, dynamic visualizations perform interpolation to compute intermediate
results in cases where only few time steps are present, or perform aggregation or
sampling to compress the length of an animation in cases where large numbers of
time steps have to be visualized (see Wolter et al., 2009).

Self-evidently, dynamic approaches have to take human perception into account
when representing a series of successively generated visualization frames. Depend-
ing on the number of images shown per second, dynamic visualizations are either
perceived as animations or as slide shows. Animations usually show between 15 and
25 frames per second, while slide shows usually show a new frame every 2 to 4 sec-
onds. On the one hand, data that contain only a few snapshots of the underlying phe-
nomenon should preferably be represented as slide shows to avoid creating false im-
pressions of dynamics. On the other hand, large numbers of observations of highly
dynamic processes are best represented using animations, because they communi-
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Fig. 4.5 A typical animation
widget to control the mapping
of time to time.

cate quite well the underlying dynamics in the data. Figure 4.5 gives an example of a
typical VCR-like widget for controlling the mapping of time to time in an animation.

The distinction between the mapping of time to space and that of time to time is
crucial, because different visualization tasks and goals are supported by these map-
pings. Dynamic representations are well suited to convey the general development
and the major trends in the analyzed data. However, there are also critical assess-
ments of animations used for the purpose of visualization (see Tversky et al., 2002;
Simons and Rensink, 2005). Especially when larger multivariate time-series have to
be visualized, animation-based approaches reach their limits. In such cases, users
are often unable to follow all of the changes in the visual representation, or the an-
imations simply take too long and users face an indigestible flood of information.
This problem becomes aggravated when using animations in multiple views. On the
other hand, if animations are designed well and if they can be steered interactively
by the user (e.g., slow motion or fast forward), mapping the dimension of time to
the physical time can be beneficial (see Robertson et al., 2008). This is not only the
case from the point of view of perception, but it is also because using physical time
for visual mapping implies that the spatial dimensions of the presentation space can
be used exclusively to visualize the time-dependent data.

This is not the case, however, for static representations. In contrast to animations,
static representations require screen real estate to represent the time axis itself and
the data in an integrated fashion. On the one hand, the fact that static representations
show all of the information on one screen is advantageous because one can fully con-
centrate on the dependency of time and data. Especially visual comparison of differ-
ent parts of the time axis can be accomplished easily using static representations. On
the other hand, integration of time and data in one single view tends to lead to over-
crowded representations that are hard to interpret. In the face of larger time-oriented
datasets, analytical methods and interaction are mandatory to avoid visual clutter.

Finally, it is worth mentioning that any (non-temporal) data visualization can be
extended to a visualization for time-oriented data simply by repetition. Repetition
in time leads to dynamic representations, where each frame shows a snapshot of
the data and repetition in space leads to static multiple view representations (or
Tufte’s small multiples, ↪→ p. 236), where each view shows an individual part of
the time axis. While static representations always have to deal with the issue of
finding a good layout for the views, dynamic representations encode time linearly
in a straight-forward manner. Perhaps this is the reason why many visualization
solutions resort to simple animations, even though these might not be the best option
for the data and tasks at hand.
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Dimensionality of the presentation space

The presentation space of a visualization can be either two-dimensional or three-
dimensional, or 2D or 3D for short. Two-dimensional visualizations address the spa-
tial dimensions of computer displays, that is, the x-axis and the y-axis. All graphical
elements are described with respect to x and y coordinates. Dots, lines, circles, or
arcs are examples of 2D geometry. The semantics of the data usually determine the
layout of the geometry on screen. 3D visualizations use a third dimension, the z-axis,
for describing geometry. This allows the visualization of more complex and volu-
metric structures. As human perception is naturally tuned to the three-dimensional
world around us, 3D representations potentially communicate such structures bet-
ter than 2D approaches. Since the z-axis does not physically exist on a computer
display, projection is required before rendering 3D visualizations. The projection is
usually transparent to the user and is commonly realized through standard computer
graphics methods which require no additional effort.

Fig. 4.6: Mapping to 2D. Spiral geometry is used to represent the time axis and data are encoded
to the width of spiral segments.

Visualization approaches using a 2D presentation space usually map the time
axis to a visual axis on the display (provided that the approach is not dynamic).
In many cases, the time axis is aligned with either coordinate axis of the display.
However, this is not necessarily always the case. Circular time axes (e.g., the spiral
in Figure 4.6) use polar coordinates, which actually can be mapped to Cartesian
coordinates and vice versa. It is also possible to apply affine transformations to the
time axis.
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Because one dimension of the display space is usually occupied for the repre-
sentation of the dimension of time, the possibilities of encoding the data depend-
ing on time are restricted. One data variable can be encoded to the remaining spa-
tial dimension of the presentation space, as for instance in a bar graph, where the
x-axis encodes time and the y-axis, more precisely the height of bars, encodes a
time-dependent variable. In order to visualize multiple variables further graphical
attributes like shape, texture, or color can be used.

