
COMP40 Assignment: Assembly-Language Programming

Assignment due Sunday, December 11 at 11:59 PM.
Design (in limited form; see below) due Tuesday December 6 at 11:59 PM.

Contents

1 Purpose and overview 2

2 An RPN calculator 2

3 Technical information 4
3.1 Useful macro instructions 4
3.2 Recommended calling convention 4

4 Design and implementation plan 5
4.1 Sections .. . 5
4.2 Modules .. . 6
4.3 Data structures 6
4.4 Implementation of the print module .. 6
4.5 Implementation of the calculator module .. . 7

5 Debugging techniques 9

6 What we provide for you 10

7 What we expect from you 11
7.1 Documentation .. 11
7.2 “Design” .. . 11
7.3 Final submission .. . 11

1

1 Purpose and overview

The purpose of this assignment is to deliver on the second half of the course title: you get to do some
assembly-language programming. You will consolidate and solidify your knowledge of machine-level pro-
gramming by implementing a calculator that uses Reverse Polish Notation1, like the immortal HP 15C2.

2 An RPN calculator

The COMP 40 RPN calculator reads commands from standard input and prints results to standard output.
Like all RPN calculators, it works with avalue stack. In this case, a value on the stack is one Universal
Machine word. The command set is shown in Figure 1; Figure 2 shows an example interaction. You will
find a complete reference implementation in file/comp/40/www/homework/calc.c3, and you can run a
binary in/comp/40/bin/calc40.

Your assignment is to implement this calculator in Universal Machine Assembly language.Your calcu-
lator must duplicate the output of the reference implementation exactly.

The implementation of the calculator is mostly straightforward: the only persistentstate is the value
stack, and this value stack is manipulated by each command independently of theothers, using purely local
reasoning. There is one dirty trick, however: in order to make it possible toread the digits of a numeral
one character at a time, the calculator uses a finite-state machine with two states:waitingandentering. The
normal state, which is also the initial state, iswaiting. Theenteringstate is used only when the entry of a
numeral is in progress.

• If the machine iswaiting and it sees a digit, it treats that digit as the start of a numeral, pushes the
valueof that digit, then transitions to theenteringstate.

• If the machine isenteringand it sees a digit, that digitcontinuesa numeral that was already pushed.
The machine therefore takes the number on the top of the stack, multiplies it by 10, and adds the value
of the next digit.

• In either state, if the machine sees a nondigit, it performs the command associated with that nondigit
(if any), then transitions to thewaitingstate.

Here are two examples:

• If the machine sees the string “42”, it first pushes the number4 (value of the digit’4’), then transitions
into theenteringstate. It then sees the digit’2’ while still in theenteringstate, so it pops4 and pushes
10× 4 + 2, that is,42. The result is the single number42 on the stack.

• If the machine sees the string “4 2”, with a space between the digits, it first pushes the number4 (value
of the digit’4’), then transitions into theenteringstate. It then sees the space character while still
in theenteringstate. Because the space character is not a digit, the machine performs the associated
command (doing nothing) and transitions back to thewaitingstate. Finally, while in thewaiting state,
it sees the digit’2’, so it pushes the number2. The result istwo numbers on the stack:2 on top and
4 on the bottom.

1See URLhttp://www8.hp.com/us/en/pdf/Why_RPN_1_tcm_245_1078603.pdf.
2See URLhttp://hp15c.org/hp15c.php.
3See URLcalc.c.txt.

2

Command Function

n Pushn onto the value stack, wheren is a numeral (sequence of digits).

space Does nothing, but may be used to separate numerals, as in the command sequence “6 7*.”

newline Print the contents of the value stack

+ Popy from the value stack, then popx from the value stack, then pushx+ y.

- Popy from the value stack, then popx from the value stack, then pushx− y.

* Popy from the value stack, then popx from the value stack, then pushx× y.

/ Popy from the value stack, then popx from the value stack, then pushx÷ y. If y is zero,
print an error message and leave the stack unchanged.

| Popy from the value stack, then popx from the value stack, then pushx ∨ y, where∨
stands for bitwise or.

& Popy from the value stack, then popx from the value stack, then pushx ∧ y, where∧
stands for bitwise and.

c (Change sign.) Popx from the value stack, then push−x.

