
AMD64 overview

COMP 40

Fall 2010

1 Key locations

1.1 Integer unit

The 64-bit registers by number are%rax, %rcx, %rdx, %rbx, %rsp, %rbp, %rsi, %rdi, and%r8 to %r15. Figure 1
shows the various sub-registers. You are quite likely to encounter such registers as%eax or %edi, especially when
dealing with functions that take 32-bit parameters.

The integer status register includes the typical flags OF (overflow flag), SF (sign flag), ZF (zero flag), and CF (carry
flag). Flags unique to the Intel family include PF (parity flag), AF (auxiliary carry flag), and DF (direction flag for
string operations). Flags are set by most arithmetic operations and tested by the “jump conditional” instructions.

1.2 128-bit multimedia unit

This unit includes sixteen 128-bit registers numbered%xmm0 to %xmm15. This unit provides a variety of vector-parallel
instructions (Streaming SIMD Extensions, or SSE) including vector-parallel floating-point operations on either 32-bit
or 64-bit IEEE floating-point numbers (single and double precision).

1.3 IEEE Floating-point unit

The IEEE floating-point unit has eight 80-bit registers numbered%fpr0 to%fpr7. It provides floating-point operations
on 80-bit IEEE floating-point numbers (double extended precision).

1.4 Parameter registers

Integer parameters are passed in registers%rdi, %rsi, %rdx, %rcx, %r8, and%r9. Single-precision and double-
precision floating-point parameters (float anddouble) are passed in registers%xmm0 through%xmm7. Structure
parameters, extended-precision floating-point numbers (long double), and parameters too numerous to fit in registers
are passed on the stack.

1.5 Result registers

An integer result is normally returned in%rax. If an integer result is too large to fit in a 64-bit register, it will be
returned in the%rax:%rdx register pair. A single-precision or double-precision floating-point result is returned in
%xmm0; an extended-precision floating-point result is returned on top of the floating-point stack in%st0. Complex
numbers return their imaginary parts in%xmm1 or %st1.

1.6 Registers preserved across calls

Most registers are overwritten by a procedure call, but the values in the following registers must be preserved:

%rbx %rsp %rbp %r12 %r13 %r14 %r15

1

In addition, the contents of the x87 floating-point control word, which controls rounding modes and other behavior,
must be preserved across calls.

A typical procedure arranges preservation with a prolog that pushes%rbp and%rbx and subtracts a constantk

from %rsp. The body of the procedure usually avoids%r12–%r15 entirely. Finally, before returning, the procedure
then addsk to %rsp, then pops%rbx and%rbp. But there are many other ways to achieve the same goal, whichis that
on exit, the nonvolatile registers have the same values theyhad on entry.

2 Assembly-language reference to operands and results

A reference to am operand or result is called aneffective address. The value of an operand may be coded into the
instruction as a literal orimmediate operand, or it may be stored in a container. A result is alwaysstored in a container.

Immediate operands begin with$ and are followed by C syntax for a decimal or hexadecimal literal:

$0x408ba

$12

$-4

$0xffffffffffffffc0

In DDD, literals are written as in C, without the$ sign. As in C, hexadecimal literals must have a leading0x.
The machine can refer to two kinds of containers: registers and memory. Registers are referred to by name, with a

% sign in the assembler and inobjdump:

%rax %xmm0

In DDD, registers are referred to with a$ sign.
Memory locations are always referred to by the address of thefirst byte; the assembly-language syntax is arcane:

(%rax) The address is the value stored in%rax, which we’ll refer to simply as%rax.
0x10(%rax) The address is%rax + 16.
-0x8(%ebx) The address is%ebx - 8.
$0x4089a0(,%rax,8) The address is0x4089a0 + 8 * %rax. This form of reference can be used for

very fast array indexing, provided the elements of the arrayare 8 bytes in size, as in
an array of pointers. Only multipliers 1, 2, 4, and 8 are supported.

(%ebx,%ecx,1) The address is%ebx + 1 * %ecx, i.e., the sum of the values in%ebx and%ecx.
12(%ebx,%ecx,1) The address is%12 + ebx + %ecx.

Here are some example instructions:
mov -0x8(%rbx),%edx Take the 32-bit word whose first byte is stored at memory address%rbx-8

and put it into the least significant 32 bits of%rax.
mov 0x8(%rsp),%rbx Take from the stack the 64-bit word whose first byte is locatedat address

%rsp+8, and put it into register%rbx.
mov $0x5,%edx Store the literal5 into %rdx.
add $0x1,%rsi Add 1 to the contents of register%rsi.
addq $0x1,0x8(%rsp) Add 1 to the 64-bit word whose first byte is located at address%rsp+8.