Multidimensional data, that is, data with more independent variables than just
the dimension of time, are hard to visualize in 2D without introducing overlap and
visual clutter. Particularly, data with a spatial frame of reference can benefit from
the additional dimension available in a 3D presentation space. It is common practice
to apply the so-called space-time cube concept (see Kraak, 2003 and ↪→ p. 245),
according to which the z-axis encodes time and the x- and y-axes represent two
independent variables (e.g., longitude and latitude). Further variables, dependent or
independent, are then encoded to color, size, shape or other visual attributes (see
Figure 4.7 and ↪→ p. 252).

Fig. 4.7: Mapping to 3D. Three-dimensional helices represent time axes for individual regions of
a map and associated data are encoded by color.

The question of whether or not it makes sense to exploit three dimensions for vi-
sualization has been discussed at length by the research community (see Card et al.,
1999). One camp of researchers argues that two dimensions are sufficient for effec-
tive data analysis. In their thinking the third dimension introduces unnecessary dif-
ficulties (e.g., information hidden on back faces, information lost due to occlusion,
or information distorted through perspective projection) which 2D representations
are not or are only marginally affected by. But having just two dimensions for the
visual mapping might not be enough for large and complex datasets.

This is where the other camp of researchers make their arguments. They see the
third dimension as an additional possibility to naturally encode further information.
Undoubtedly, certain types of data (e.g., geospatial data) might even require the



4.2 Visualization Design Examples 83

third dimension for expressive data visualization, because there exists a one-to-one
mapping between the data dimensions and the dimensions of the presentation space.

We do not argue for either position in general. The question whether to use 2D or
3D is rather a question of which data has to be visualized and what are the analytic
goals to be achieved. The application background and user preferences also influ-
ence the decision for 2D or 3D. But definitely, when developing 3D visualizations,
the previously mentioned disadvantages of a three-dimensional presentation space
have to be addressed (e.g., by providing ways to cope with occlusion as suggested by
Elmqvist and Tsigas, 2007). Moreover, intuitive interaction techniques are manda-
tory and additional visual cues are usually highly beneficial.

In the previous discussion of the questions what, why, and how we have outlined
the basic aspects that need to be considered when visualizing time and time-oriented
data. In the next section, we will return to each of these aspects and show in more
detail and by means of examples how the visualization design is influenced by them.

4.2 Visualization Design Examples

In the previous section, we introduced three basic questions that have to be taken
into account when designing visual representations for time and time-oriented data:

1. Data level: What is presented?
2. Task level: Why is it presented?
3. Presentation level: How is it presented?

We will now demonstrate the close interrelation of the three levels. By means of
examples we will illustrate the necessity and importance of finding answers to each
of these questions in order to arrive at visual representations that allow viewers to
gain insight into the analyzed data.

4.2.1 Data Level

In the first place, the characteristics of time-oriented data strongly influence the
design of appropriate visual representations. Two examples will be used to demon-
strate this: one is related to the time axis itself, the other will deal with the data. First,
we point out how significantly different the expressiveness of a visual representation
can be depending on whether the time domain is linear or cyclic. Secondly, we will
illustrate that spatial time-oriented data2 require a visualization design that is quite
different from that of abstract time-oriented data, and that is usually more complex
and involves making well-balanced design decisions.

2 Commonly referred to as spatio-temporal data.
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Time characteristics: linear vs. cyclic representation of time

Figure 4.8 shows three different visual representations of the same time-oriented
dataset, which contains the daily number of cases of influenza that occurred in the
northern part of Germany during a period of three years. The data exhibit a strong
cyclic pattern. The leftmost image of Figure 4.8 uses a simple line plot (↪→ p. 153) to
visualize the data. Although peaks in time can be recognized easily when examining
this representation, the cyclic behavior of the data, however, can only be guessed
and it is hard to discern which cyclic temporal patterns in fact do exist. In contrast,
the middle and the right image of Figure 4.8 show a circular representation that
emphasizes cyclic characteristics of time-oriented data by using a spiral-shaped time
axis (see Weber et al., 2001 and ↪→ p. 185). For the left spiral, the cyclic pattern is
not visible. This is due to the fact that the cycle length has been set to 24 days, which
does not match the pattern in the data. The right spiral representation in Figure 4.8 is
adequately parameterized with a cycle length of 28 days, which immediately reveals
the periodic pattern present in the data. The significant difference in the number of
cases of influenza reported on Sundays and Mondays, respectively, is quite obvious.
We would also see this weekly pattern if we set the cycle length to 7 or 14 days, or
any (low) multiple of 7.

