Chapter 6
Analytical Support

It is useful to think of the human and the computer together as a
single cognitive entity, with the computer functioning as a kind of
cognitive coprocessor to the human brain. [...] Each part of the
system is doing what it does best. The computer can pre-process
vast amounts of information. The human can do rapid pattern
analysis and flexible decision making.

Ware (2008, p. 175)

Visualization and interaction as described in the previous chapters help users to vi-
sually analyze time-oriented data. Analysts can look at the data, explore them, and
in this way understand them. This is possible thanks to human visual perception and
the fact that humans are quite good at recognizing patterns, finding interesting and
unexpected solutions, combining knowledge from different sources, and being cre-
ative in general!. This holds true unless the problem to be solved exceeds a certain
size. Very large time-series or data that consist of many thousands of time-dependent
variables can usually not be grasped by human observers. In such cases, we need
the proficiency of computing systems to assist the knowledge crystallization from
time-oriented data. Apparently, if the problem size is sufficiently large, computers
are better (i.e., faster and more accurate) than humans at numeric and symbolic cal-
culations, logical reasoning, and searching.

In general, data mining and knowledge discovery are commonly defined as the
application of algorithms to extract useful structures from large volumes of data,
where knowledge discovery explicitly demands that knowledge be the end prod-
uct of the analytical calculations (see Fayyad et al., 1996, 2001; Han and Kamber,
2005). A variety of concepts and methods are involved in achieving this goal, includ-
ing databases, statistics, artificial intelligence, neural networks, machine learning,
information retrieval, pattern recognition, data visualization, and high-performance
computing.

This chapter will illustrate how automatic analytical calculations can be utilized
to facilitate the exploration and analysis of larger and more complex time-oriented

! Wegner (1997) makes some interesting statements about why interaction is better than algorithms.
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data. To this end, we will give a brief overview of typical temporal analysis tasks.
For selected tasks, we will present examples that demonstrate how visualization can
benefit from considering analytical support. Our descriptions will intentionally be
kept at a basic level. For details on the sometimes quite complex matter of temporal
data analysis, we refer interested readers to the relevant literature.

6.1 Temporal Analysis Tasks

Temporal analysis and temporal data mining are especially concerned with extract-
ing useful information from time-oriented data. More specifically, analytical meth-
ods for time-oriented data address the following categories of tasks (see Antunes and
Oliveira, 2001; Laxman and Sastry, 2006; Hsu et al., 2008; Brockwell and Davis,
2009; Mitsa, 2010):

Classification Given a predefined set of classes, the goal of classification is to de-
termine which class a dataset, sequence, or subsequence belongs to. Applications
such as speech recognition and gesture recognition apply classification to identify
specific words spoken or interactions performed. The analysis of sensor data or
spatio-temporal movement data often requires classification to make the enormous
volumes of data to be handled manageable.

Clustering Clustering is concerned with grouping data into clusters based on sim-
ilarity, where the similarity measure used is a key aspect of the clustering process.
In the context of time-oriented data, it makes sense to cluster similar time-series or
subsequences of them. For example, in the analysis of financial data, one may be
interested in stocks that exhibit similar behavior over time. In contrast to classifica-
tion, where the classes are known a priori, clusters are not defined upfront.

Search & retrieval This task encompasses searching for a priori specified queries
in possibly large volumes of data. This is often referred to as query-by-example.
Search & retrieval can be applied to locate exact matches for an example query or
approximate matches. In the latter case, similarity measures are needed that define
the degree of exactness or fuzziness of the search (e.g., to find customers whose
spending patterns over time are similar but not necessarily equal to a given spending
profile).

Pattern discovery While search & retrieval requires a predefined query, pattern
discovery is concerned with automatically discovering interesting patterns in the
data (without any a priori assumptions). The term pattern usually covers a variety
of meanings, including sequential pattern, periodic pattern, but also temporal asso-
ciation rules. In a sense, a pattern can be understood as a local structure in the data
or combinations thereof. Often, frequently occurring patterns are of interest, for ex-
ample when analyzing whether a TV commercial actually leads to an increase in
sales. But patterns that occur very rarely can also be interesting because they might
indicate malicious behavior or failures.
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Prediction An important task in analyzing time-oriented data is the prediction of
likely future behavior. The goal is to infer from data collected in the past and present
how the data will evolve in the future. To achieve this goal one first has to build a
predictive model for the data. Examples of such models are autoregressive models,
non-stationary and stationary models, or rule-based models.

