COMP 40 Assignment: Analysis of AMD64 Assembly Code

Assignment due Tuesday, November 1 at 11:59 PM.

Contents
1 Purpose and overview 1

2 Making a game of it: the binary bomb 2
2.1 Howtogetabomb e 2
2.2 Preparingtodefuseyourbomb 3
2.3 Defusingthebomb e 3

3 What we expect from you 4

4 Resources 5
4.1 TOOIS. . . . e e 5
4.1.1 The Data Display Debugger 5

4.1.2 TheGNUdebugger. e e 6

4.1.3 Theobjdump Program o ot it e e e e e 6

414 Thenm program v v e e e e e e e e 6

4.1.5 The lowly butusefdtrings program 6
4.2 Documentation e e e e e 6
5 How to analyze assembly code 8
6 Acknowledgements 9

1 Purpose and overview

The purpose of this assignment is to take the first step towaedof the central goals of this course: to acquire a
working knowledge of the AMDG64 instruction-set architeett To that end you will read, analyze, and understand a
half-dozen or so C procedures given access only to an exsedimary. An important secondary objective is for you
to learn to debug programs using the Data Display Debuggeb(D

Fundamental questions about assembly code include
e When a procedure starts executing, where does it find its peeas and where should it put its return value?
e What does each instruction do when executed?
e How are expressions translated into operations on memongtants, and registers?

e How are statements likef, while, for, andswitch translated into control flow?

The homework requireanalysis of assembly-language prograrimportant questions include
e What state of the machine determines whether a conditioaaldbris taken, and how did that state get set?
e What are the possible values of a machine register, and hothaidalue get set?

e What values could be returned from a procedure, and how ase thedues determined?

INow that Intel also supports AMDG64, it is more officially knovas x86_64, but certain old dogs have trouble learning new tricks, oot t
mention that credit should be given where credit is due. Dovth revisionist history!

e What values could be input to a given procedure in order totereaesired return value?
You'll mix three kind of activities:

e Analyzing assembly code

e Using your analysis to defuse a “binary bomb”

e Using the results of your analysis to reconstruct C code

You'll hand in a written report of your analysis; your work defusing the bomb is reported automatically.

2 Making a game of it: the binary bomb

A “binary bomb” is a program that consists of a sequence ofphaeach of which can biefusedy the proper input.
In a CompP 40 bomb, each phase expects one line on standard input; fithge receives the input it expects, it is
defused, and you continue to the next phase. If the phaswesany other input, the boméxplodesit prints

BOOM! !!
The bomb has blown up.

Worse, it sends a message to the class “bomb server,” and qmdo;se% of the available credit for that phase.
Be careful!

The bomb is divided into six phases. If you defuse a phaseesstdly, you will receive either full credit (if
your bomb has never blown up) or partial credit (if your bomévwbup at any point). If you fail to defuse a phase,
you receive no credit for defusing. The phases get progrelgydharder to defuse, but the increasing difficulty should
be offset by the expertise you gain as you move from phasedsephThe final phase will challenge even the best
students—don’t start at the last minute.

We've doctored the bomb to help you avoid repetetive work glip$ of the finger. First, the bomb ignores blank
input lines. Second, if you run your bomb with a command-angument, for example,

./bomb inputsi-3.txt

then the bomb reads input lines fromaputs1-3.txt, which might contain the inputs expected by phases 1 to 3.
Afterward, when the bomb reaches end of file nrputs1-3.txt, it switches to reading standard input. Use this
feature to your advantage by putting correct phrases infe'a fi

2.1 How to geta bomb

On this assignment you are encouraged to work in pairs. Eaghspould useone and only ondoomb. Bombs
are available fronhttp://bomb.cs.tufts.edu: 54321 (think countdown). This URL worksnly from inside the
firewall; if you are not in the labgsh to 1inux and download your bomb withlinks or w3m. Each bomb is an
executable binary which has been compiled from C; it is pgekldan atar file which can be unpacked with, e.g.,

tar xvf bomb4.tar

Save theombk . tar file to the directory in which you plan to do your work. Unpadietar file by
tar xvf bombk.tar
This command will create a directory calledbombk with three files:

e File README identifies the bomb and its owners.
e File bomb is the executable binary bomb.
e File bomb. c is the source code of the bomlasin routine, complete with snarky comments.

If you make a mistake, such as losing your bomb or typing intteng group members, request another bomb.