Fig. 4.8: Different insights can be gained from visual representations depending on whether the
linear or cyclic character of the data is emphasized.

The example illustrates that in addition to using the right kind of representation
of time (linear vs. cyclic), it is also necessary to find an appropriate parametriza-
tion of the visual representation. Interaction (see Chapter 5) usually enables users
to re-parameterize the visualization, but the difficulty is to find parameter settings
suitable to discover patterns in unknown datasets. Automatically animating through
possible parameter values – for the spiral’s cycle length in our example – is one
option to assist users in finding such patterns. During the course of the animation,
visual patterns emerge as the spiral’s cycle length is approaching cycles in the data
that match in length. Upon emergence of such patterns, the user stops the anima-
tion and can fine-tune the display as necessary. Analytical methods (see Chapter 6)
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can help in narrowing down the search space, which in our example means finding
promising candidates with adequate cycle length (see Yang et al., 2000). Combin-
ing interactive exploration and analytical methods is helpful for finding less sharp
or uncommon patterns, which are hard to distill using either approach alone.

Data characteristics: abstract data vs. spatial data

We used linear vs. cyclic time to demonstrate the impact of the characteristics of
time on the visualization design. Let us now do likewise with abstract vs. spatial
data to illustrate the impact of data characteristics.

Abstract data are not associated per se with a spatial visual mapping. Therefore,
when designing a visual representation of such data, one can fully concentrate on
aspects related to the characteristics of the dimension of time. The ThemeRiver ap-
proach by Havre et al. (2000) is an example of an approach in which the time aspect
is focused on (↪→ p. 197). The dimension of time is mapped to the horizontal display
axis and multiple time-dependent variables are mapped to the thickness of individ-
ually colored currents, which form an overall visual stream of data values along the
time axis. Figure 4.9 illustrates the ThemeRiver approach. Because time is the only
dimension of reference in abstract time-oriented data, the visual representation can
make the best of the available screen space to convey the variables’ dependency
on time. The full-screen design, where the ThemeRiver occupies the entire screen,

Fig. 4.9: The ThemeRiver technique is fully focused on communicating the temporal evolution of
abstract time-oriented data.
Source: Havre et al. (2002). © 2002 IEEE. Used with permission.
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even makes it possible to display additional information, such as a time scale below
the ThemeRiver, labels in the individual currents, or extra annotations for important
events in the data.

When considering time-oriented data with spatial references, the visualization
design has to address an additional requirement; not only the temporal character of
the data needs to be communicated, but also the spatial dependencies in the data
must be revealed. Of course, this implies a conflict in which the communication of
temporal aspects competes with the visualization of the spatial frame of reference
for visual resources, such as screen space, visual encodings, and so forth. Providing
too many resources to the visualization of aspects of time will most likely lead to
a poorly represented spatial context – and vice versa. The goal is to find a well-
balanced compromise. An example of such a compromise is given in Figure 4.10,
where the data are visualized using ThemeRiver thumbnails superimposed on a two-
dimensional map display (↪→ p. 240). The position of a ThemeRiver thumbnail on
the map is the visual anchor for the spatial context of the data. The ThemeRiver
thumbnail itself encodes the temporal context of the data. The compromise that has
been made implies that the map display is rather basic and avoids showing any
geographic detail; just the borders of regions are visible. On the other hand, the
ThemeRiver representation has to get along with much less screen space (compared

Fig. 4.10: Embedding ThemeRiver thumbnails on a map allows for communicating both temporal
and spatial dependencies of spatial time-oriented data.
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to the full-screen counterpart). This is the reason why labels or annotations are no
longer visible constantly, but instead are displayed only on demand.

On top of the compromises made, all visualization approaches that embed (time-
representing) thumbnails (or glyphs or icons) into a map share a common problem:
finding a good layout. What makes a good layout is heavily application dependent,
but there is consensus that having an overlap-free layout is generally a good starting
point. However, finding a layout that minimizes occlusion among thumbnails and
overlap of thumbnails with geographic features is a difficult problem. In fact, the
problem is related to the general map labeling problem, which is NP-hard. Pursu-
ing a globally optimized solution is computationally complex (see Petzold, 2003;
Been et al., 2006), whereas locally optimizing approaches usually perform less ex-
pensive iterative adjustments that lead to suitable, but not necessarily optimal lay-
outs (see Fuchs and Schumann, 2004; Luboschik et al., 2008). We will not go into
any details of possible solutions, but instead refer the interested reader to the original
publications.