In the context of visualization, these tasks share a common goal: data abstraction in
order to reduce the workload when computing visual representations and to keep the
perceptual efforts required to interpret them low. For classification and clustering,
we abstract from the raw data and work with classes and clusters. For search &
retrieval and pattern discovery we are foremost interested in relevant patterns and
de-emphasize irrelevant data. For prediction, we focus on the future.

A variety of methods have to play in concert in order to accomplish temporal
analysis tasks. Statistical aggregation operators (e.g., sum, average, minimum, max-
imum, etc.), methods from time-series analysis, as well as dedicated temporal data
mining techniques are needed.

In what follows, we demonstrate the applicability of analytical methods for the
analysis of time-oriented data using the three examples: clustering, temporal data
abstraction, and principal component analysis. Clustering decreases the number of
data items to be represented, and allows the discernment of similarities and un-
expected behavior. Temporal data abstraction reduces data complexity by deriving
qualitative statements, which are much easier to understand. Principal component
analysis decreases the number of time-dependent variables by switching the focus
to major trends in the data.
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6.2 Clustering

In general, grouping data into clusters and concentrating on the clusters rather than
on individual data values allows the analysis of much larger datasets. Appropri-
ate distance or similarity measures lay the ground work for clustering. Distance
and similarity measures are profoundly application dependent and range from av-
erage geometric distance, to measures based on longest common subsequences, to
measures based on probabilistic models. Based on computed distances, clustering
methods create groups of data, where the number of available techniques is large, in-
cluding hierarchical clustering, partitional clustering, and sequential clustering. Due
to the diversity of methods, selecting appropriate algorithms is typically difficult.
Careful adjustment of parameters and regular validation of the results are therefore
essential tasks in the process of clustering. More details on clustering methods and
distance measures can be found in the work by Jain et al. (1999), Gan et al. (2007),
and Xu and Wunsch II (2009).

A prominent example of how analytical methods can assist the visualization of
time-oriented data is the work by Van Wijk and Van Selow (1999). The goal is to
identify common and uncommon subsequences in large time-series data and to un-
derstand their distribution over time. The problem is that simply drawing line plots
for all subsequences is not a satisfactory solution due to the overwhelmingly large
number of time points and line plots. In order to tackle this problem, clustering
methods and a calendar-based visualization are used.
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Fig. 6.2: By repeatedly merging the two most similar sequences into new clusters, a clustering
hierarchy is generated. The root cluster is an aggregated representative of the entire dataset.
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In particular, the approach works as follows. As Van Wijk and Van Selow (1999)
are interested in patterns on the granularity of days, the first step is to split a large
time-series into k day patterns, each of which stores the subsequence for one day.
The clustering process starts with the k day patterns as initial clusters. Then the dif-
ferences of all possible combinations of two clusters are computed and the two most
similar clusters are merged into a new cluster (i.e., an aggregated representative of
the two clusters). This process runs repeatedly and results in a clustering hierarchy
with 2k — 1 clusters, where the root of the hierarchy represents the entire dataset
in an aggregated fashion. Figure 6.2 illustrates the clustering process with data for
seven days.

The visualization of the clustered day patterns uses two different views for the
two analysis tasks: (1) assess similarity among day patterns and (2) locate common
and uncommon patterns over time. The first task is facilitated by a basic line plot
(= p. 153) that shows a selected number of clusters, where each plot uses a unique
color. To accomplish the second task, a calendar display is used where individual
days are color-coded according to cluster affiliation. This way, analysts can see the
day pattern and at the same time understand when during a year this pattern occurs.
Various interaction methods allow adjustments of the visual representation and data
exploration. In terms of assessing similarities, the user can select a day from the
calendar and with the help of the clustering hierarchy, similar days (and clusters)
can be retrieved automatically.
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Fig. 6.3: Visual analysis of the number of employees at work. Day patterns for selected days and
clusters are visualized as line plots (right). Individual days in a calendar display (left) are colored
according to cluster affiliation.

