
COMP40 Assignment: Macro Instructions in an Assembler

Assignment due Sunday, December 4 at 11:59 PM.
There is no design document.

Contents

1 Purpose and overview 2

2 Executable binaries in real life 2
2.1 Executable binaries 2
2.2 Feature creep and the proliferation of sections 3

3 A macro assembler 3

4 What we expect from you 4
4.1 First interface: Assembler sections 5
4.2 Second interface: Universal Machine macro instructions 8
4.3 Your design document 10

5 What we provide for you 10
5.1 The rest of the assembler 10
5.2 List of interfaces 10
5.3 Dummy implementations to get you started .11
5.4 Implementation plan .11

6 Avoid common mistakes 13

7 What to submit 13
7.1 Implementation .13

1

1 Purpose and overview

In this assignment you will get more practice working with machine instructions.I have written an assembler
and linker, which you will complete.

• The assignment will solidify your understanding of binary machine code.

• The assignment will reinforce your understanding of machine-level computation; you will figure out
how to use the Universal Machine to implement such computations as two’s-complement subtraction
or bitwise and.

• You will be exposed to amacro assembler, which combines short sequences of machine instructions to
create an assembly language that appears more fully functional than the underlying machine. You will
write a few macro instructions.

• You will learn how an executable binary can be compsed fromsections.

2 Executable binaries in real life

A Universal Machine binary is a sequence of words without metadata. Real executable binaries do have
metadata, and they are produced from relocatable object files (“dot-O files”) which also have metadata.
In this project, you’ll be shielded from the details of relocatable object code; you’ll focus on structuring the
binary into sections and on creating the illusion of a larger instruction set.

The topics of object code, binaries, and linking are covered at length (30 pages or so) in Chapter 7 of
your text by Bryant and O’Hallaron. What follows is a summary of what you most need to know.

2.1 Executable binaries

An executable binary is divided intosections. Each section identifies a block of memory and the intended
use of that block. At load time, sections are mapped (by the operating system)into a running process image:

• Thetext section contains machine code, and it is typically mapped into the address space read-only
andshared.1 If the memory-management unit includes an execute bit, the execute bit is set toshow
that it is OK to run machine code in the text section.

• Thedata section contains initialized data, i.e., initialized global variables in C. It is mapped read/write
and not shared, and the initial contents are as specified in the executable binary.

• Thebss section contains no data at all! Instead it specifies space that is to be reserved in the running
process image to holduninitializeddata, i.e., uninitialized global variables in C. When the operating
system creates a process image, thebss section is mapped to read/write, unshared memory and is
initialized to zeroes.

Why not just represent a program binary as a single block, as on the Universal Machine? Using three
sections saves memory and disk space, and when the three-section formatwas designed, these resources
were scarce.

1Sharedmeans that if you and I are both runningvim on the Linux server, the virtual addresses of the code in our twodifferent
processes are mapped to thesamephysical memory. Sharing is an important way to enable a lot of processes to share limited
physical RAM.

2

• The distinction betweentext anddata saves memory by allowing multiple processes to share phys-
ical memory for thetext section.

• The distinction betweendata andbss saves disk space by providing a very compact representation
of a large block of zeroes.

2.2 Feature creep and the proliferation of sections

Three sections were good enough for Ritchie and Thompson, but not for Stallman. If you aimobjdump -h

at a relocatable object file or especially at an executable binary, you may be overwhelmed by all the sections
that you find. Here’s a short guide (more on page 544 of the book):

• The rodata section contains read-only data. This addition is actually justified: being read-only,
it can be shared, but (on hardware that supports an execute bit) programs should not be permitted to
execute it. In C it is used primarily to store string literals and floating-point literals.

• Theinit andfini sections contain code intended to run beforemain and afterexit, respectively.
They play little role in C but are useful for more featureful languages like C++ and Modula-3.