The bottom line is that the characteristics of time and time-oriented data shape
the design of visual representations to a great extent. As with the example of ab-
stract vs. spatial data we see that the more aspects need to be communicated, the
more intricate the visualization can become. One has to make acceptable trade-offs
and may face NP-hard computational challenges. Moreover, the example of linear
vs. cyclic time illustrates that the right visual mapping is essential for crystallizing
answers and insight from visualizations of time-oriented data.

4.2.2 Task Level

We introduced the user task as a second important visualization aspect. Incorpo-
rating the users’ tasks into the visualization design process on a general level is a
challenging endeavor. Therefore, the illustrative example we present here is a prag-
matic solution for the specific case of color coding. Earlier in this chapter we indi-
cated that in addition to positional encoding of data values along a time axis, color
coding plays an important role when visualizing multiple time-dependent data vari-
ables. The design of the color scale employed for the visual encoding substantially
influences the overall expressiveness of the visual representation. To obtain expres-
sive visual results, flexible color coding schemes are needed that can be adapted to
the data as well as to the task at hand. In the following, we will explain how color
scales can be generated in a task-dependent manner, and how they can be applied to
visualize time-oriented data. But first let us briefly review general aspects of color
coding.
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Color coding

The general goal of color coding is to find an expressive mapping of data to color.
This can be modeled as a color mapping function f : D → C that maps values of a
dataset D to colors from a color scale C. A fundamental requirement for effective
color coding is that the color mapping function f be injective, that is, every data
value (or every well-defined group of data values) is associated with a unique color.
This, in turn, allows users to mentally associate that unique color with a distinct data
value (or group of values). On the one hand, mapping two quite different data values
should result in two colors that are easy to discern visually. On the other hand, users
spotting visually similar colors infer that these colors represent data values that are
similar. Figure 4.11 demonstrates a basic mapping strategy.

Fig. 4.11: Simple strategy for mapping data to color.

Telea (2007) describes these and further factors as relevant for color coding. We
adapted his statements for the case of visualization of time-oriented data under con-
sideration of the characteristics of time and data (as identified in Chapter 3):

• Characteristics of the data: First and foremost, the statistical features of the data
and the time scale should be taken into account: extreme values, overall dis-
tribution of data values as well as data variation speeds and domain sampling
frequencies. For example, using a linear color mapping function on a skewed
dataset will result in the majority of data values being compressed to a narrow
range of colors.

• Characteristics of the tasks at hand: Different tasks require different color cod-
ing schemes. A main distinction here is whether the task requires the comparison
of exact quantitative values or the assessment of qualitative differences. Further-
more, certain goals may lead to specific regions of interest in the data domain.
These regions should be accentuated, for instance by using bright, warm, and
fully saturated colors.
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• Characteristics of the user: The capabilities and the cultural as well as profes-
sional background of users have to be considered when designing appropriate
color scales. Individual color perception has to be taken into account, and for
users suffering from color vision defects, data values have to be mapped redun-
dantly to additional visual attributes. The conventions of the application back-
ground need to be considered as well. Medical experts, for instance, are very
much used to interpreting red-black-green color scales, despite the problems such
colors may cause for people with color vision deficits.

• Characteristics of the output device: Different output devices use different sys-
tems to define and display colors. Thus, a color coding scheme which is appro-
priate for displaying data on a computer display might be inappropriate when
showing the same data on other media. A common example is that colors that
have been carefully tuned for the slides of a talk appear completely different
when projected onto a wall.

The problem is that most of today’s visualizations that use color do not consider
these aspects to an adequate level. It is often the case that just basic color coding
schemes are used, most prominently the classic rainbow color scale. However, this
can lead to a loss of expressiveness of the generated images (see Borland and Taylor,
2007; Silva et al., 2007). In the following, we focus on the task aspect in more detail.

Task-dependent color coding

In order to define color scales in a task-specific manner, an adequate specification
of tasks is required. For this purpose, one can use the task model of Andrienko and
Andrienko (2006), which we described in Section 4.1.2. The model basically in-
vestigates tasks at three different levels. The first level draws a distinction between
individual data values and sets of data values (elementary tasks vs. synoptic tasks).
At the second level, the Andrienkos distinguish lookup, comparison, and relation
seeking tasks. In a broader sense, relation seeking can be seen as a specific case of
comparison3. This fact allows us to focus on the distinction between the two tasks:
lookup and comparison. The third level addresses two types of tasks: identification
and localization. Accomplishing identification tasks (direct lookup or direct com-
parison) requires recognizing data values and characteristic patterns as precisely as
possible, whereas performing localization tasks (inverse lookup or inverse compar-
ison) requires locating those references in time (and/or space) that exhibit certain
characteristics of interest. In summary, task-dependent color scales can be gener-
ated based on the following distinctions:

• Individual values vs. sets of values,
• Identification vs. localization, and
• Lookup vs. comparison.