Source: Van Wijk and Van Selow (1999), © 1999 IEEE. Used with permission.
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Figure 6.3 shows an example of the visualization design. The data displayed in
the figure contain the number of employees at work. The line plot currently shows
the day patterns of two days (5/12/1997 and 31/12/1997) and five clusters (710, 718,
719, 721, and 722). Van Wijk and Van Selow (1999) demonstrate that several con-
clusions can be drawn from the visual representation. To give only a few examples:

* Employees follow office hours quite strictly and work between 8:30 am and 5:00
pm in most cases.

» Fewer people work on Fridays during summer (cluster 718).

* During weekends and holidays only very few people are at work (cluster 710).

¢ It is common practice to take a day off after a holiday (cluster 721).

These and similar statements were more difficult or even impossible to derive
without the integration of clustering. Van Wijk and Van Selow (1999) most con-
vincingly demonstrate the advantages of analytical support for the visual analysis
of time-oriented data. While here the benefit lies in the abstraction from raw data to
aggregated clusters, we will see in the next section that other kinds of abstraction
are useful as well.

6.3 Temporal Data Abstraction

In practice, time-oriented datasets are often large and complex and originate from
heterogeneous sources. The challenging question is how huge volumes of possibly
continuously measured data can be analyzed to support decision making. On the one
hand, the data are too large to be interpreted all at once. On the other hand, the data
are more erroneous than usually expected and some data are missing as well. What
is needed is a way to abstract the data in order to make them eligible for subsequent
visualization.

The term data abstraction was originally introduced by Clancey (1985) in his
classic proposal on heuristic classification. In general, the objective of data abstrac-
tion is:

... to create an abstraction that conveys key ideas while suppressing irrelevant details.

Thomas and Cook (2005, p. 86)

The basic idea is to use qualitative values, classes, or concepts, rather than raw
data, for further analysis or visualization processes (see Lin et al., 2007; Combi et al.,
2010). This helps in coping with data size and data complexity. To arrive at suitable
data abstractions, several tasks must be conducted, including selecting relevant in-
formation, filtering out unneeded information, performing calculations, sorting, and
clustering.
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Principles

Let us now illustrate the concept of temporal data abstraction in medical contexts
with a simple example. Figure 6.4 shows time-oriented data as generated when mon-
itoring newborn infants that have to be ventilated artificially. The figure visualizes
three variables plotted as points against a horizontal time axis: S,0; (arterial oxygen
saturation), P,.CO» (transcutaneous partial pressure of carbon dioxide), and P,CO;
(arterial partial pressure of carbon dioxide). S,0» and F,.CO; are measured contin-
uously at a regular rate, but with different frequency. New values for P,CO; arrive
irregularly and some values for P,.CO, are missing.
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Fig. 6.4: Temporal data abstraction in the context of artificial ventilation. Vertical temporal abstrac-
tions are illustrated as V[1] and V[2] and horizontal temporal abstraction are illustrated as H[1] —
H[5]. The context is given as “artificial ventilation” and its sub-context “controlled ventilation”.

The aim of temporal data abstraction is to arrive at qualitative values or pat-
terns over time intervals. Vertical temporal abstraction (illustrated in V[1] and V[2])
considers multiple variables over a particular time point and combines them into
a qualitative value or pattern. Horizontal temporal abstraction (illustrated as H[1]
— H[5]) infers a qualitative value or pattern from one or more variables and a cor-
responding time interval. Usually the abstraction process is context-dependent. In
Figure 6.4, the abstraction is done in the context of artificial ventilation and in the
sub-context of controlled ventilation.