~ Popx from the value stack, then push¬x, where¬ stands for bitwise complement.

s Swap the two values on top of the value stack (exchangex andy).

d Duplicate the value on the top of the stack. (The HP 15C uses the ENTER key.)

p Pop a value off the value stack and discard it.

z Remove all values from the value stack (zero stack).

Figure 1: Calculator commands

sunfire31{nr}403: calc40

6 7 *

>>> 42

2 +

>>> 44

11 /

>>> 4

c

>>> -4

p

466 319sd+240c807c sd-

>>> 0

>>> -807

>>> 932

>>> 319

Figure 2: Interacting with the RPN calculator

3

You can see for yourself the difference between42 with no space and4 2 with a space:

42

>>> 42

p

4 2

>>> 2

>>> 4

The C code keeps track of the state through the position of the program counter, using the two labels
entering andwaiting. To avoid duplicating the implementations of any commands, if the code for the
enteringstate does not see a digit, it uses agoto to reuse the same code used in thewaiting state.

3 Technical information

3.1 Useful macro instructions

Some critically important macro instructions are not explained in your handout:

push r3 on stack r2 Registerr2 points to a stack, and this instruction subtracts1 from r2,
then storesr3 at offsetr2 in segment 0.

pop r5 off stack r2 Registerr2 points to a stack, and this instruction loads registerr5

from offsetr2 in segment 0, then adds1 to r2.

pop stack r2 Adds 1 to registerr2.

goto p linking r1 Sets registerr1 to the offset of the instruction immediately following
thecall macro, then transfers control to the instruction labelledp in
segment 0. Used to implement procedure calls.

3.2 Recommended calling convention

You may choose any calling convention you like, but for general purposes I recommend the following
convention:

1. Arguments are passed on the call stack, which is pointed to by registerr2. The callee sees the
first argmument is at the lowest address (m[0][r2]), with subsequent arguments at higher addresses.
In this convention, if you examine a sequence ofpush instructions in the caller, you’ll see that the
caller pushes the first argument last.

2. Registerr0 is always zero.

3. On entry to a procedure, registerr1 holds the return address. If you write a procedure that itself makes
a call, you will have to save and restore the procedure’s return address.

If a procedure returns a result, the result should be returned in register r1.

4. Registerr2 is the stack pointer.

5. Registersr3 andr4 are nonvolatile general-purpose registers. If you use either of these registers in a
procedure, you must save and restore them.

4

.zero r0

.temps r6, r7

.section text

// return address in r1, which gets result

// stack pointer in r2

// nonvolatiles r0, r3, r4

// r0 is zero

double:

push r1 on stack r2 // save return address

push r3 on stack r2 // save nonvolatile registers

push r4 on stack r2

r3 := m[r0][r2+3] // load argument into r3

r1 := r3 + r3 // result goes into register

pop r4 off stack r2 // restore nonvolatile registers

pop r3 off stack r2

pop r5 off stack r2 // put return address in r5

goto r5 // return

Figure 3: An assembly procedure that returns double its argument

6. Registersr5, r6, andr7 are volatile registers and are not saved and restored by procedure calles.

I also recommend that you dedicate registersr6 andr7 for use as temporaries.
Using this convention, Figure 3 shows a slightly paranoid procedure that doubles its argument. In Fig-

ure 3, it is not really necessary to saver3 andr4, since everything could have been done usingr5, but the
model works in the general case.

4 Design and implementation plan

4.1 Sections

In my assembly code, I use these sections

text Contains procedure definitions, including the definition ofmain.

data Contains a preallocated call stack and other data structures.

rodata Contains jump tables.

init Contains setup code, including code to set up the stack, code to initialize jump tables,
and code to callmain when setup is complete.

5

4.2 Modules

My calculator is split into four assembly-language source files:

1. Filestack.ums allocates space for the call stack (in the data section) and initializes the stack pointer
(with code in theinit section). Not counting blank lines or comments, my implementation of this
module is only 6 lines of assembly code.

2. Fileprintd.ums contains a function for printing Universal Machine words in decimal.

3. Filecalc40.ums contains my calculator-related functions.

4. File callmain.ums puts code in theinit section which makes the initial call tomain, then halts.
Not counting blank lines or comments, my implementation of this module is only 5 lines of assembly
code.