3 For relation seeking the user has to compare different data items and/or time points to find inter-
esting relations, where relations of interest are defined beforehand, which is not the case for plain
comparison.
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Fig. 4.12: Examples of unsegmented and segmented color scales for identification and localization
of data values in a visual representation.

Color-coding individual data values requires unsegmented color scales. Unseg-
mented color scales associate unique colors with all individual data values, that is,
every color of the color scale represents exactly one data value. In contrast to that,
segmented color scales should be used to encode sets of data values. Each color of
a segmented color scale stands for a set, usually a range of data values.

In order to facilitate identification tasks, it should be made easy for the user
to mentally map the perceived color to a concrete data value (or set of values).
Moreover, distances in the color scale should correspond to distances in the data. To
support localization tasks, color scales should be designed in such a way that they
exploit pre-attentive perception of temporal areas of interest, for instance by using
accentuation and de-accentuation.

The specification of color scales for identification and localization of individual
data values and sets of values is a well investigated problem (see Bergman et al.,
1995; Harrower and Brewer, 2003; Silva et al., 2007). Figure 4.12 shows examples
of such color scales. The segmented color scale for identification represents five sets
of values, the unsegmented version can be used to identify individual values. The
segmented color scale for localization supports users in making a binary decision:
yellow encodes a match of some selection criteria, otherwise there is no match. The
unsegmented color scale represents a smooth interpretation of the selection criteria.

Figure 4.13 illustrates the difference between color scales for identification and
localization for the case of time-oriented data. The figure shows daily temperature
values for about three and a half years mapped to a color-coded spiral display (↪→
p. 184). While the color scale in Figure 4.13(a) supports identification, that is, one
can easily associate a color with a particular range of values, the color scale in Fig-
ure 4.13(b) is most suited to locate specific data values in time. In our example, the
highest and lowest values are accentuated using saturated red and blue, respectively.
All other values are encoded to shades of gray, effectively attenuating these parts of
the data. Thus it is easy to locate where in time high and low values occur.

The distinction between lookup and comparison tasks deserves a more detailed
investigation. Supporting the lookup task basically requires color scales that allow
for precise association of particular colors with concrete data values. In order to
facilitate comparison tasks, all variables involved in the comparison must be repre-
sented by a common unified color scale, which can be problematic when variables
exhibit quite different value ranges. The next paragraphs will provide more detail
on how efficient color scales for lookup and comparison tasks can be designed.
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(a) Color scale for identification of values. (b) Color scale for localization of extrema.

Fig. 4.13: Daily temperature values visualized along a spiral time axis using different color scales
for different tasks.

Color-coding for the lookup task As mentioned earlier, there are two kinds of
lookup tasks: inverse lookup and direct lookup. Inverse lookup tasks are basically
a search for certain references in time that exhibit specific data characteristics (lo-
calization). For the inverse lookup task, relevant data values (or subsets) are known
beforehand and hence can be easily accentuated using a highlighting color. On the
other hand, the design of color scales for direct lookup (identification) is intricate
because the whole range of data values is potentially relevant and must be eas-
ily identifiable. One way to facilitate lookup tasks is to extract statistical metadata
from the underlying dataset and utilize them to adjust predefined color scales (see
Schulze-Wollgast et al., 2005; Tominski et al., 2008). Let us take a look at three
possible ways of adaptation.

Expansion of the value range The labels displayed in a color scale legend are the
key to an easy and correct interpretation of a color-coded visualization. Commonly
a legend shows labels at uniformly sampled points between the data’s minimum and
maximum. As the left color scale in Figure 4.14(a) illustrates, this usually results in
odd and difficult-to-interpret labels. Even if the user has a clear picture of the color,
it takes considerable effort to mentally compute the corresponding value, or even the
range of plausible values. The trick of value range expansion is to extend the data
range that is mapped to the color scale. This is done in such a way so as to arrive
at a color mapping that is easier to interpret. The right color scale in Figure 4.14(a)
demonstrates this positive effect.
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(a) Value range expan-
sion.

(b) Control point adjust-
ment.

Fig. 4.14: Value range expansion and control point adjustment help to make color legends more
readable and to better adapt the color coding to the underlying data distribution, which is depicted
as a box-whisker plot.