In medical applications, there are different types of abstraction methods, rang-
ing from rather simple to quite complicated ones. However, as pointed out by
Combi et al. (2010), no exhaustive schema exists to categorize the available meth-
ods. Nevertheless, the common understanding is that even in very simple cases the
process is knowledge-driven. The use of knowledge is the main characteristic that
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distinguishes data abstraction from statistical data analysis (e.g., trend detection us-
ing time-series analysis).

Simple methods involve single data values and usually do not need to consider
time specifically. They generate vertical abstractions. The knowledge used are con-
cept associations or concept taxonomies. Combi et al. (2010) distinguish three types
of simple methods:

* Qualitative abstraction means converting numeric expressions to qualitative ex-
pressions. For example, the numeric value of 34.8°C of body temperature can be
abstracted to the qualitative value “hypothermia”.

* Generalization abstraction involves a mapping of instances into classes. For ex-
ample, “hand-bagging is administered” is abstracted to “manual intervention is
administered”, where “hand-bagging” is an instance of the concept class “manual
intervention”.

* Definitional abstraction is a mapping across different concept categories. The
movement here is not within the same concept taxonomy, as for the generaliza-
tion abstraction, but across two different concept taxonomies.

More complex methods consider one or more variables jointly and specifically
integrate the dimension of time in a kind of temporal reasoning. These methods
generate horizontal temporal abstractions. According to Combi et al. (2010), four
types of complex methods exist:

* Merge (or state) abstraction is the process of deriving maximal time intervals for
which some constraints of interest hold. For example, several consecutive days
with high fever and increased blood values can be mapped to “bed-ridden”.

* Persistence abstraction means applying persistence rules to project maximal in-
tervals for some property, both backwards and forwards in time. For example,
“headache in the morning”, can be abstracted to “headache in the evening be-
fore” or “headache in the afternoon afterwards”.

e Trend (or gradient or rate) abstraction is concerned with deriving significant
changes and rates of change in the progression of some variable. For exam-
ple, P,.CO, has decreased from 130 to 90 in the last 20 minutes would result
in “P,.CO; is decreasing too fast”.

* Periodic abstraction aims to derive repetitive occurrence, with some regularity in
the pattern of repetition. For example, “headache every morning, but not during
the day”, would result in “repetitive headache in the morning”.

Application examples

The principles described in the previous paragraphs can be applied in various ways.
In the following, we will give a few examples of systems that utilize temporal data
abstraction. For more examples, we refer to the survey of temporal data abstraction
in clinical data analysis by Stacey and McGregor (2007).
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Monitoring artificially ventilated infants VIE-VENT is an open-loop knowledge-
based monitoring and therapy planning system for artificially ventilated infants (see
Miksch et al., 1996). In order to derive qualitative descriptions for different kinds
of temporal trends (i.e., very-short, short, medium, and long-term trends) from
continuously arriving quantitative data, the system utilizes context-sensitive and
expectation-guided methods and incorporates background knowledge about data
points, data intervals, and expected qualitative trend patterns. Smoothing and ad-
justment mechanisms help to keep qualitative descriptions stable in case of shifting
contexts or data oscillating near thresholds. Context-aware schemata for data point
transformation and curve fitting are used to express the dynamics of and the reaction
to different data abnormalities. For example, during intermittent positive pressure
ventilation (ippv), the transformation of the quantitative value P,,CO, = 56mmHg
results in the qualitative abstraction “F,.CO; substantially above target range”. Dur-
ing intermittent mandatory ventilation (imv) however, 56mmH g represents the “tar-
get value”. Qualitative abstractions and schemata of curve fitting are subsequently
used to decide if the value progression happens too fast, at normal rate, or too slow.
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Fig. 6.5: VIE-VENT displays measured quantitative values as line plots. Qualitative abstractions
and trends are represented by different colors and arrows in the top three boxes on the left.
Source: Miksch et al. (1996), © 1996 Elsevier. Used with permission.

