
Class exercise: Function inlining and specialization

COMP 40

November 21, 2011

Group

Keeper of the record:

Other group members:

Function inlining

In this problem I want you to estimate the cost of function calls by counting calls, returns, arithmetic operations, loads,
compares, and branches.

What’s to be gained by inlining UArray_at(segment, r4)? Assume that after inlining, the compiler improves
the code as much as possible.

void *UArray_at(T array, int i) {

assert(array);

assert(i >= 0 && i < array->length);

return array->elems + i*array->size;

}

Calls & returns Arithmetic Loads and stores Comparisons Branches
Without inlining

After inlining and specialization

What’s to be gained by inlining Bitpack_getu(instr, 3, 6)? Assume that after inlining, the compiler improves
the code as much as possible.

static inline uint64_t shl(uint64_t word, unsigned bits) {

assert(bits <= 64);

if (bits == 64)

return 0;

else

return word << bits;

}

static inline uint64_t shr(uint64_t word, unsigned bits) { // shift R logical

assert(bits <= 64);

if (bits == 64)

return 0;

else

return word >> bits;

}

uint64_t Bitpack_getu(uint64_t word, unsigned width, unsigned lsb) {

unsigned hi = lsb + width; // one beyond the most significant bit

assert(hi <= 64);

return shr(shl(word, 64 - hi), 64 - width); // different type of right shift

}

Calls & returns Arithmetic Loads and stores Comparisons Branches
Without inlining

After inlining and specialization


