COMP40 Assignment: Assembly-Language Programming

Assignment due Sunday, December 11 at 11:59 PM.
Design (in limited form; see below) due Tuesday December 6 at 11:59 PM.

Contents
1 Purpose and overview
2 An RPN calculator

3 Technical information
3.1 Usefulmacroinstructions o 0 0 0 e e e e e
3.2 Recommended calling convention

4 Design and implementation plan
4.1 SecClionS e e e
4.2 Modules e
4.3 Datastructures e e e e e
4.4 Implementation of the printmodule
4.5 Implementation of the calculatormodule

5 Debugging techniques

6 What we provide for you 10
7 What we expect from you 11
7.1 Documentation e 11
7.2 "Design” ... 11
7.3 Finalsubmission e 11

1 Purpose and overview

The purpose of this assignment is to deliver on the second half of theeditie: you get to do some
assembly-language programming. You will consolidate and solidify youwledge of machine-level pro-
gramming by implementing a calculator that uses Reverse Polish Ndigilanthe immortal HP 15&

2 An RPN calculator

The COMP 40 RPN calculator reads commands from standard input and gsults to standard output.
Like all RPN calculators, it works with galue stack In this case, a value on the stack is one Universal
Machine word. The command set is shown in Figure 1; Figure 2 showsanp interaction. You will
find a complete reference implementation in flkeomp/40/www/homework/calc.c3, and you can run a
binary in/comp/40/bin/calc40.

Your assignment is to implement this calculator in Universal Machine Assemiuyiége.Your calcu-
lator must duplicate the output of the reference implementation exactly.

The implementation of the calculator is mostly straightforward: the only persistatd is the value
stack, and this value stack is manipulated by each command independentlytfdle using purely local
reasoning. There is one dirty trick, however: in order to make it possibiead the digits of a numeral
one character at a time, the calculator uses a finite-state machine with two wsi@itésy andentering The
normal state, which is also the initial statewaiting. The enteringstate is used only when the entry of a
numeral is in progress.

¢ If the machine iswaiting and it sees a digit, it treats that digit as the start of a numeral, pushes the
valueof that digit, then transitions to thenteringstate.

¢ If the machine interingand it sees a digit, that digitontinuesa numeral that was already pushed.
The machine therefore takes the number on the top of the stack, multiplies it Bpd@dds the value
of the next digit.

¢ In either state, if the machine sees a nondigit, it performs the command asdavidi¢hat nondigit
(if any), then transitions to theaiting state.

Here are two examples:

¢ If the machine sees the string2”, it first pushes the numbér(value of the digit’4), then transitions
into theenteringstate. It then sees the digiz’ while still in theenteringstate, so it pop$ and pushes
10 x 4 + 2, that is,42. The result is the single numbé&2 on the stack.

e Ifthe machine sees the string “2”, with a space between the digits, it first pushes the nuntipeslue
of the digit’>4), then transitions into thenteringstate. It then sees the space character while still
in the enteringstate. Because the space character is not a digit, the machine perforrssabiated
command (doing nothing) and transitions back towladting state. Finally, while in thevaiting state
it sees the digit2’, so it pushes the number The result iswo numbers on the stack: on top and
4 on the bottom.

lSee URLhttp://www8.hp.com/us/en/pdf/Why_RPN_1_tcm_245_1078603.pdf.
2See URLhttp: //hp1bc.org/hpibc. php.
3See URLcalc.c.txt.

Command Function

n

space

Pushn onto the value stack, whereis a numeral (sequence of digits).

newline Print the contents of the value stack

+

R

N T Q ®n

Popy from the value stack, then papfrom the value stack, then pusty- y.
Popy from the value stack, then papfrom the value stack, then push- y.
Popy from the value stack, then papfrom the value stack, then pushx y.

Popy from the value stack, then papfrom the value stack, then push= y. If y is zero,

print an error message and leave the stack unchanged.

Popy from the value stack, then papfrom the value stack, then pushv y, wherev
stands for bitwise or.

Popy from the value stack, then papfrom the value stack, then pushn y, whereA
stands for bitwise and.

(Change sign.) Pop from the value stack, then pushe.

Popzx from the value stack, then pustx, where— stands for bitwise complement.
Swap the two values on top of the value stack (exchanaedy).