It is important thatstack.ums come first andcallmain.ums come last, so that the stack pointer is initialized
before any other code runs, and so thatmain is not called until all the other code in theinit section runs.
For example,

umasm stack.ums calc40.ums printd.ums callmain.ums > calc40.um

4.3 Data structures

There is really only one data structure in the program, which is the value stack. I recommend that you
reserve space in segment 0 so that you can take advantage of thepush andpop instructions. (We will be
testing your calculator on random inputs, sobe sure that your value stack is capable of holding at least ten
thousand values.) Another alternative is to use segments to make a linked list.

4.4 Implementation of the print module

The print module is the most challenging module in the calculator. Printing Universal Machine words as
numbers requires three or four cases:

• Zero is the only number that is printed with a leading zero, so I recommend you handle it as a separate
case.

• Positive and negative numbers are separate cases; only negative numbers are printed with leading
minus signs.

• The most negative number,0x80000000, causes all sorts of pain. The Universal Machine lacks a
fully functional comparator, and the best I’ve been able to simulate allows thisnumber to compare as
bothgreater thanand less than zero. You can either treat it as a special case or take extraordinary care
with your comparisons.

The reason the print module is difficult is that the only way to get the digits of a number is to get the least-
significant digit first—but numbers are conventionally printed with the most-significant digit first. I’m aware
of two kinds of solutions:

• Accumulate digits into some kind of data structure, then print them. I used a linkedlist made up of
two-word Universal Machine segments, but you may use any data structure you like. My implemen-
tation of this solution is about 40 lines of assembly code.

6

• Write a recursive print function:

– To print a 1-digit number, print the digit

– To print ann-digit number, print the most significantn− 1 digits, then print the least significant
digit

My recursive print function takes about 35 lines of assembly code.

4.5 Implementation of the calculator module

My implementation of the calculator module is about 250 lines of assembly code, but most of these lines are
very repetitive—there are fifteen commands, and each one has to check for operands on the stack, do some
manipulation, and some control flow. The codes are all quite similar. I recommend you take advantage of
these tricks:

• There aren’t very many registers, but you can afford to reserve a couple for key variables and data
structures. I reserved one register to hold the value stack and another tohold the character read in
(only for as long as I needed it).

Two temporaries will be enough for most purposes, but you will occasionally need more. Unless the
character read in is a digit, once you have dispatched through the jump table,you can reuse your
input-character register as a temporary.

• I recommend that you implement theswitch statement for thewaiting state using a jump table with
256 entries. I use the jump table like this:

waiting:

r1 := input()

waiting_with_character:

... test to see if r1 signals end of file,

and if so, go to end of procedure ...

// branch indirect through jump table

r5 := jumptable + r1

r5 := m[r0][r5]

goto r5

I make sure that every possible entry in the jump table is meaningful—all 255 values.

To initialize the jump table, I use theinit section aggressively:

– My module begins withinit-section code that sets every entry in the jump table to the label
input_error. The code associated with this label prints the “unknown character” error mes-
sage, then goes back to thewaitingstate.

– After initializing every entry in the table toinput_error, I overwrite the ten entries associated
with the digits0 through9. Since each of these works the same way, I point each one to the
digit label.

– Since the space character does nothing but force the machine to transition tothewaiting state,
I put thewaiting label directly into the jump table:

7

m[r0][jumptable + ’ ’] := waiting

– I implemented operators one at a time. For each operator, I use the same pattern. Here’s an
example for multiply:

///////////// multiply

.section init

m[r0][jumptable + ’*’] := mul

.section text

mul:

... check to make sure there are two operands on the value stack ...

... pop the two operands and push the product ...

goto waiting

By switching back and forth between theinit andtext sections, I make the implementation
of each operator self-contained.

• Almost every operator has to make sure there are enough operands on the stack. In my C code, I used
a general-purpose procedure called “has.” But in my assembly code, I use a really dirty trick: I define
labelscheck1 andcheck2, and I transfer control using thegoto... linking... construct. If a
check succeeds, I transfer control back to the point of origin, using the link register. If a check fails,
I print an error message andgoto waiting.

• Most operators are very easy to implement, but the newline operator (printstack) requires a loop, and
the signed-division operator requires a lot of case analysis (just as in the C code).

