
Class exercise: Improving loops

COMP 40

November 16, 2011

Group

Keeper of the record:

Other group members:

Improving loops

The following loop implements a row-major mapping:

struct T {

int width, height;

int size;

UArray_T elements; /* UArray_T of ’height * width’ elements,

each of size ’size’, in row-major order */

// Element (i, j) in the world of ideas maps to

// elements[i + width * j], where the square brackets

// stand for access to a Hanson UArray_T

};

void map_row_major(struct T *a2,

void apply(int i, int j, struct T* a2, void *elem, void *cl), void *cl) {

assert(a2);

for (int k = 0; k < a2->width * a2->height; k++) {

int col = k % a2->width;

int row = k / a2->width;

apply(col, row, a2, UArray_at(a2->elements, k), cl);

}

}

Improve the map_row_major function using the following procedure:

1. In the loop, draw a rectangle around every expression that you believe is invariant. (An invariant expression has
the same value on every iteration.)

2. In the loop, draw a circle around every expression that the compiler can prove is invariant.

3. In the loop, draw a dotted rectangle around every expression that is nearly invariant (its value changes relatively
infrequently).

4. Rewrite the procedure to exploit the gaps between the rectangles and circles: use your knowledge of invariants
to make improvements the compiler cannot make.

5. Restructure the code to reduce the cost of computing expressions that are nearly invariant.


