Class exercise: Improving loops

COMP 40
November 16, 2011

Group

Keeper of the record:

Other group members:

Improving loops
The following loop implements a row-major mapping:

struct T {

int width, height;

int size;

UArray_T elements; /* UArray_T of ’height * width’ elements,

each of size ’size’, in row-major order */

// Element (i, j) in the world of ideas maps to
// elements[i + width * j], where the square brackets
// stand for access to a Hanson UArray_T

};

void map_row_major(struct T *a2,
void apply(int i, int j, struct T* a2, void *elem, void *cl), void *cl) {
assert(a2);
for (int k = 0; k < a2->width * a2->height; k++) {
int col = k % a2->width;
int row = k / a2->width;
apply(col, row, a2, UArray_at(a2->elements, k), cl);
}
}

Improve the map_row_major function using the following procedure:

1. Intheloop, draw arectangle around every expression that you believe isinvariant. (An invariant expression has
the same value on every iteration.)

2. Intheloop, draw acircle around every expression that the compiler can prove isinvariant.

3. Intheloop, draw a dotted rectangle around every expression that is nearly invariant (its value changes relatively
infrequently).

4. Rewrite the procedure to exploit the gaps between the rectangles and circles: use your knowledge of invariants
to make improvements the compiler cannot make.

5. Restructure the code to reduce the cost of computing expressions that are nearly invariant.