Figure 6.5 shows the user interface of VIE-VENT. In the top-left corner, the
system displays exact values of the quantitative blood gas measurements CO2, 02,
Sa02. Arrows depict trends and qualitative abstractions are indicated by different
colors (e.g., deep pink represents “extremely above target range”). The left panel
further shows current and recommended ventilator settings in blue and red boxes,
respectively. The right-hand side shows line plots of the most important variables
for the last four hours.
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Dealing with oscillating data Strongly oscillating data pose a formidable chal-
lenge for methods that aim to extract qualitative abstractions and patterns from the
data. The problem is that derived abstractions could change too quickly as to be in-
terpretable by the observer. Therefore, Miksch et al. (1999) developed the Spread, a
time-oriented data abstraction method that is capable of deriving steady qualitative
abstractions from oscillating high-frequency data. The tool performs the following
steps of processing and data abstraction:

1. Eliminate data errors: Sometimes up to 40% of the input data are obviously
erroneous, i.e., exceed the limits of plausible values.

2. Clarify the curve: Transform the still noisy data into the spread, which is a steady
curve with some additional information about the distribution of the data along
that curve.

3. Qualify the curve. Abstract from quantitative values to qualitative values like
“normal” or “high” and concatenate intervals with equal qualitative values.

Figure 6.6 illustrates how the analytical abstractions can enhance the visualiza-
tion. The Spread smooths out the strongly oscillating raw data. Even the increased
oscillation in the center of the display is dealt with gracefully: it leads to increased
width of the spread, but not to a change of the qualitative value. With these abili-
ties, the Spread can support physicians in making better qualitative assessments of
otherwise difficult-to-interpret data.
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Fig. 6.6: The thin line shows the raw data. The red area depicts the spread and the blue rectangles
represent the derived temporal intervals of steady qualitative values. The lower part of the figure
shows the parameter settings.

Source: Adapted from Miksch et al. (1999), © 1999 Springer. Used with permission.

Linking temporal and visual abstraction In interactive environments, the visual-
ization of time-oriented data and abstractions thereof can change dynamically due
to user interaction, where resizing and zooming are among the most commonly
applied operations. In such scenarios, the visualization must be able to capture as
much temporal information as possible without losing overview and details, even
if the available display space is very limited. Bade et al. (2004) demonstrate that
this is possible by means of semantic zooming (see p. 112 and — p. 230). The se-
mantic zoom functionality relies on an appropriate set of temporal data abstractions
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and associated visual representations for different levels of detail as illustrated in
Figure 6.7. Depending on the available display space (or the current zoom level),
a suitable temporal abstraction is selected automatically and its corresponding vi-
sual abstraction is displayed. The advantage of this procedure is that it relieves the
user of managing the levels of abstraction by hand. Moreover, the semantic zoom
corresponds much better with the interactive nature of flexible and dynamic visual
analysis scenarios.
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The examples described can only indicate the possible benefits that basic and
complex temporal abstraction methods and their integration with the visualization
can have for dealing with time-oriented data in medical applications. We know of
quite positive feedback from medical experts who found it easy to capture the health
conditions of their patients. Moreover, these qualitative abstractions can be used
for further reasoning or in guideline-based care for a simplified representation of
treatment plans.

What our previous examples have in common, however, is that they consider only
a relatively small number of time-dependent variables. As we will see in the next
section, if the number of variables gets larger, we need further analytical methods.

6.4 Principal Component Analysis

Time-oriented data are often of multivariate nature, but too large a number of vari-
ables poses considerable difficulties for the visualization. These difficulties can be
overcome by applying principal component analysis (PCA), which offers an excel-
lent basis for data abstraction (see Jolliffe, 2002; Jackson, 2003; Jeong et al., 2009).
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Fig. 6.8: Principal component analysis transforms multivariate data (with variables x; and X3 in
this case) into a new space, the so-called principal component space, which is spanned by the
principal components (here PC1 and PC2).

The key principle of PCA is a transformation of the original data space into the
principal component space (see Figure 6.8). In the principal component space, the
first coordinate, that is, the first principal component represents most of the original
dataset’s variance, the second principal component, which is orthogonal to the first
one, represents most of the remaining variance, and so on. Visualizing the data in
the new principal component space shows us how closely individual data records
are related to the major trends, and thus PCA helps us to reveal the internal structure
of the data. Moreover, since principal components are ordered by their significance,
we can focus on fewer principal components than we have variables in our data.