Duplicate the value on the top of the stack. (The HP 15C usesnhiekkey.)

Pop a value off the value stack and discard it.

Remove all values from the value stack (zero stack).

Figure 1: Calculator commands

sunfire31{nr}403: calc40

6 7
>>>

2 +
>>>

11 /

>>>
c

>>>
p

466
>>>
>>>
>>>
>>>

*
42

44

4

-4

319sd+240c807c sd-
0

-807

932
319

Figure 2: Interacting with the RPN calculator

Does nothing, but may be used to separate numerals, as in the commanaceequex.”

You can see for yourself the difference betwdenwith no space and 2 with a space:

42

>>> 42

p

4 2
>>> 2
>>> 4

The

C code keeps track of the state through the position of the progranmtecousing the two labels

entering andwaiting. To avoid duplicating the implementations of any commands, if the code for the
enteringstate does not see a digit, it usegoao to reuse the same code used inwaating state.

3 Technical information

3.1

Useful macro instructions

Some critically important macro instructions are not explained in your handout:

push r3 on stack r2 Register2 points to a stack, and this instruction subtractom r2,
then stores 3 at offsetr2 in segment 0.

pop r5 off stack r2 Registerr2 points to a stack, and this instruction loads register
from offsetr2 in segment 0, then addsto r2.
pop stack r2 Adds 1 to registetr2.

goto p linking ri Sets register1 to the offset of the instruction immediately following
thecall macro, then transfers control to the instruction labefed
segment 0. Used to implement procedure calls.

3.2 Recommended calling convention
You may choose any calling convention you like, but for general pwpdsecommend the following
convention:

1. Arguments are passed on the call stack, which is pointed to by registeThe callee sees the

first argmument is at the lowest addres$§q] [r2]), with subsequent arguments at higher addresses.
In this convention, if you examine a sequencepaéh instructions in the caller, you'll see that the
caller pushes the first argument last.

. Register-0 is always zero.

. On entry to a procedure, register holds the return address. If you write a procedure that itself makes

a call, you will have to save and restore the procedure’s return agldres
If a procedure returns a result, the result should be returned in registe

. Register-2 is the stack pointer.

. Registers3 andr4 are nonvolatile general-purpose registers. If you use either of tlegsgters in a

procedure, you must save and restore them.

4

.zero r0
.temps r6, r7
.section text

// return address in rl, which gets result

// stack pointer in r2

// nonvolatiles r0, r3, r4

// r0 is zero

double:
push rl on stack r2 // save return address
push r3 on stack r2 // save nonvolatile registers
push r4 on stack r2

r3 :
rl :

m[r0] [r2+3] // load argument into r3
r3 + r3 // result goes into register

pop r4d off stack r2 // restore nonvolatile registers
pop r3 off stack r2

pop r5 off stack r2 // put return address in rb

goto r5 // return

Figure 3: An assembly procedure that returns double its argument

6. Registers5, r6, andr7 are volatile registers and are not saved and restored by procedia® ca

| also recommend that you dedicate registgd®ndr7 for use as temporaries.

Using this convention, Figure 3 shows a slightly paranoid procedure thdtlels its argument. In Fig-
ure 3, it is not really necessary to sas@andr4, since everything could have been done usiagbut the
model works in the general case.

4 Design and implementation plan

4.1 Sections

In my assembly code, | use these sections

text Contains procedure definitions, including the definitiomafn.
data Contains a preallocated call stack and other data structures.
rodata Contains jump tables.

init Contains setup code, including code to set up the stack, code to initialize julag,tab
and code to cathain when setup is complete.

4.2 Modules
My calculator is split into four assembly-language source files:

1. Filestack.ums allocates space for the call stack (in the data section) and initializes the stiatérp
(with code in theinit section). Not counting blank lines or comments, my implementation of this
module is only 6 lines of assembly code.

2. Fileprintd.ums contains a function for printing Universal Machine words in decimal.
3. Filecalc40.ums contains my calculator-related functions.

4. File callmain.ums puts code in theinit section which makes the initial call #ain, then halts.
Not counting blank lines or comments, my implementation of this module is only 5 linessefrebly
code.

