
Lowering C to two-operand normal form

COMP 40

October 24, 2011

Recorder:

Other group members:

Normal forms resembling machine code

Computational machine instructions resemble C assignments, except they have a very limited form:

• At most one operator appears on the right-hand side.

• If there is a binary operator, the variable assigned to is the same as the right-hand argument.

• If an access to memory is involved, typically there is no operator.

Some examples:

y = x + y; y = 17; // load ’immediate’

y = x - y; y = Array2_map_row_major;

y = m[x+12]; // memory access: load y = (double) x;

m[rsp-4] = x; // memory access: store

Translation into this form is simple:

• For a complex expression like a× (b+ c), simplify by first storing (b+ c) in a variable.

• For a “three-address” expression like z = x + y;, translate to two instructions:

z = y;

z = x + z;

Translation problem

Floating-point parameters are passed in registers %xmm0 through %xmm7, and a floating-point result is returned
in register %xmm0. Translate this procedure into normal form:

float luminance(float red, float green, float blue) {

return 0.299 * red + 0.587 * green + 0.114 * blue;

}

(bonus problem on the back)



Bonus translation problem

Integer parameters are passed in registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9. Translate this procedure
into normal form:

/* squared difference of scaled integers; denominators may differ */

double sqdiff(int n1, int d1, int n2, int d2) {

double diff = (double)n1/(double)d1 - (double)n2/(double)d2;

return diff * diff;

}

2