Adjustment of control points A color map is defined by several control points, each
of which is associated with a specific color. Appropriate interpolation schemes are
used to derive intermediate colors in between two control points. The left color
scale in Figure 4.14(b) shows an example where control points are uniformly dis-
tributed (interpolation is not applied for this segmented color scale). While this is
generally a good starting point, more information can be communicated when using
an adapted control point distribution. This is demonstrated in the right color scale
of Figure 4.14(b), where control points have been shifted in accordance with the
data distribution. The advantage is that users can easily associate colors with certain
ranges of the data distribution4.

Skewing of the color mapping function Uneven value distributions can be problem-
atic because they lead to situations where the majority of data values is represented
by only a narrow range of colors. This is unfavorable for lookup tasks. Logarith-
mic or exponential color mapping functions are useful when visualizing data with
skewed value distributions. In cases where the underlying data distribution cannot be
described by an analytical function, equalization can be applied to generate adapted
color scales. The net effect of equalization is that the scale of colors is in accord with
the data’s value distribution. Histogram equalization and box-whisker equalization
are examples of this kind of adaptation:

• Histogram equalization works as follows. First, one subdivides the value range
into n uniform bins and counts the number of data values falling into the bins.
Secondly, the color scale is sampled at n + 1 points, where the points’ locations

4 The box-whisker plot or boxplot used in the figures depict minimum, 1st quartile, median, 3rd
quartile, and maximum value (horizontal ticks from bottom to top).
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(a) Histogram equalization. (b) Box-whisker equalization.

Fig. 4.15: Equalization schemas for adapting a color scale to the data distribution, which is depicted
as box-whisker plots.

are determined by the cumulative frequencies of the bins. Finally, the colors at
these sample points are used to construct an adapted color scale as illustrated in
Figure 4.15(a). As a result, more colors are provided there where larger num-
bers of data values are located, making values in high density regions easier to
distinguish.

• Box-whisker equalization works similarly. Here, colors are sampled at points de-
termined by quartiles. Quartiles partition the original data into four parts, each
of which contains one-fourth of the data. The second quartile is defined as the
median of the entire set of data (one half of the data lies below the second quar-
tile, the other half lies above it). The first and the third quartile are the medians
of the lower and upper half of the data, respectively. The adapted color scale is
constructed from the colors sampled at the quartiles (see Figure 4.15(b)).

How equalization affects the visualization of spatio-temporal data compared to
using unadapted color scales is shown in Figure 4.16. It can be seen that colors
are hard to distinguish in dense parts of the data unless histogram or box-whisker
equalization is applied, which improves discriminability.

Color-coding for the comparison task The comparison of two or more time-
dependent variables requires a global color scale that comprises the value ranges of
all variables participating in the comparison. Particularly problematic are compar-
isons where the individual value ranges are quite different. For example, a variable
with a small value range would be represented by only a small fraction of the global
color scale, which makes it hard for viewers to differentiate colors in that range. An
approach to alleviating this problem is to derive distinct intervals from the union of
all value ranges and to create a separate encoding for each interval. To this end, a
unique constant hue is assigned to each interval, while varying only brightness and
saturation to encode data values. Finally, the separately specified color scales for the
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(a) Color coding without equalization.

(b) Histogram equalization. (c) Box-whisker equalization.

Fig. 4.16: Color scale equalization applied to the visualization of time-oriented health data on a
map.

intervals are integrated into one global comparison color scale. To avoid disconti-
nuities at the tieing points of two intervals, brightness and saturation values of one
interval have to correspond with the respective values of the adjacent interval. In
other words, within one interval the hue is constant while brightness and saturation
vary, whereas at the boundary from one interval to the next the hue is modified while
brightness and saturation are kept constant. This way, even small value ranges will
be represented by their own brightness-varying subscale of the global color scale
and the differentiation of data values is improved.

Figure 4.17 shows how different color coding schemes influence the task of com-
paring three time-dependent variables. Figure 4.17(a) uses individual color scales
for each variable. Visual comparison is hardly possible because one and the same
color stands for three different data values (one in each value range). A global color
scale as shown in Figure 4.17(b) allows visual comparison, but data values of the
first and third variable are no longer distinguishable because their value ranges
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(a) Individual color scales. (b) Global color scale.

(c) Box-whisker equalized color scale. (d) Global comparison color scale.

Fig. 4.17: Different color scales for visual comparison of three time-dependent variables.

are rather small compared to the one of the second variable. Figure 4.17(c) illus-
trates that adapting the color scale to the global value distribution is beneficial. Fig-
ure 4.17(d) shows the visualization outcome when applying the color scale construc-
tion as described above: the recognition of values has been improved significantly.
However, these results cannot be guaranteed for all cases, in particular, then when
the merging process generates too many or too few distinct value ranges.

