
Programming the Universal Machine

Norman Ramsey

Fall 2008

Introduction

For the assembly-language programmer, the most salient facts about the Universal
Machine are these:

• The machine does not have many registers.

• Extra registers are needed to implement even the simplest operations, like
comparing registers, or subtracting.

• The only way to implementgoto is with a Load Program instruction, which
requires a register containing zero to indicate the program being loaded.

With these limitations in mind, I have recommended some best practices for pro-
gramming the Universal Machine. The most important of these practices is a con-
vention for implementing procedure calls, known here as the UM Stack Conven-
tion.

A note on efficiency

With only 13 instructions and 8 registers, the Universal Machine is can be some-
what difficult to program.You should not try to make your assembly code efficient:

• It is nearly impossible to manage the registers efficiently by hand.

1



• In a realistic situation, you would create efficient assembly code by having a
compiler do part of the work.

Instead, write code that is clear and correct, with no regard for efficiency.

The stack

The UM Stack convention uses a stack just like the AMD64. Register 2 is reserved
for use as a stack pointer, and stack space is allocated in array zero by the following
code, found in filestack.ums: This code also initializes the stack pointer to point
to the old end of the stack. The stack grows downward, toward smaller addresses.
Most assembly-language programmers will take their chances with stack overflow.

Register usage calls and returns

At the start of a procedure,

• Registerr0 contains zero.

• Registerr1 contains the return address—where control should go when the
function has ended.

• Registerr2 is the stack pointer. Memory locationsa[r2-1], a[r2-2], and
so on are available for use by the procedure.

• Any arguments are on the stack at locationsa[r2] (the first argument),
a[r2+1], a[r2+2], and so on.

• Registersr3 andr4 contain values that belong to the caller—if these regis-
ters are used, the values must be saved and restored.

• Registersr5 to r7 are “scratch registers.” The procedure may use them any
way it likes.

At the end of a procedure,

• Registerr0 contains zero.

2



• Registerr1 contains the value returned by the procedure, if any.

• Registerr2, the stack pointer, has exactly the same value as it had on entry
to the procedure.

• Registersr3 andr4 contain the values they had on entry to the procedure.

• Registersr5 to r7 contain arbitrary values.

Programming idioms for call sites

To implement a call that in C would look like

x = f(a, b, c);

I recommend that you write

push c on stack r2

push b on stack r2

push a on stack r2

goto f linking r1

x := r1

r2 := r2 + 3 // pop a, b, and c off the stack

After this sequence you should remember that values inr5, r6, andr7 may have
been destroyed.

Idioms for use of registers

Many of the interesting macro instructions require at least two temporaries; some
of the conditional branches can require four or more. As a matter of convention,
I suggest that you reserver0 to be zero andr6 andr7 as temporaries. You can do
this by

.zero r0

.temps r6, r7

3



If you need more temporaries, the Macro Assembler will work just as well ifr0 is
a temporary:

.zero off

.temps r0, r6, r7

But this tactic creates an additional obligation;before returning from a procedure,
you must restorer0 :

.temps r6, r7

r0 := 0

.zero r0

Finally, for a conditional branch, you might need extra temporaries:

if (r3 <s a[r0][r2+1]) goto next using r1, r4, r5;

Theusing clause applies only to that instruction, but values inr1, r4, andr5 will
be lost.

Programming idiom for a big procedure

If you’re writing a big procedure, you’ll want maximum use of all the registers.
Here’s a very general idiom for a proceduref that returns a result calledresult:

.zero r0

.temps r6, r7

f: // entry point for the function f

push r1 on stack r2 // save return address

push r3 on stack r2

push r4 on stack r2

// first argument is now in a[r0][r2+3]

... body of procedure f, which computes results ...

4



_f_end:

r1 := result

pop r4 off stack r2

pop r3 off stack r2

pop r5 off stack r2 // restore return address into r5

goto r5

If you need even more registers, you can maker0 a temporary and end with

...

pop r5 off stack r2

r0 := 0

.zero r0

goto r5

Idiomatic use for sections

Most programs will get by with four sections:

• Sectiontext holds code.

• Sectiondata holds initialized data.

• Sectionstk holds the stack.

• Sectioninit is used for initialization and to call the main function.

5