• I recommend that you implement the parts of your calculator module in this order:

1. The code to initialize the jump table, plus the main loop of the calculator function, which reads
a character, checks for EOF, and transfers control via the jump table

2. Entry of single digits only

3. The space command

4. The newline command, which prints the stack—and which will enable you to see your first
useful output, provided you avoid multi-digit numerals

5. Digits for theenteringstate, so that you can read multi-digit numerals4

6. A couple of binary operators like+ and*, including operand checking

7. A couple of unary operators likec and~.

8. The rest of the operators, doing signed division last

4I didn’t bother with a jump table here; I just checked to see if the input characterc was in the range’0’ ≤ c ≤ ’9’. For the
comparisons, I needed an extra temporary register, which I identified with using.

8

5 Debugging techniques

Assembly code is hard to debug. You will need to add some debugging code toyour Universal Machine.
I made my debugging code conditional on an environment variable calledUMTRACE. When I start my Uni-
veral Machine, I makeonecheck in the environment to see if I should be tracing:

bool trace = getenv("UMTRACE") != NULL;

Then, in my execution loop, I print information conditioned on the trace:

if (trace) {

Um_instruction instruction = *pc;

char *asm = (char *)Um_disassemble(instruction);

if (OP(instruction) == LV)

fprintf(stderr, "%7" PRIdPTR ": %s\n", pc - prog, asm);

else

fprintf(stderr, "%7" PRIdPTR ": %s (r%d = %d, r%d = %d, r%d = %d)\n",

pc - prog, asm,

A(instruction), RA, B(instruction), RB, C(instruction), RC);

FREE(asm);

}

This code prints each PC and instruction before it is executed, along with thevalues of the registers men-
tioned in the instruction.

Here’s some advice:

• Run

umdump calc40.um | less

in one terminal window and

UMTRACE=1 valgrind ./um calc40.um 2>&1 | less

in another window.

(If you’re stuck using a stupid “C shell,” you’ll have to usesetenv andunsetenv to control the value
of theUMTRACE environment variable.)

• Many, many bugs occur when the call stack is not properly adjusted—forexample, you push an
argument onto the call stack, then after the call returns, you forget to take the argument off the call
stack. Keep an eye on the stack pointer to make sure it has the proper values as you call and return.

• In the heat of coding it’s easy to forget about proper control flow. Consider organizing your assembly
code into short blocks such that each block ends with agoto. That way you will never “fall through”
and execute code (or data) unintentionally.

• When in doubt, blastoutput macros into your code. Thehalt instruction is also your friend.

• If you fall into a hole,stop digging. Get help.

9

6 What we provide for you

Your mission is to implement the RPN calculator in Universal Machine assembly language. Here’s the
support you get from us:

• We provide a reference implementation in C whose functionality you must duplicate exactly. Source
code is in/comp/40/www/homework/calc.c, and you can run the binary as/comp/40/bin/calc40.

• We provide a random-input generator; the command israndom-calc40. With no argument, it emits
100 random operators. With an argument, it emits a given number of operators. Here are a couple of
examples (newlines have been added for clarity):

$ random-calc40

812 106cd~d690c943d+ dp253c980c879 &957c&d / 142c/ &c- 757

49c+| ~~835 846c 225c |d |c&d/ dd& 655* 434c914 +d *& d 361

486/d&|*-* s c509~| s s ~ d191ds ~ d|dcd-d d* pd+391|pd-

~ 868cs dp&c c+

$ random-calc40 5

d340c5ds

A couple of notes:

– The random-input generatorwill emit operations that fail, but it’s not very likely.

– The probability distributions are skewed so that if there are no errors, thevalue stack tends to stay
close to 10 values. But when there are errors, the value stack grows proportional to the number
of tests. This is whyyou need a value stack that can handle at least ten thousand elements.

– The generator counts only “interesting” operators, so your hand count may not be identical to
the argument. You can see what’s interesting by examining the source code at /comp/40/bin/
random-calc40.

• We provide you with a test script that will compare the results of your UM binary with the refer-
ence implementation. It takes two arguments: the name of your.um file and the number of random
operators to test. Here’s an example:

$ time calc40-test calc40.um 1000

Results identical -- test passed

$ time calc40-test calc40.um 1000000

Results identical -- test passed

With my Universal Machine, I can test a million-operator input in a few seconds.