In the following we will take a brief look at the basics of principal component
analysis and illustrate by means of examples the benefit that this analytical concept
has for the visual analysis of time-oriented data.

Basic method

Assume that we have modeled our multivariate dataset as a matrix:

X1,1 7 Xlm
X210 " X2m
X = (xlxzmxm) =
Xn,1 " Xnm
where the columns of X correspond to the m variables x1,Xa, . ..,Xy of the dataset,

and the rows represent n records of data (e.g., n repetitions of an experiment). For a
time-oriented dataset, one of the x; is usually the dimension of time.

Depending on the application it can make sense to prepare the data such that
they are mean-centered and normalized (by subtracting off the mean of each vari-
able and scaling each variable according to its variance). Now our goal is to trans-
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form the data into the principal component space that is spanned by » < m principal
components.

For the purpose of explanation, we resort to singular value decomposition (SVD)
according to which any matrix X can be decomposed as:

X=W.x.CcT

where W is an n X r matrix, X is an r X r diagonal matrix, and CT is an r x m matrix:

Wi W
W2,1 e W27r oy - O cl,l Cl,2 CLm
€21 €22 "+ Com
X =
0o --- o,
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The matrix C” has in its rows the transposed eigenvectors ¢;”, ..., ¢,” of the matrix

XTX, which corresponds to the covariance matrix of the original dataset. The ¢;
form the orthonormal basis of the principal component space; they are the principal
components. Each ¢; is the result of a linear combination of the original variables
where the factors (or loadings) of the linear combination determine how much the
original variables contribute to a principal component. The first principal component
¢y is chosen so as to be the one that captures most of the original data’s variance, the
second principal component most of the remaining variance, and so forth. The sig-

nificance values o7, ..., 0, in X are determined by the likewise ranked square roots
of the eigenvalues VAl,...,V/A, of the eigenvectors (i.e., the principal components)
¢y,...,c¢r. Finally, the i-th row of the matrix W contains the coordinates of the i-th

data record in the new principal component space. The individual coordinates are
often referred to as the scores.

This brief formal explanation provides a number of key take-aways. Let us sum-
marize the ones that are most relevant for visualization:

* the significance values determine the ranking of principal components,

* the ranking is the basis for data abstraction, where principal components that bear
little information can be omitted,

* the loadings describe the relationship of the original data variables and the prin-
cipal components, and

* the scores describe the location of the original data records in the principal com-
ponent space.

Application examples
We will now demonstrate how PCA can be applied to enhance the visual analysis

of time-oriented data. Our general goal is to uncover structure in the data and to
reduce the analysis complexity by focusing on significant trends. In a first example,
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we will see that even a single principal component can bear sufficient information
for discerning main trends in the data. Secondly, an example will illustrate how one
can determine the principal components to be retained for the visualization as well
as the ones that can be omitted due to their low significance.

Before we start with the examples, however, it is important to mention that PCA
does not distinguish between independent and dependent variables. In particular,
the dimension of time is processed indiscriminately, which sacrifices the tempo-
ral dependencies in the data. Therefore, it is often preferable to exclude time from
the analysis, and to rejoin time and computed principal components afterwards to
restore the temporal context. This is what we will do in the next example.

Revealing internal structures with PCA We consider the visual analysis of a me-
teorological dataset that contains daily observations of temperature (T, Tuvg, and
Tinax) for a period of 105 years, which amounts to approximately 38,000 data records
(see Nocke et al., 2004). As we are only interested in the summer seasons’ weather
conditions, the daily raw data are first aggregated into yearly data. To this end, five
new variables are calculated for each year:

e total heat (pl) as the sum of the maximum temperatures for days with T}, >
20°C,

e summer days (p2) as the number of days with 7,,,, > 25°C,

* hot days (p3) the number of days with 7,,,,, > 30°C,

* mean of average (p4) as the mean of the daily average temperatures 7, and

* mean of extreme (p5) as the mean of the daily maximum temperatures 7.