2.2 Preparing to defuse your bomb

Run objdump -d bomb to get a printout of the assembly code of your bomb. You'll spezially interested in
functionsmain (to which you have the source) and functigingse_1 throughphase_6. You will also be interested
in other functions, but anything befafin in the printout is probably not interesting.

You mustdefuse the bomb aninux.cs.tufts.edu or one of the machines in Halligan 116, 118, or 120you
wish to work remotely, you will need either an X windows cliear a VNC client. If you are not already familiar
with X clients and ssh forwarding, | recommend you use a VNEnt|] available fromhttp://www.realvnc. con.
Information about how to set up VNC is availabletaitp: //www.cs.tufts.edu/comp/40/howto-vnc/, with
emphasis on using the Windows PuTTY client to get througHitbevall. If you are using Linux you can SSH tunnel
by using the-via option on the VNC viewer.

Connect to a class server, launch the Data Display Debu@dab) on your bomb, and start stepping through the
code.

e You will almost certainly want to use the stop sign to set khpegnts to keep the bomb from executing more
code than you intend; after all, if you get the input wrong #rmelbomb keeps executing, the bomb will explode!

e You will also find it useful to use the flashlight to watch thdues of particular registers and stack locations.
You can watch any C expression, including expressions wnglregisters. For example, the expression

((int *) ($rbp + $rbx * 4) [0]

watches the value in the address known to the assembbe0g%rbp , %rbx,4) .2

2.3 Defusing the bomb
You will need access to volumes of information, including

e An architecture manual for AMD64 Manuals are available fraMD? and Intef. | find the AMD manuals a
bit easier to read, but the Intel manuals have a compensadiventage: Intel gives all the instructions in simple
alphabetical order, in two volumes. If you open both Intehomas in Adobe Reader, you can quickly look up
any instruction using the alphabetical table of contents.

e Documentation of th@rocedure calling conventigrwhich is also known as the Application Binary Interface
(ABI)®

e Documentation for the GNU assembler
e Documentation for DDB
e Possibly documentation fefab

Please see tHResourcessection below. There is too much information, but the citjgarts are
e Understanding how procedures’ parameters are passedigtaiegand on the stack (ABI)
e Recognizing instructions and addressing modes

e Remembering thahe GNU tools put the destination on the rightitthe manufacturers’ documentation puts
the destination on the I€ft

2For reasons known only to the people at the Free Softwaredzdiam, the assembly-language tools usetisggn to refer to a register name,
but the debuggers usesasign.

3See URLhttp://developer.amd.com/documentation/guides/Pages/default.aspx#manuals.

4See URLhttp: //www. intel . com/products/processor/manuals/index. htm.

5See URLhttp://wuw.cs.tufts.edu/comp/40/readings/amd64-abi . pdf.

6See URLhttp: //www.gnu.org/manual/ddd/.

Someone must pay.

As for the rest, you are not expected to understand much olist-tjse it judiciously to get through your bomb.
Once you are comfortably seated on this indigestible bridkformation, launch DDD and start single-stepping.
Key skills are

e Aborting execution if things don’t go your way

¢ Bringing up the machine-code window and the command window
e Setting breakpoints

¢ Inspecting values in registers and memory

e Watching expressions involving registers and memory

Using the debugger is a critical skill; time invested nowlw#é repaid manyfold throughout your career.

3 What we expect from you

Results from defusing the bomb are automatically sent to yr@iructor, so there is no need to hand them in. You
shouldvalidate your resultdy checking the page at

http://www.cs.tufts.edu/comp/40/bombstats.html

This web page is updated frequently and shows everyonefg¢ss.
In addition to defusing the bomb, we expect yowdte down the results of your analysis

¢ In clear, grammatical English, please explain what is happein Phases 1 through 6. We want the simplest
possible explanations; for example, you might say “Phasads two numbers and explodes unless the second is
evenly divisible by the first® When you encounter more complex phases, feel free to supparegplanations
with pictures of stack-frame layout and register contents.

e For each phase, write C code which represents your best ggasshow the function might be implemented.
This code must compile, but it need not run.
— Please include code for each phase.
— Please include code for each phase-specific helper function

— You need not include code for general-purpose helper fanstiwhose contracts are obvious, such as
number_is_divisible_by_seven Orread_eight_strings. But for each such helper function, please
doinclude a suitablextern declaration with the correct argument and result types.