Itis important thastack.ums come firstandallmain.ums come last, so that the stack pointer is initialized
before any other code runs, and so thatn is not called until all the other code in thait section runs.
For example,

umasm stack.ums calc40.ums printd.ums callmain.ums > calc40.um

4.3 Data structures

There is really only one data structure in the program, which is the value.stadcommend that you
reserve space in segment 0 so that you can take advantagepfsh@ndpop instructions. (We will be
testing your calculator on random inputs, @ sure that your value stack is capable of holding at least ten
thousand value¥ Another alternative is to use segments to make a linked list.

4.4 Implementation of the print module

The print module is the most challenging module in the calculator. Printing Wsal/étachine words as
numbers requires three or four cases:

e Zero is the only number that is printed with a leading zero, so | recommendamlénit as a separate
case.

e Positive and negative numbers are separate cases; only negativersusnd printed with leading
minus signs.

e The most negative numberx80000000, causes all sorts of pain. The Universal Machine lacks a
fully functional comparator, and the best I've been able to simulate allowstimger to compare as
bothgreater tharmndless than zero. You can either treat it as a special case or take ekteagrcare
with your comparisons.

The reason the print module is difficult is that the only way to get the digits afmabr is to get the least-
significant digit first—but numbers are conventionally printed with the mostifstgint digit first. I'm aware
of two kinds of solutions:

e Accumulate digits into some kind of data structure, then print them. | used a lligtedade up of
two-word Universal Machine segments, but you may use any data steuaiu like. My implemen-
tation of this solution is about 40 lines of assembly code.

6

e Write a recursive print function:

— To print a 1-digit number, print the digit
— To print ann-digit number, print the most significant— 1 digits, then print the least significant
digit
My recursive print function takes about 35 lines of assembly code.

4.5 Implementation of the calculator module

My implementation of the calculator module is about 250 lines of assembly codmgdsti of these lines are
very repetitive—there are fifteen commands, and each one has to dramgbeirands on the stack, do some
manipulation, and some control flow. The codes are all quite similar. | recochymntake advantage of
these tricks:

e There aren’t very many registers, but you can afford to reserveugle for key variables and data
structures. | reserved one register to hold the value stack and anotheldtthe character read in
(only for as long as | needed it).

Two temporaries will be enough for most purposes, but you will occaflipneed more. Unless the
character read in is a digit, once you have dispatched through the jump yablesan reuse your
input-character register as a temporary.

¢ | recommend that you implement tBeitch statement for thevaiting state using a jump table with
256 entries. | use the jump table like this:

waiting:
rl := input()
waiting_with_character:
. test to see if rl signals end of file,
and if so, go to end of procedure ...

// branch indirect through jump table

r5 := jumptable + ril
r5 := m[r0] [r5]
goto rb

| make sure that every possible entry in the jump table is meaningful—all 256szalu
To initialize the jump table, | use thimit section aggressively:

— My module begins withinit-section code that sets every entry in the jump table to the label
input_error. The code associated with this label prints the “unknown characteri’ Bres-
sage, then goes back to thaiting state.

— After initializing every entry in the table tonput_error, | overwrite the ten entries associated
with the digitso through9. Since each of these works the same way, | point each one to the
digit label.

— Since the space character does nothing but force the machine to transiti@taiting state,
| put thewaiting label directly into the jump table:

7

m[r0] [jumptable + ’ ’] := waiting

— | implemented operators one at a time. For each operator, | use the sama.pbiége’s an
example for multiply:

/1111111111// multiply

.section init
m[r0] [jumptable + ’*’] := mul
.section text

mul:
. check to make sure there are two operands on the value stack ...
. pop the two operands and push the product ...
goto waiting

By switching back and forth between theit andtext sections, | make the implementation
of each operator self-contained.

e Almost every operator has to make sure there are enough operandsstadk. In my C code, | used
a general-purpose procedure call@d$.” But in my assembly code, | use a really dirty trick: | define
labelscheck1 andcheck2, and | transfer control using thgoto. .. linking... construct. If a
check succeeds, | transfer control back to the point of origin, usiadjrtk register. If a check fails,
| print an error message ap@to waiting.

e Most operators are very easy to implement, but the newline operator $pairk) requires a loop, and
the signed-division operator requires a lot of case analysis (just ae i@ tode).