Theq suffix is needed on theadd because the literal 1 could represent an
integer of any size, and the address%rsp+8 could point to an integer of
any size. Theq means “64 bits.” (l means 32 bits,w means 16 bits, and
b means 8 bits). A suffix is normally unnecessary, because the way the
register is named indicates the size (examples include%rax, %eax, %ax,
and%al).

lea -0x30(%edx,%esi,8),%esi Compute the address%edx+8*%esi-48, but don’t refer to the contents of
memory. Instead, store theaddress itself into register%esi. This is the
“load effective address” instruction: its binary coding isshort, it doesn’t
tie up the integer unit, and it doesn’t set the flags.

2

Register
AX

︷ ︸︸ ︷

0 (RAX) AH AL
64 32 16 8 0

︸ ︷︷ ︸

EAX
CX

︷ ︸︸ ︷

1 (RCX) CH CL
64 32 16 8 0

︸ ︷︷ ︸

ECX
DX

︷ ︸︸ ︷

2 (RDX) DH DL
64 32 16 8 0

︸ ︷︷ ︸

EDX
BX

︷ ︸︸ ︷

3 (RBX) BH BL
64 32 16 8 0

︸ ︷︷ ︸

EBX

4 (RSP) SP
64 32 16 0

︸ ︷︷ ︸

ESP

5 (RBP) BP
64 32 16 0

︸ ︷︷ ︸

EBP

6 (RSI) SI
64 32 16 0

︸ ︷︷ ︸

ESI

7 (RDI) DI
64 32 16 0

︸ ︷︷ ︸

EDI
8 (R8) R8D

64 32 0

9 (R9) R9D
64 32 0

10 (R10) R10D
64 32 0

11 (R11) R11D
64 32 0

12 (R12) R12D
64 32 0

13 (R13) R13D
64 32 0

14 (R14) R14D
64 32 0

15 (R15) R15D
64 32 0

Figure 1: AMD64 Integer Registers

3

3 Selected integer instructions

Opcode Examples RTL
add add $0x18,%rsp %rsp := %rsp + 24 | touch flags

add 0x8(%rcx),%rdx %rdx := $m[%rcx + 8] | touch flags
sub sub $0x18,%rsp %rsp := %rsp− 24 | touch flags

sub %rax,0x8(%rdx) $m[%rdx + 8] := $m[%rdx + 8] − %rax | touch flags
sub %rdx,%rax %rax := %rax− %rdx | touch flags

lea lea 0x10(%rsp),%rax %rax := %rsp + 16 load effective address
lea (%rbx,%rax,8),%rax %rax := %rbx + %rax×u 8 (flags unchanged)

adc adc $0x0,%ecx %rcx := $m[%rcx + 0 + CF] | touch flags add with carry
adc $0xffffffffffffffff,%r12 %r12 := $m[%r12− 1 + CF] | touch flags

sbb sbb %eax,%eax %eax := %eax− (%eax + CF) | touch flags subtract with borrow
sbb $0x3,%rdi %rdi := %rdi− (3 + CF) | touch flags

neg neg %edx %edx := −%edx | touch flags two’s-complement negate
negq 0x28(%rsp) $m[%rsp + 40]32 := −$m[%rsp + 40]32 | touch flags

mul mul %rcx %rdx:%rax := %rax×u %rcx | touch flags unsigned multiply
mul %ecx %edx:%eax := %eax×u %ecx | touch flags

imul imul 0x10(%rbx),%rbp %rbp := lobits64(%rbp×s $m[%rbx + 16]) | touch flags
signed multiply

div div %esi %rdx := %rdx:%rax÷u %esi | %rax := %rdx:%rax remu %esi unsigned divide
| undef flags

idiv idiv %r8 %rdx := %rdx:%rax÷s %r8 | %rax := %rdx:%rax rems %esi signed divide
| undef flags

shl shl %cl,%rax %rax := %rax << (%cl mod 64) | touch flags shift left
sar sar %cl,%rdx %rdx := %rdx >>s (%cl mod 64) | touch flags shift arithmetic right (signed)
shr shr %cl,%rax %rax := %rax >>z (%cl mod 64) | touch flags shift right (unsigned)

shrl $0x8,0x8c(%rsp) $m[%rsp + 140]32 := $m[%rsp + 140]32 >>z (8 mod 32) | touch flags