— Within an individual phase, if there is code that you can prisvnot needed to defuse the bomb, you may
omit it.

We therefore expect you to submit the following:
1. AREADME file which

¢ |dentifies you and your programming partner by name
Identifies your bomb by number

Acknowledges help and collaboration

Gives your informal explanations of Phases 1 through 6
Says approximately how many hours you have spent on therassigt

8Except it isn't true, so you wouldn't say it.

2. Adefusefile that gives the input lines needed to defuse your bomkaaenany phases as you have successfully
defused).

3. Atyour option, a filepictures.pdf containing diagrams that support your README file
4. Afile phases.c which gives your notion of C code that is equivalent to the iz code in Phases 1 through 6

Hand-drawn pictures can be scanned into PDF using the maghidalligan 102.

4 Resources

4.1 Tools
4.1.1 The Data Display Debugger
The Data Display Debugger is actually a user interface thatates on top addb. Here are some things to know:

¢ You can start DDD on a local program by running
ddd bomb

¢ If you are on a machine on which DDD is installed, you can ruilD®@motely by giving the name of a remote
host and a path to a program. Here's an example:

ddd -rhost linux.cs.tufts.edu /h/nr/cs/40/arith-student/40image

e The blank box on upper left, just to the right 6f:, is theargument field

— Clicking the white area to the left of a statement may psiarce-code locatioim the argument field; you
can then use thstop signto set or clear a breakpoint. You can also type the name of @itiminto the
argument field and use the stop sign to set a breakpoint tffemaectionphase_1 might be an interesting
one to start with.)

— You'll want to think more deeply about where to set breakpmoin keep your bomb from blowing up every
time you type in a wrong input.

— Clicking a variable or sweeping out an expression may pudxaressiornn the argument field; you can
then use the flashlight to put a display of that expressioherdisplay window.

— You can often double-click to get an immediate breakpoirdaia display.

— It can also be useful to type in or edit an expression of youn aewd to display it using the flashlight.
Casts will play a critical role here; for example, if you tkithat registef/,rax points to an array of four
unsigned integers, you might want to display each of thesedrpression$:

((int *)$rax) [0]
((int *)$rax) [1]
((int *)$rax) [2]
((int *)$rax) [3]

Type an expression into the argument field and click the disffashlight, then edit the expression to show
the next element. You can easily display all four at once.

e Another way to display a sequence of integers in memory iséthie Memory tool under the Data menu.

9This example should make it very clear that DDD is designed &udging source codept machine code. To look at a machine register,
you have to remember to name it witt$aign, you have to cast it to some useful C type, and then finallygan use the results in an expression.
Tedious.

e You will find it useful to turn on Display Machine Code undeet8ource menu.

e Unfortunately neither DDD nogdb understands the assembly-language syntax, so when youn sssambly-
language expression, you'll have to translate it to a C esqios.

e The commands in the command-tool window are almost all itdwfrom gdb, so you would do well to print
one of the one-pagedb quick-reference guides referred to in the next section.

e | recommend using Edit::Preferences to change defaulsftmhelvetica-bold and monospace fonts to
bitstream vera sans mono-medium.

e The very bottom window, whergdb stuff is going on, is also where you have standard input aaddsird
output, unless they are redirected using the “run with amgusi feature under the Program::Run... menu.

The full documentation for DDD may be found &ttp://www.gnu.org/manual/ddd/. Our class lab on DDD
highlights some especially useful commands.

4.1.2 The GNU debugger

DDD is actually “just” a user interface. To control the unglarg program, DDD, relies on the the GNU debugger,
gdb. gdb is a command-line debugger that supports a handful of layggiand a great many target machines. With
luck, you'll avoid most ofgdb, but you'll want to keep in mind that theib window at the bottom of the DDD interface
allows you to interact directly witlgdb. All of DDD’s abilities to single step, show data, set breaiys, and so on,
are also present igdb.

Full documentation fogdb can be found ahttp://sourceware.org/gdb/documentation. It is probably
more useful to browse the textbook sitelaitp://csapp.cs.cmu.edu/public/students.html, which has a
number ofgdb resources. In particular, the “Quick GDB x86-64 referéfteontains a very short summary of
commands, most of which are in common with DDD. This is theglt learn what “Stepi” and “Nexti” actually
mean.