¢ | recommend that you implement the parts of your calculator module in this order:
1. The code to initialize the jump table, plus the main loop of the calculator functioichweads
a character, checks for EOF, and transfers control via the jump table
2. Entry of single digits only
3. The space command

4. The newline command, which prints the stack—and which will enable youdqager first
useful output, provided you avoid multi-digit numerals

Digits for theenteringstate, so that you can read multi-digit numetals
A couple of binary operators likeand=*, including operand checking
A couple of unary operators likeand~.

© N o O

The rest of the operators, doing signed division last

4] didn’t bother with a jump table here; | just checked to see if the inputadtarc was in the range0’ < ¢ < ’9°. For the
comparisons, | needed an extra temporary register, which | identifitbdaeing.

5

Debugging techniques

Assembly code is hard to debug. You will need to add some debugging cqoertdniversal Machine.
I made my debugging code conditional on an environment variable dalfeRACE. When | start my Uni-
veral Machine, | makenecheck in the environment to see if | should be tracing:

b

ool trace = getenv("UMTRACE") != NULL;

Then, in my execution loop, | print information conditioned on the trace:

i

}

f (trace) {
Umn_instruction instruction = *pc;
char *asm = (char *)Um_disassemble(instruction);
if (OP(instruction) == LV)
fprintf (stderr, "J%7" PRIAPTR ": %s\n", pc - prog, asm);
else
fprintf (stderr, "J%7" PRIAPTR ": %s (r%d = %d, r#4d = %d, r#kd = %d)\n",
pc - prog, asm,
A(instruction), RA, B(instruction), RB, C(instruction), RC);
FREE (asm) ;

This code prints each PC and instruction before it is executed, along witrathes of the registers men-

tion

ed in the instruction.
Here’s some advice:

e Run
umdump calc40.um | less
in one terminal window and
UMTRACE=1 valgrind ./um calc40.um 2>&1 | less

in another window.
(If you're stuck using a stupid “C shell,” you'll have to usetenv andunsetenv to control the value
of theUMTRACE environment variable.)

e Many, many bugs occur when the call stack is not properly adjusted-exfample, you push an
argument onto the call stack, then after the call returns, you forget &ttekargument off the call
stack. Keep an eye on the stack pointer to make sure it has the propes &alyeu call and return.

¢ In the heat of coding it's easy to forget about proper control flonngiader organizing your assembly
code into short blocks such that each block ends wghta. That way you will never “fall through”
and execute code (or data) unintentionally.

e When in doubt, blastutput macros into your code. Thealt instruction is also your friend.

¢ If you fall into a hole,stop digging Get help.

6 What we provide for you

Your mission is to implement the RPN calculator in Universal Machine assembjyidaye. Here'’s the
support you get from us:

e We provide a reference implementation in C whose functionality you must dtgégactly Source
code is in/comp/40/www/homework/calc.c, and you can run the binary dsomp/40/bin/calc40

e We provide a random-input generator; the commanthigiom-calc40. With no argument, it emits
100 random operators. With an argument, it emits a given number of operétere are a couple of
examples (newlines have been added for clarity):

$ random-calc40

812 106cd~d690c943d+ dp253c980c879 &957c&d / 142c/ &c- 757
49c+| ~~835 846¢c 225c |d |c&d/ dd& 655% 434c914 +d *& d 361
486/d&|*-* s cb097| s s - d191ds ~ dldcd-d d* pd+391 | pd-
~ 868cs dp&c c+

$ random-calc40 5
d340cbhbds

A couple of notes:

— The random-input generataiill emit operations that fail, but it's not very likely.

— The probability distributions are skewed so that if there are no errorsaibe stack tends to stay
close to 10 values. But when there are errors, the value stack gropertional to the number
of tests. This is whyou need a value stack that can handle at least ten thousand elements

— The generator counts only “interesting” operators, so your handtaoag not be identical to
the argument. You can see what’s interesting by examining the source tcocken@/40/bin/
random-calc40.

e We provide you with a test script that will compare the results of your UM fiyineith the refer-
ence implementation. It takes two arguments: the name of yaufile and the number of random
operators to test. Here's an example:

$ time calcd40-test calc40.um 1000

Results identical -- test passed
$ time calc40-test calc40.um 1000000
Results identical -- test passed

With my Universal Machine, | can test a million-operator input in a few sdson
Be aware thathe random-test generator does not find many error cases

e As soon as the last Macro Assembler is turned in, we will provide a workiagrmMAssembler.