• There are myriad sections containing read-only data intended for the debugger. These sections are
often not mapped into the running process image, but they are where the compiler leaves tracks
telling the debugger what the compiler did with the local variables, how machine-code locations map
to source lines, and so on.

• Sections likegot (global offset table) andplt (procedure linkage table), along with a host of others,
support dynamic linking, a horrendously complicated subject which is beyond the scope of COMP 40.

• Some sections have been created by people at the Free Software Foundation for their own purposes.
For example, in every binary they leave a footprint which marks the binary as created by their tools.

3 A macro assembler

The Universal Machine has avery limited set of instructions. For example, there is no single Universal
Machine instruction that allows you to perform an operation like

r6 := r6 * 10 // not representable directly on UM

Because you will finish the semester by writing a modest program in UM assembly language, I have created
an assembler that borrows temporary registers to make life easier for you inyour role as an assembly-
language programmer. This technique was first used to great success inthe assembler for the MIPS archi-
tecture (the CPU of the Sony Playstation).

3

A detailed description of the UM Macro Assembly Language2 is online; for here, it is enough to know
that you can write

.temp r7

r6 := r6 * 10

r2 := m[r1][1] // p = p -> next

instead of the more faithful but painful

r7 := 10

r6 := r6 * r7 // r6 := r6 * 10

r7 := 1

r2 := m[r1][r7] // p = p -> next

In order to use the macro features of the assembler, you have to tell the assembler which register contains
zero and which register(s) it may use as temporaries. Here is an example:

4 〈cat-abbrev.ums4〉≡
// copy standard input to standard output

.zero r0 // promise this register will always be zero

.temps r7 // the assembler may overwrite

// this register at will

L:

r1 := input()

// if r1 is all ones, goto exit, else goto write

r2 := r1 nand r1

r3 := exit

if (r2 != 0) r3 := write

goto r3

write: output r1

goto L

exit: halt

4 What we expect from you

Implementing an assembler and linker is a big job. It includes parsing a textual assembly language, which
you might have to design yourself; working with an on-disk representationfor relocatable object code,
part or all of which you might have to design yourself; implementing one or twodozen different kinds of
relocation, depending on the number of binary instruction formats in play; searching for undefined symbols
in libraries; and implementing the “macro instructions” that make it possible to use aliteral constant where
the machine expects only a register, for example.

In order to create a project that is interesting, teaches ideas of lasting value, and can be completed in
your lifetime, we will take several shortcuts:

• I have designed an assembly language for the Universal Machine, andI have written a parser for it.

2See URLhttp://www.cs.tufts.edu/comp/40/handouts/umasm.html.

4

• I have implemented the most delicate of the macro instructions: the ones that permityou to use a
segment reference or in some cases a constant where the hardware permits only a register.

• I’ve implemented all the relocation. Although this decision means that you won’tget to learn how
relocation works, it simplifies your task dramatically.

It remains to you to implement the following:

• Six simple macro instructions, each of which can be implemented with at most one temporary register

• Loading of general 32-bit constants despite the fact that the hardwareloads only 25-bit constants

• Management of an arbitrary sequence of named sections

• Concatenation of sections into an executable binary and emission of the executable binary to a file in
the UM format

Because of the magnitude of the project, I am giving you very little freedom of design. I have determined
an architecture and set up two interfaces for you to implement.

4.1 First interface: Assembler sections

The first interface is specified in/comp/40/include/umsections.h.
5 〈umsections.h5〉≡

#ifndef UMSECTIONS_INCLUDED

#define UMSECTIONS_INCLUDED

/* Full documentation for this interface is at http://tinyurl.com/2uwhhtu */

#include <stdint.h>

#include <stdio.h>

#define T Umsections_T

typedef struct T *T;

/* A value of type T represents a nonempty *sequence* of named sections.

Each section contains a sequence of Universal Machnine words.