These five quantitative variables are strongly correlated. The extracted dataset
can be visualized as a centered layer area graph (— p. 195), as illustrated in Fig-
ure 6.9. This visual representation is quite useful to get an overview of the data. We
can clearly distinguish valleys and peaks in the graph, which indicate particularly
cold and hot summers, respectively. The general trend in the data is communicated
quite well.
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Fig. 6.9: Summer conditions (p/—p5) visualized as a centered layer area graph.
Source: Image courtesy of Thomas Nocke.

As we will see next, we can confirm our previous findings and gain further insight
with the help of PCA and a simple bar graph (— p. 154). But instead of visualiz-
ing all five parameters, our visual analysis will be based on just a single principal
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component. So what we do is to apply PCA to the five variables extracted from the
raw data. The dimension of time is excluded from the PCA. The computed PCA
results are then fed to the visualization. In order to restore the temporal context, the
bar graph in Figure 6.10 shows time along the horizontal axis, and the first prin-
cipal component (PC1), to which all variables contribute because of their strong
correlation, at the vertical axis. For each year, a bar is constructed that connects the
baseline with the year’s PC1 coordinate (i.e., the year’s score in principal component
space). This effectively means upward bars encode a positive deviation from the ma-
jor trend, that is, they stand for warmer summers, where long bars indicate summers
with extreme conditions. In contrast, downward bars represent colder-than-normal
summers. As an additional visual cue, frequencies of score values are mapped onto
color to further distinguish typical (saturated green) and outlier (bright yellowish
green) years. This visual representation allows us to discern the following interest-
ing facts:

* The first third of the time axis is dominated by moderately warm summers mixed
with the coldest summers.

* The hot summers in the 1910s and 1920s are immediately followed by cold sum-
mers.

e There were relatively nice summer seasons between 1930 and 1950.

* In general, outlier summers, positive and negative ones, accumulate at the end of
the time axis.
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Fig. 6.10: The bar graph encodes years along the horizontal axis and the scores of the first principal
component (PC1) along the vertical axis. Color indicates the frequency of score values.

Although the visualization in Figure 6.10 shows only the first principal compo-
nent, rather than the five data variables, it depicts corresponding trends very well.
Nonetheless, one should recall that our data represent a special case where all five
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variables are strongly correlated. This correlation is the reason why PC1 separates
warm and cold summers so well. When analyzing arbitrary time-oriented datasets,
further principal components might be necessary to capture major structural rela-
tionships. The following example will illustrate how users can be assisted in making
informed decisions about which principal component’s scores to display.

Determining significant principal components We now deal with a census dataset
with multiple variables, including population, gross domestic product, literacy, and
life expectancy. As before, the independent dimensions (i.e., time and space) are
excluded to maintain the data’s frame of reference, leaving ten variables to be pro-
cessed analytically by the PCA. Accordingly, the analysis yields ten principal com-
ponents, which correspond to the major trends in the data. The principal compo-
nents’ significance-weighted loadings indicate how individual variables participate
in these trends.

o
o
=
o
&

PC3 PC4 PCS PCé PC? PCs =] PC10

[
| | | |
| | | I

Population
PopulationDensity
Literacy
InfantMortality

||
—

GrossDomesticProduct |
BirthRate |
DeathRate
LifeExpectancyF
LifeExpectancyM
LifeExpectancy

Fig. 6.11: The bars in the table cells visualize the loadings of principal components weighted by
their significance. This clearly echoes the ranking of the principal components.

The significance-weighted loadings of our example are depicted in Figure 6.11,
where longer bars stand for stronger participation, and blue and yellow color are
used for positive and negative values, respectively. By definition, the principal com-
ponents are ranked according to their significance from left to right. The figure in-
dicates that the data’s major trends (PC1-PC4) are largely influenced by the eight
variables from literacy to life expectancy. But we can also see that if we consider
only these first four principal components, we certainly lose the relation to the two
variables population and population density, which do not contribute to the top four
trends. Therefore, at least the principal components up to PC5, which is propor-
tional to population, and PC6, which is indirectly proportional to population den-
sity, should be retained. In turn, if we are interested in the main trends only, we can
safely omit the remaining principal components (PC7-PC10).