In the previous paragraphs we discussed the influence of the task at hand on the
visualization of time-oriented data. The example of color-coding served to demon-
strate how the task can be taken into account in the visualization process. As we have
seen, visualization results can be improved when task-based concepts are applied.
But still more research is required to investigate new methods of task-orientation, in
particular in the light of collaborative visualization environments.

4.2.3 Presentation Level

Finally, there are design issues at the level of the visual representation. Communi-
cating the time-dependence of data primarily requires a well-considered placement
of the time axis. This will make it easier for users to associate data with a particular
time, and vice versa. In Section 4.1.3, we have differentiated between 2D and 3D



96 4 Visualization Aspects

presentations of time-oriented data. Let us take up this distinction as an example of
a design decision to be made at the level of the visual representation. Visualization
approaches that use a 2D presentation space have to ensure that the time axis is em-
phasized, because time and data dimensions often have to share the two available
display dimensions. In the case of 3D representations, a third display dimension is
allocatable. In fact, many techniques utilize it as a dedicated dimension for the time
axis, clearly separating time from other (data) dimensions. In the following, we will
illustrate the 2D and the 3D approach with two examples.

2D presentation of time-oriented data

We discuss the presentation of time-oriented data in 2D by the example of axes-
based visualizations. Axes-based visualization techniques are a widely used ap-
proach to represent multi-dimensional datasets in 2D. The basic idea is to construct
a visual axis for each dimension of the n-dimensional data space, and to scale the
axes with respect to the corresponding value range. In a second step, a suitable lay-
out of the visual axes on the display has to be found. Finally, the data representation
is realized by placing additional visual objects along the visual axes and in accord
with the data. In this way, a lossless projection of the n-dimensional data space
onto the 2-dimensional screen space can be accomplished. Parallel coordinates by
Inselberg and Dimsdale (1990) are a well known example of this approach. Paral-
lel coordinates use equidistant and parallel axes to represent multiple variables, and
each data tuple is represented by a polygonal line linking the corresponding variable
values. In the case of time-oriented data, however, this means that the axis encoding
time is considered as one of many, not taking into account the outstanding impor-
tance of this axis (see Figure 4.18).

Fig. 4.18: In parallel coordinates, the time axis (here the leftmost axis) is just one of many axes
and it is not treated in any particular way to emphasize the importance of time.
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In contrast, Tominski et al. (2004) describe an axes-based visualization called
TimeWheel, which focuses on one specific axis of interest, in our case the time axis
(↪→ p. 200). The basic idea of the TimeWheel technique is to distinguish between
one independent variable, in our case time, and multiple dependent variables repre-
senting the time-oriented data. The dimension of time is presented by the reference
time axis in the center of the display and time-dependent variables are shown as
data axes that are circularly arranged around the time axis, where each dependent
variable has a specific color hue associated with it. For each time value on the time
axis, colored lines are drawn that connect the time value with the corresponding
data value at each of the data axes, effectively establishing a visual link between
time and multivariate data. By doing so, the time dependency of all variables can be
visualized. Note that the interrelation of time values and data values of a variable
can be explored most efficiently when a data axis is parallel to the time axis. Inter-
active rotation of the TimeWheel can be used to move data axes of interest into such
a parallel position.

Two additional visual cues support data interpretation and guide the viewer’s
attention: color fading and length adjustment. Color fading is applied to attenuate
lines drawn from the time axis to axes that are almost perpendicular to the time axis.
During rotation, lines gradually fade out and eventually become invisible when the
associated data axis approaches an upright orientation. To provide more display
space for the data variables of interest, the length of data axes is adjusted according

Fig. 4.19: The TimeWheel shows the reference time axis in a prominent central position and ar-
ranges data axes representing time-dependent variables around the time axis. Data are visualized
by drawing lines between points at the time axis and values at data axes.
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to their angle to the time axis. When the TimeWheel is rotated, data axes that are
going to become parallel to the time axis are stretched to make them longer and
data axes that head for an upright orientation are shrunk to make them shorter. Fig-
ure 4.19 shows a TimeWheel that visualizes eight time-dependent variables, where
color fading and length adjustment have been applied to focus on the orange and the
light green data axes.

The TimeWheel is an example of a 2D visualization technique that acknowledges
the important role of the time axis. The time axis’ central position emphasizes the
temporal character of the data and additional visual cues support interactive analysis
and exploration of multiple time-dependent data variables.

3D presentation of time-oriented data

3D presentation spaces provide a third display dimension. This opens the door to
additional possibilities of encoding time and time-oriented data. Particularly, the
visualization of data that have further independent variables in addition to the di-
mension of time can benefit from the additional dimension of the display space.