In addition, each value of type T identifies one section in

the sequence as the ’current’ section, and a value of type T

encapsulates an error function.

*/

〈declarations of functions exported fromumsections.h 6a〉

#undef T

#endif

It should be a checked run-time error to pass a nullUmsections T to any of the functions exported from
umsections.h.

This interface, although long, is fairly easy to implement. My code takes about160 lines of C. Please
implement this interface, and put your implementation in fileumsections.c.

5

The assembler datatype To represent thestruct Umsections T you may include any fields you like.
Here’s some advice:

• You have to have asequenceof sections, but you also have to be able to switch to any section by
name. It might help to havebothaSeq T and aTable T. Don’t duplicate elements in the sequence.

• At any point in time, the assembler has to keep track of which section iscurrent. You have to be able
to append instructions and data to the current section.

• The assembler stores anerror stateand anerror functionwhich are passed in at assembler-creation
time. All errors should be signalled by calling that function. To create an error message, you may
want to use Hanson’sFmt String, which combinessprintf andmalloc in one convenient package.

When an assembler is created, the caller tells the assembler the name of the firstsection. This section
becomes the current section of the assembler, and it is also the first in the assembler’s sequence of sections.
The section is initially empty.

6a 〈declarations of functions exported fromumsections.h 6a〉≡ (5) 6b⊲
T Umsections_new(const char *section,

int (*error)(void *errstate, const char *message),

void *errstate);

/* Create a new assembler which emits into the given section.

The error function, which is called in case of errors,

must not return.

*/

Theerror anderrstate parameters should be stored in the assembler so they can be used to signal errors.
TheUmsections free function, like Hanson’s free functions, takes apointer to aUmsections T. It is

anuncheckedrun-time error to pass anyUmsections T to any function after it has been freed.
6b 〈declarations of functions exported fromumsections.h 6a〉+≡ (5) ⊳ 6a 6c⊲

void Umsections_free(T *asmp); // destroy an old assembler

For theUmsections error function, implement a simple function that allows you to signal an error.
6c 〈declarations of functions exported fromumsections.h 6a〉+≡ (5) ⊳ 6b 6d⊲

int Umsections_error(T asm, const char *msg);

/* call the assembler’s error function, using the error state

passed in at creation time */

Sections Like most assemblers, the UM assembler combines “create new section” and “switch to existing
section” in a single operation. If the named section is not already part of theassembler, this operation creates
a new section and appends it to the assembler’s sequence of sections. The named section is then made the
current section.

6d 〈declarations of functions exported fromumsections.h 6a〉+≡ (5) ⊳ 6c 7a⊲
void Umsections_section(T asm, const char *section);

/* start emitting to the named section */

6

Emitting words Anything that corresponds to a global variable in C will correspond to initialized data in
the assembly language. Initialized data is created by theUmsections emit word function, which appends
the word to the current section. You will also useUmsections emit word to emit instructions.

7a 〈declarations of functions exported fromumsections.h 6a〉+≡ (5) ⊳ 6d 7b⊲
typedef uint32_t Umsections_word; // Universal Machine word

void Umsections_emit_word(T asm, Umsections_word data);

/* Emit a word into the current section */

Support for linking and relocation You won’t need to implement linking and relocation. But you will
need to support my implementation of linking and relocation. I need to be able to observe sections and
mutate their contents.

7b 〈declarations of functions exported fromumsections.h 6a〉+≡ (5) ⊳ 7a 7c⊲
void Umsections_map(T asm, void apply(const char *name, void *cl), void *cl);

/* for each section name S in the sequence in ’asm’, in order,

call apply(S, cl) */

int Umsections_length(T asm, const char *name);

/* if ’name’ is a named section in asm, return the number of words

in that section; otherwise call asm’s error function */

Umsections_word Umsections_getword(T asm, const char *name, int i);

/* Return the word numbered ’i’ from the section with the given name.

The first word is numbered 0.