If we are interested in outlier trends as well, we should be less generous with
dropping principal components. This can be illustrated by a visualization of the plain
(i.e., unweighted) loadings of the principal components as shown in Figure 6.12.
The figure clearly reveals contradictory contributions of the variables to the lower-
ranked trends. In particular, we can see a contradiction between life expectancy of
females and males in the ninth principal component (PC9).
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PCL P2 PC3 [pce [pe? PCe PCa PCI0
Population || | | | F | | [ | ‘ |
PopulationDensity | | | l | |

Literacy . I D I |
InfantMortality | | l I -

GrossDomesticPraduct 1 | | | I | | |

BirthRate 1 | | | | L |

DeathRate [ | || | | | | | || l
LifeExpectancyF || | | | | | | ‘ || O
LifeExpectancyM 1 | | 1 | [
Lifebxpectancy = 1 ’ | | | | ‘ ‘ I

Fig. 6.12: The bars in the table cells visualize the unweighted loadings of principal components,
that is, they indicate how much the individual variables contribute to any particular principal com-
ponent.

The visualization of the loadings helped us in identifying the top-ranked princi-
pal components and those that might bear potentially interesting outlier information.
The knowledge that we derived about the principal components can also be inter-
preted in terms of the variables of the original data space. A number of findings can
be gained, including:

* All the positive loadings in the main trend (PC1) indicate a direct proportional
relationship for the literacy, infant mortality, gross domestic product, birth rate,
death rate, and life expectancy.

e The second trend (PC2) is constituted by the gross domestic product, life ex-
pectancy as well as infant mortality, death rate, and birth rate, where the latter
three variables are indirectly proportional to this trend.

e The major trends in the data (PC1-PC3) are largely independent of population
and population density.

* An outlier trend is present in PC9, where the contradictory loadings of life ex-
pectancy of females and males might hint at an interesting aspect.

In summary we have seen in this section that PCA is a useful tool for crystallizing
major structural relationships in the data and for identifying possible candidates for
data reduction.

6.5 Summary

The information seeking mantra proposed by Shneiderman (1996) should guide the
users when exploring the data visually:

Overview first,
zoom and filter,
then details-on-demand.
Shneiderman (1996, p. 2)

However, with massive, heterogeneous, dynamic, and ambiguous datasets at
hand, it is difficult to create overview visualizations without losing interesting pat-
terns. Therefore, Keim et al. (20006) revised the information seeking mantra, in order
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to indicate that it is not sufficient to just retrieve and display the data using a visual
metaphor:

Analyze First -
Show the Important -
Zoom, Filter and Analyse Further -
Details on Demand.
Keim et al. (2006, p. 6)

In fact, it is necessary to analyze the data according to aspects of interest, to show
the most relevant features of the data, and at the same time to provide interaction
methods that allow the user to get details of the data on demand (see Keim et al.,
2010).

In this chapter, we provided a brief overview of how analytical methods can sup-
port the visual analysis of time-oriented data. We gave a list of typical temporal
analysis tasks and illustrated the utility of analysis methods with the three exam-
ples: clustering, temporal data abstraction, and principal component analysis. All of
these examples perform a particular kind of data abstraction. Admittedly, our exam-
ples are simple, but still we believe that they demonstrate the benefits of analytical
methods quite well.

In fact, when confronted with really huge datasets, a single analytical method
alone will most certainly not suffice. Instead, a number of analytical methods must
play in concert to cope with the size and complexity of time-oriented data. More-
over, analytical methods are not solely a preprocessing step to support the visu-
alization of data. The full potential of analytical methods unfolds only if they are
considered at all stages of interactive exploration and visual analysis processes in
an integrated fashion depending on the data, users, and tasks.

However, as we will see in the next chapter, more in-depth research and devel-
opment is necessary to arrive at an intertwined integration of visual, interactive and
analytical methods for the bigger goal of gaining insight into large and complex
time-oriented data.
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