and and %r11,%rcx %rcx := %rcx ∧ %r11 | touch flags bitwise and
or or %ebx,0x10(%rsp) $m[%rsp + 16] := $m[%rsp + 16] ∨ %ebx | touch flags bitwise or
xor xorb $0x36,(%rax,%r12,1) $m[%rax + %r12]8 := $m[%rax + %r12]8 xor 54 | touch flags bitwise exclusive or
not not %ebp %ebp := ¬%ebp one’s complement

mov mov $0x7fffffffffffffff,%rax %rax := 263 − 1 | undef flags load immediate
mov %rax,(%r9,%rsi,8) $m[%r9 + %rsi× 8]64 := %rax | undef flags store
mov 0x8(%rsp),%rdi %rdi := $m[%rsp + 8]64 | undef flags load

movs movsbq (%rbx),%rdx %rdx := sx8→64$m[%rbx] sign-extending load
movslq %edi,%rax %rax := sx32→64$m[%edi] sign-extending move

movz movzbl 0x10(%rdi),%esi %esi := zx8→32$m[%rdi + 16] zero-extending load
movzbl 0x2(%r12,%rax,1),%eax %eax := zx8→32$m[%r12 + %rax + 2]

pop pop %rbx %rbx := $m[%rsp] | %rsp := %rsp + 8 (flags unchanged)
push push %r14 $m[%rsp− 8] := %r14 | %rsp := %rsp− 8 (flags unchanged)

4

3.1 Comparisons and control flow

Opcode Examples Meaning
jmp jmp L start executing program at labelL jump
cmp cmp %r13,%r12 set flags as if forsub %r13,%r12 (but leave%r12 unchanged) compare
test testb $0x10,(%rsi) set flags as if forandb $0x10,(%rsi) (but leave memory unchanged) test bit(s)

test %eax,%eax ZF := (%eax ∧ %eax = 0), and set other flags also
ja ja L if comparison showed>u, jump to labelL jump if above
jae ja L if comparison showed≥u, jump to labelL jump if above or equal
jb jb L if comparison showed<u, jump to labelL jump if below
jbe jb L if comparison showed≤u, jump to labelL jump if below or equal
jc jc L if CF 6= 0, jump to labelL jump if carry
je je L if comparison showed equal (ZF = 0), jump to labelL jump if equal
jg ja L if comparison showed>s, jump to labelL jump if greater
jge ja L if comparison showed≥s, jump to labelL jump if greater or equal
jl ja L if comparison showed<s, jump to labelL jump if less
jle ja L if comparison showed≤s, jump to labelL jump if less or equal
...

jz jz L if last result was zero, jump to labelL (same asje) jump if zero
call call printf push address of next instruction and go toprintf call

callq *%rax push address of next instruction and go to instruction at address found in%rax
callq *0x10(%rcx) push address of next instruction and go to instruction at address found in$m[%rcx + 16]

ret retq pop an address from the stack and go to that address return

There are many more conditional comparison instructions tobe found in the architecture manual. Most notably, every
conditional jump comes in both positive and negative versions; for example, the negative version ofja is jna, i.e.,
“jump if not above.”

5

SASL library Firefox binary
75222 mov 3364 mov

11881 test 693 call

11073 callq 569 lea

10887 je 507 pop

9267 lea 505 push

7567 xor 435 add

7531 jne 405 nop

5818 jmpq 367 test

5180 add 318 je

4397 cmp 301 sub

2908 movq 271 jmp

2791 movl 267 ret

2633 sub 226 movl

2292 nopl 212 cmp

2285 pop 126 jne

1944 testb 108 xor

1804 and 89 movzbl

1782 push 42 movzwl

1732 retq 41 jbe

1560 jmp 35 jae

1528 movzwl 33 js

1422 movzbl 33 ja

1180 cmpq 31 xchg

931 nopw 27 shr

649 shl 24 jb

524 cmpl 24 cmpb

499 xchg 23 leave

499 nop 21 movsbl

496 ja 19 and

445 or 18 movb

439 jbe 13 shl

414 cmove 13 addl

406 cmpb 12 sete

373 orl 12 fxch

331 sar 12 fstp

326 ror 11 imul

299 shr 10 setne

285 movb 10 sar

269 sete 10 movswl

258 movslq 9 cmpl

257 sbb 8 ror

230 addl 8 flds

Figure 2: Popular instructions by mnemonic and suffix

6