If there is no section with the given name, or if i is out of bounds,

call asm’s error function. */

void Umsections_putword(T asm, const char *name, int i, Umsections_word w);

/* In the section with the given name, replace word ’i’ with ’w’.

If there is no section with the given name, or if i is out of bounds,

call asm’s error function. */

Writing an executable binary Once all sections are complete, my code will backpatch instructions and
data as needed to account for relocation. At that point, my code will callUmsections write to write binary
code to disk.

7c 〈declarations of functions exported fromumsections.h 6a〉+≡ (5) ⊳ 7b
void Umsections_write(T asm, FILE *output);

/* Write the contents of each section stored in asm,

in the order in which they appear in asm’s sequence.

Write the words to file ’output’ in UM format.

*/

7

4.2 Second interface: Universal Machine macro instructions

The second interface you will implement emits macro instructions.
8a 〈ummacros.h8a〉≡

#ifndef UMMACROS_INCLUDED

#define UMMACROS_INCLUDED

/* Full documentation for this interface is at http://tinyurl.com/2uwhhtu */

#include "umsections.h"

#include "um-opcode.h"

〈definition of macro opcodes as typeUmmacros Op 8d〉

typedef enum Ummacros_Reg { r0 = 0, r1, r2, r3, r4, r5, r6, r7 } Ummacros_Reg;

/* Represents a UM register number, which several functions in this

interface expect as arguments. */

〈declarations of functions exported fromummacros.h 9a〉
#endif

It should be a checked run-time error to pass a nullUmsections T to any function exported by theummacros.h
interface.

This interface, although shorter than the first interface, is harder to implement. My code is about
110 lines of C, of which about 60 lines are devoted to the two functions that implement macro instructions.
Please implement this interface, and put your implementation in fileummacros.c. You’ll think carefully
about how to emulate the macro operations using the Universal Machine’s 14 instructions.

Opcodes The opcode interface requires no implementation; it defines an enumeration type that is shared
by the assembler, the disassembler, and the Universal Machine emulator.

8b 〈um-opcode.h8b〉≡
#ifndef UM_OPCODE_INCLUDED

#define UM_OPCODE_INCLUDED

〈definition of hardware opcodes as typeUm Opcode 8c〉

#endif

Here are the opcode definitions:
8c 〈definition of hardware opcodes as typeUm Opcode 8c〉≡ (8b)

typedef enum Um_Opcode {

CMOV = 0, SLOAD, SSTORE, ADD, MUL, DIV,

NAND, HALT, ACTIVATE, INACTIVATE, OUT, IN, LOADP, LV

} Um_Opcode;

By adding the following macro definitions, you will make it far easier to write programs in UM assembly
language:

8d 〈definition of macro opcodes as typeUmmacros Op 8d〉≡ (8a)
typedef enum Ummacros_Op { MOV = LV+1, COM, NEG, SUB, AND, OR } Ummacros_Op;

/* move, one’s complement (~), two’s-complement negation (-),

subtract, bitwise &, bitwise | */

8

The semantics are as follows:

Number Operator Action
14 Move $r[A] := $r[B]
15 Bitwise Complement $r[A] := ¬$r[B]
16 Two’s-Complement Negation$r[A] := −$r[B] mod 232

17 Subtraction $r[A] := ($r[B]− $r[C]) mod 232

18 Bitwise And $r[A] := $r[B] ∧ $r[C]
19 Bitwise Or $r[A] := $r[B] ∨ $r[C]

Implementing macro instructions TheUmmacros op function is used to emitsequencesof UM instruc-
tions which implement the six “macro instructions.” Some macro instructions, likeCOM, can be emitted
without using a temporary register. Others, like subtraction, require a temporary register. No macro instruc-
tion requires more than one temporary register. If a temporary register is available, its number is passed in
the argumenttemporary. If no temporary register is available, the argumenttemporary contains−1. If a
temporary is needed but none is available, this function should callUmsections error.