Spatio-temporal data are an example where data variables do not only depend on
time, but also on space (e.g., on points given by longitude and latitude or on geo-
graphic regions). When visualizing such data, the temporal frame of reference as
well as the spatial frame of reference have to be represented. We already mentioned
that applying the space-time cube design (see Kraak, 2003 and ↪→ p. 245) is com-
mon practice: the z-axis of the display space exclusively encodes time, while the x-
and y-axes represent spatial dimensions. Spatio-temporal data are then encoded by
embedding visual objects into the space-time cube (e.g., visual markers or icons)
and by mapping data to visual attributes (e.g., color or texture). Kristensson et al.
(2009) provide evidence that space-time cube representations can facilitate intuitive
recognition and interpretation of data in their spatio-temporal context.

Figure 4.20 shows two examples of this approach as described by Tominski et al.
(2005). Figure 4.20(a) represents multiple time-dependent variables by so-called
pencil icons (↪→ p. 249). The linear time axis is encoded along the pencil’s faces
starting from the tip. Each face of the pencil is associated with a specific data vari-
able and a specific color hue, and represents the corresponding data values by vary-
ing color saturation. Figure 4.20(b) uses so-called helix icons (↪→ p. 252). Here, we
assume a cyclic character of time and thus, a ribbon is constructed along a spiral
helix. For each time step the ribbon extends in angle and height, depending on the
number of time elements per helix cycle and the number of cyclic passes. Again
color coding is used to encode the data values. To represent more than one data
variable, the ribbon can be subdivided into narrower sub-ribbons.

The 3D display space used in the previous examples is advantageous in terms of
the prominent encoding of time, but it also exhibits two problems that one needs
to address: perspective distortions and occlusion (see Section 4.1.3). Perspective
distortions are problematic because they could impair the interpretation of the visu-
alized data. Therefore, the visual mapping should avoid or reduce the use of geo-
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(a) Pencil icons for linear time. (b) Helix icons for cyclic time.

Fig. 4.20: 3D visualization of spatio-temporal data using color-coded icons embedded into a map
display.

metric visual attributes that are subject to perspective projections (e.g., shape, size,
or orientation). This is the reason why the pencil icons and helix icons apply color
coding instead of geometric encoding. The occlusion aspect has to be addressed by
additional mechanisms. For example, users should be allowed to rotate the icons or
the whole map in order to make back faces visible. Another option is to incorpo-
rate additional 2D views that do not suffer from occlusion. Such views are shown
for a user-selected region of interest in the bottom-left corner of Figures 4.20(a)
and 4.20(b). Again this approach is a compromise. On the one hand, the 2D view
is occlusion-free, but on the other hand, one can show only a limited number of
additional views, and moreover, one unlinks the data from their spatial reference.

Irrespective of whether one uses a 2D or 3D representation, the visualization de-
sign for time-oriented data requires a special handling of the time axis to effectively
communicate the time-dependence of the data. Both approaches have to take care to
emphasize the dimension of time among other data dimensions.

4.3 Summary

Solving the visualization problem primarily requires answering the three questions:
(1) What is visualized? (2) Why is it visualized? (3) How is it visualized? The
answers to the first two questions determine the answer to the third question.

In the case of visualizing time-oriented data, answering the what-question re-
quires both specifying the characteristics of the time domain as well as specifying
the characteristics of the data associated with time. In Chapter 3, we have shown
that many different aspects characterize time and time-oriented data. It is virtually
impossible to simultaneously cover all of them within a single visualization process.
On top of this, there exists no visualization technique that is capable of handling all
of the different aspects simultaneously and presenting all of them in an appropriate
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way. Here, the answer to “why are we visualizing the data” comes into play. Those
aspects of the data that are of specific interest with regard to the tasks at hand have
to be communicated by the visual representation, while others can be diminished or
even omitted. However, this is an intricate problem, and most of today’s visualiza-
tion systems do not support the process of generating suitable task-specific visual
representations. Thus, our primary aim can only be to communicate the problem,
and also to demonstrate the necessity and potential of considering the interrelation
between the what, why, and how aspects by example, as we have done in Section 4.2.

Fig. 4.21: Three key questions of the visualization problem.

Figure 4.21 again summarizes the key characteristics of the three aspects. The
what-aspect addresses characteristics of time and data as detailed in Chapter 3.
For describing the why-aspect, we rely on an abstracted view of the tasks by
Andrienko and Andrienko (2006) (see Section 4.1.2). The how-aspect is mainly cat-
egorized by the differentiation of static and dynamic as well as 2D and 3D represen-
tations (see Section 4.1.3).
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We will see that there are a variety of techniques for handling and accounting
for these key characteristics. Accordingly, many different visual representations of
time-oriented data can be generated. Chapter 7 will attest to this statement.
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