10

7 What we expect from you

7.1 Documentation

Assembly code requires the same kinds of documentation as C code, butemplaces.

e Representation is still the essence of programming, so we expect youbmedntyour data structures.
This means explaining the representations at the machine level.

¢ Inassembly code, registers play key roles;expect you to document the use of each regiRegister
documentation may be global (e.g., registeralways holds zero), may be specific to one procedure
(e.q., in this procedure, registeb holds the number to be printed), or may be specific just to a few
parts of one procedure (e.g., in this region, registeholds the input character)\e expect you to
document your use of machine registers

e We expect thahin assembly-language procedure will be documented in the same vea{ ggoce-
dure that is:
— You will document the type and meaning of each argument.
— You will document the type of the result, if any.
— You will document the function’sontract
— You will notnarrate a sequence of events performed by the function.
¢ Not all source files will define or contain procedures, but if a souleedfiescontain one or more
procedures, that source fileustinclude brief documentation of the calling conventidgven if you

are using the standard calling convention everywhere, we expect yiade a brief summary in each
relevant source filefFor an example, see Figure 3.

e We expect you to document important internal labels. (Labels used to impigruesly localif
statements oroops need little if any documentation, but a label that is used far away must be docu
mented.)

The documentation of labels should be connected to the organization ofageambly code into
blocks as discussed in class. (A block begins with a label and ends with an ditiooal goto.)®
We expect you to document the label of each block withcidatract Again, a contract isiot a
narration of the events performed within a block. Here are some examples:

— Poor contract:“print a minus sign and gotb7.” (We could see this from the code.)

— Fair contract: “print a negative number”

— Good contract“print a negative number and return”

— Very Good contractprint the value of register5 in decimal, then return, whenes must be
negative”

5N.B. Code in aninit section may have internal labels and gotos, but it shouldndin a goto. Everyinit section except
the last should end simply by continuing (“falling through”) to the nextt section. The lastnit section should cathain and
thenhalt.

11

I hope it will help you to remember th#éthe purpose of the contracts is to enable modular reasaoning
In particular, you should be able to debug each individual block by kmgpwnly the contract of that
block and the contracts of any labels it may branch to. If, for exampleg tisea labebrint_pos:
with the contract “print the decimal representationr®éf wherer5 must be positive, then return”,
then we know that the following block is correct:

print_neg: // print r5 in decimal, then return (r5 must be negative)
output ’-’
r5 := -rb
goto print_pos

7.2 “Design”

On this project, I'm afraid you don’t get to do much design. But to give fielp getting started, and to give
you feedback on your documentation, we're asking you to submit two tieadsg:

¢ In file DESIGN, please submit a short sketch of what data structures you will needaanthley will
be represented on the Universal Machine.

If you wish to change the calling convention or to design your own callingeotion, please use the
DESIGN file to tell us about your plans.

e In file printd.ums, which stands for “print decimal,” please submitdacumentegrocedure that
prints a positive numbefThe procedure has to assemble, but it doesn’t have to veordt,it doesn’t
have to handle a number that is zero or negative.

Using the scriptubmit40-asmcoding-design, please submit these two files Byesday, December 6 at
11:59 PM

7.3 Final submission
By Sunday, December 11 at 11:59 Pie the scriptubmit40-asmcoding to submit

e All the assembly code you have writteBach assembly file must have a name that endsuia.

e A script calledcompile that assembles all your source files and creates a Universal Madharg b
calledcalc40.um. This script should catimasm withouta dot. The script should not be more than
one or two lines long.

If you want to use your own assembler, begin your script with the additlores

PATH=". :$PATH"
export PATH

which will cause the script to look farmasm in the current directory first.
e A README file which

— Identifies you and your programming partner by name

12

Acknowledges help you may have received from or collaborative workmay have undertaken
with others

Identifies what has been correctly implemented and what has not

Explains any departures from the recommended calling convention

Explains in one sentence how you chose to implement the print module

Says approximately how many hours you have spaalyzing the assignment
— Says approximately how many hours you have speiting assembly code
— Says approximately how many hours you have speblgging your calculator

13