9a 〈declarations of functions exported fromummacros.h 9a〉≡ (8a) 9b⊲
void Ummacros_op(Umsections_T asm, Ummacros_Op operator, int temporary,

Ummacros_Reg A, Ummacros_Reg B, Ummacros_Reg C);

/* Emit a macro instruction into ’asm’, possibly overwriting temporary

register. Argument of -1 means no temporary is available.

Macro instructions include MOV, COM, NEG, SUB, AND, and OR.

If a temporary is needed but none is available, Umsections_error(). */

Important: Each macro instruction must be justified by one or more algebraic laws. For example, if I have
figured out a way to implement bitwise complement, I can justify an implementation of bitwise AND using
the following law, which relies on COM and on the native NAND instruction:

x ∧ y = ¬(¬(x ∧ y)).

The laws should appear in the code near the implementations that they justify.
TheUmmacros load literal function emits code to load a 32-bit literal value. If the literal valuek fits

in 25 unsigned bits,Ummacros load literal can use a single Load Value instruction. Otherwise, it will
have to use a sequence of instructions, possibly requiring a temporary register. (Hint: if thecomplementof k
fits in 25 unsigned bits, no temporary register is needed. You must handle thiscase without a temporary.)

9b 〈declarations of functions exported fromummacros.h 9a〉+≡ (8a) ⊳ 9a
void Ummacros_load_literal(Umsections_T asm, int temporary,

Ummacros_Reg A, uint32_t k);

/* Emit code to load literal k into register A.

Must work even if k and ~k do not fit in 25 bits---in which

case temporary register may be overwritten. Checked RTE if

temporary is needed and is -1 */

Your implementation ofUmmacros load literal mustalsobe justified by algebraic laws.

9

4.3 Your design document

Most of the assembler is built for you, and most of the rest is designed foryou. Moreover, I also provide the
outline of an implementation plan. I therefore see little purpose in having you submit a design document
before the assignment is due. But I recommend that before you start coding, you create anabbreviated
design documentcovering just these points:

1. How will you represent the sequence of sections of typeUmsections T?

2. How does your representation ofUmsections T relate to the world of ideas (sections and instruc-
tions)?

3. What are the invariants of your representation ofUmsections T?

4. For each function that you have to implement, what part(s) of which representation(s) do you expect
it to depend on?

Except for item 4, these questions should be answered in the documentationof the code you eventually
submit.

5 What we provide for you

5.1 The rest of the assembler

We provide a program that runs the assembler and calls your routines.
10 〈umasm.h10〉≡

#ifndef UMASM_INCLUDED

#define UMASM_INCLUDED

extern int Umasm_run(int argc, char *argv[]);

/* run the Universal Machine macro assembler as the main program */

#endif

Your main function can simply callUmasm run, passingargc andargv unchanged.

5.2 List of interfaces

We provide these interfaces:
um-opcode.h An enumeration type for opcodes
umasm.h Declaration ofUmasm run, to be called frommain
umsections.h One interface you are to implement
ummacros.h The other interface you are to implement

You can compile against these interfaces using-I/comp/40/include. To link against them, you will need

gcc ... -L/comp/40/lib64 -lumasm -llua5.1-lpeg -llua ‘pkg-config --libs cii40‘ ...

You will probably also need to link against the math library (-lm).

10

5.3 Dummy implementations to get you started

I provide “dummy” implementations of the two interfaces; these implementations write tostandard er-
ror. The purpose of these implementations is to enable you to learn, by experiment, how an assembly-
language program affects what functions are called. You can use the dummy implementations by linking
with -lumasm-dummy immediatelyafter -lumasm. Code usingonly the dummy implementations will halt
at link time with an assertion failure.