Be aware thatthe random-test generator does not find many error cases.

• As soon as the last Macro Assembler is turned in, we will provide a working Macro Assembler.

10

7 What we expect from you

7.1 Documentation

Assembly code requires the same kinds of documentation as C code, but in more places.

• Representation is still the essence of programming, so we expect you to document your data structures.
This means explaining the representations at the machine level.

• In assembly code, registers play key roles;we expect you to document the use of each register. Register
documentation may be global (e.g., registerr0 always holds zero), may be specific to one procedure
(e.g., in this procedure, registerr5 holds the number to be printed), or may be specific just to a few
parts of one procedure (e.g., in this region, registerr1 holds the input character).We expect you to
document your use of machine registers.

• We expect thatan assembly-language procedure will be documented in the same way asa C proce-
dure, that is:

– You will document the type and meaning of each argument.

– You will document the type of the result, if any.

– You will document the function’scontract.

– You will not narrate a sequence of events performed by the function.

• Not all source files will define or contain procedures, but if a source file doescontain one or more
procedures, that source filemustinclude brief documentation of the calling convention.Even if you
are using the standard calling convention everywhere, we expect you toplace a brief summary in each
relevant source file.For an example, see Figure 3.

• We expect you to document important internal labels. (Labels used to implement purely localif
statements orloops need little if any documentation, but a label that is used far away must be docu-
mented.)

The documentation of labels should be connected to the organization of yourassembly code into
blocks, as discussed in class. (A block begins with a label and ends with an unconditional goto.)5

We expect you to document the label of each block with itscontract. Again, a contract isnot a
narration of the events performed within a block. Here are some examples:

– Poor contract:“print a minus sign and gotoL7.” (We could see this from the code.)

– Fair contract: “print a negative number”

– Good contract:“print a negative number and return”

– Very Good contract:“print the value of registerr5 in decimal, then return, wherer5 must be
negative”

5N.B. Code in aninit section may have internal labels and gotos, but it should notend in a goto. Everyinit section except
the last should end simply by continuing (“falling through”) to the nextinit section. The lastinit section should callmain and
thenhalt.

11

I hope it will help you to remember thatthe purpose of the contracts is to enable modular reasoning.
In particular, you should be able to debug each individual block by knowing only the contract of that
block and the contracts of any labels it may branch to. If, for example, there is a labelprint_pos:
with the contract “print the decimal representation ofr5, wherer5 must be positive, then return”,
then we know that the following block is correct:

print_neg: // print r5 in decimal, then return (r5 must be negative)

output ’-’

r5 := -r5

goto print_pos

7.2 “Design”

On this project, I’m afraid you don’t get to do much design. But to give you help getting started, and to give
you feedback on your documentation, we’re asking you to submit two thingsearly:

• In file DESIGN, please submit a short sketch of what data structures you will need and how they will
be represented on the Universal Machine.

If you wish to change the calling convention or to design your own calling convention, please use the
DESIGN file to tell us about your plans.

• In file printd.ums, which stands for “print decimal,” please submit adocumentedprocedure that
prints a positive number.The procedure has to assemble, but it doesn’t have to work,and it doesn’t
have to handle a number that is zero or negative.

Using the scriptsubmit40-asmcoding-design, please submit these two files byTuesday, December 6 at
11:59 PM.

7.3 Final submission

By Sunday, December 11 at 11:59 PM, use the scriptsubmit40-asmcoding to submit

• All the assembly code you have written.Each assembly file must have a name that ends in.ums.

• A script calledcompile that assembles all your source files and creates a Universal Machine binary
calledcalc40.um. This script should callumasm withouta dot. The script should not be more than
one or two lines long.

If you want to use your own assembler, begin your script with the additional lines

PATH=".:$PATH"

export PATH

which will cause the script to look forumasm in the current directory first.

• A README file which

– Identifies you and your programming partner by name

12

– Acknowledges help you may have received from or collaborative workyou may have undertaken
with others

– Identifies what has been correctly implemented and what has not

– Explains any departures from the recommended calling convention

– Explains in one sentence how you chose to implement the print module

– Says approximately how many hours you have spentanalyzing the assignment

– Says approximately how many hours you have spentwriting assembly code

– Says approximately how many hours you have spentdebugging your calculator

13