5.4 Implementation plan

I recommend this implementation plan:

1. Link with the dummy implementations, and experiment until you get an idea what isgoing on.

2. Build the first version of your own code so that it implements sections correctly, uses the dummy
version ofUmmacros op, and uses a version ofUmmacros load literal that handles only 25-bit
unsigned literals. If I am right, you should be able to test your code on the〈cat-abbrev.ums4〉 pre-
sented in class and in this handout on page 4, which you should be able to run.

3. To unit test your code, create an assembly-language program in filetest.ums. The program should
contains one each of the UM machine instructions, but the program need not do anything when run.
Do not use any macro instructions!You can test your assembler as follows:

use comp40

./umasm test.ums | umdump -bare | diff test.ums -

If everything is implemented correctly, the “bare dump” of your executable binary should be identical
to the input filetest.ums, and you should see no output.

4. System test your code by disassembling, reassembling, and then re-disassembling the a binary such
asmidmark.um:

use comp40

umdump -bare midmark.um | ./umasm | umdump -bare > /tmp/midmark.ums

umdump -bare midmark.um | diff - /tmp/midmark.ums

You should see no differences. Note well thatumasm andumdump are not half-inverses.3 But umasm
andumdump are half-inverseson the output ofumdump -bare. That’s why a three-stage test is re-
quired.

5. Submit.

3Since this point is frequently overlooked, I put it another way: runningumdump -bare | umasm is not the identity function
on UM files. In particular, if you runumdump -bare midmark.um | ./umasm, you will not recreate themidmark.um binary.
In fact, you will not create any runnable binary at all. Trying to run a binary created from the output ofumdump may result in
frustration, lost sleep, and other bad outcomes.

11

6. ImplementUmmacros load literal so that it handles fully general 32-bit literals. Unit test it using
both positive and negative literals in the assembly source.

7. Submit.

8. Implement the macro operations inUmmacros op. Write a test file that tests all six macro operations
for correctness. Assemble, link, and run the file.

9. Submit. You are finished.

12

6 Avoid common mistakes

Avoid these common mistakes:

• Don’t forget to document every field of every data type and to state all invariants.

• If you use Hanson’s polymorphic data structures, don’t forget to sayhoweachvoid * is instantiated.

• Don’t forget that the default key in a HansonTable T has to be anatom, not just any string.

• Don’t forget that the implementation of each macro instruction must be justified by one or more
algebraic laws. Your implementation of loading general 32-bit literals must be similarly justified.

• Don’t assume that source and destination registers are distinct. In practice the destination register is
often identicalto one or more source registers.

• Don’t forget that testing withumdump -bare is aminimum sanity check only. It’s a common mistake
to believe that if your assembler passes this test, it works.Nothing could be less likely.Usingumdump

– Doesn’t test any macro features (yours or mine)

– Doesn’t test if you use temporary registers properly

– Doesn’t expose common mistakes in implementing the six macro instructions

• Don’t make the rare mistake of usingumdump -bare to disassemble a binary, usingumasm to assem-
ble the results, and then to trying torun the resulting binary.It will not work. Although this mistake
is rare, it is worth mentioning because the consequences can be devastating: hours spent “debugging”
a program that is actually working.

7 What to submit

7.1 Implementation

By Sunday, December 4 at 11:59 PM, use the scriptsubmit40-asm to submit

• All .c and.h files you have written, which must includeumsections.c andummacros.c.

The fileummacros.c must contain a justification, in the form of algebraic laws, for the implementa-
tion of each macro instruction, and also for the general case of loading 32-bit values.

• A script calledcompile that compiles all your.c files into .o files and then links the executable
binaryumasm.

• A README file which

– Identifies you and your programming partner by name

– Acknowledges help you may have received from or collaborative workyou may have undertaken
with others

– Identifies what has been correctly implemented and what has not

– Says approximately how many hours you have spentanalyzing the assignment

– Says approximately how many hours you have spentbuilding your assembler and linker

– Says approximately how many hours you have spentdebugging your assembler and linker

13