4.1.3 Theobjdump program

The commandbjdump -d is invaluable to print assembly language for all of the cadhé bomb. You can also just
look at individual functions. Having a printed copy of thesasbly code, which you can write on, is an invaluable
tool to keep track of your growing understanding of the bomb.

4.1.4 Thenm program

Runningnm -p bomb will show all the names defined and used in the bomb. These aroleide all of the bomb’s
functions and global variables as well as all the functidresliomb calls. You may learn something by looking at the
function names!

You'll also see many undefined names which should look vagaetiliar; they refer to names defined in the GNU
C Library. This library is loaded dynamically, after the bbrstarts. (Dynamic loading is also responsible for most of
the junk betweeninit and_start. These are functions that are called from the bomb, whichrim make indirect
calls through something called the Global Offset Table.hig point, sensible people run screaming from the room.)

For more information, some people likdjdump -t, but | prefer the simplicity ohm. Check out the man page!

4.1.5 The lowly but usefulstrings program
It won't get you far, but

strings bomb

will display the printable strings in your bomb. Sometimesings squeezes a surprising amount of information out
of a reticent program. If nothing elsetrings will teach you not to store your passwords in the clear!

10See URLhttp: //csapp. cs . cmu. edu/public/docs/GDB-commands-x86-64 . txt.

4.2

Documentation

You may find the following documentation useful:

The GNU assembler manual is ittp://sourceware.org/binutils/docs/as. This manual is utterly
overwhelming, but you may find the machine-dependent sectseful; AMDG64 is treated as a member of the
80386 family pttp://sourceware.org/binutils/docs/as/i386_002dDependent .html).

The most important thing to know is that the GNU people putdstination on the right (AT&T syntax) where
Intel and AMD put it on the left. If you are moved to mayhem, iiRied Stallman is but a short train ride away. . .

Another useful thing to know is the meaning of the addressasyrinere are the addressing modes you’re most
likely to encounter:

%hrax == $r[0] # similarly for other registers

fheax == least significant 32 bits of Yrax
(presence may signal a 32-bit operation)

disp(base, index, scale) == $m[base + index * scale + disp]

disp(base) $m[base + disp]

label(,index,scale) $m[label + index * scale]

symbol (%rip) == relative reference to symbol in memory

Documentation of the instruction-set architecture islabédé from both AMD @ttp://www.amd.com/us-en/
Processors/DevelopWithAMD/0, ,30.2252_875_7044,00.html) and from Intel attp://www. intel.com/
products/processor/manuals/index.htm). People | know who have tried both prefer AMD’s documenta-
tion.

Sections 3.1-3.7 of Bryant and O’Hallaron explain asserdilguage programming in detail. (You may also
find Sections 3.8-3.10 useful for a review of machine-legptesentations of data; in the first edition, the same
material is spread out over Sections 3.8-3.11.) Unforelpathe explanations are written in terms of the 32-bit
Pentium instruction set. The new edition of Bryant and Olatain covers AMD64 in Section 3.13, but their
approach is to describe the differences between AMD64 ar824the official name for the Pentium family
architecture), which in your position | might find annoyingdon’t know of a book available that treats the
AMDG64 instruction set as primary; if you do, please let mewno

If you're using the first edition of Bryant and O’Hallaron,eth have written a supplement for students using
AMD64 machine&. Like the new chapter in the second edition, the supplenoenisies on differences between

AMDG64 and IA-32. But you might find that the information is neattigestible than the same information in raw

form from the System V ABI.

The System V ABI for AMD64?2 is long, but it contains a few chunks of very good information

— Page 12 gives the sizes and alignments of basic data types.

— Section 3.2 on pages 14-22 explains the calling convenfsnis typical for a modern ABI, it is overly
complex. The main points are as follows:
x Stack-frame layout is sketched in Figure 3.3 on page 16.
x Integer arguments are passed in integer regigteds, Yrsi, %rdx, %rcx, %r8, andr9.

x Floating-point arguments are passed in registesn0 through %xmm7. Confusingly enough the
%xmmk registers are called the SSE registes.

1See URLhttp: //www. cs . tufts.edu/comp/40/readings/asm64-handout . pdf.
12See URLhttp: //wuw.cs. tufts.edu/comp/40/readings/amd64-abi . pdf.

13A1l page numbers refer to the draft version 0.99 dated DeceM2007.
14shockingly, this nomenclature it Richard Stallman’s fault.

5

x As described on page 20, values are typically returneiirisx (integer) or%xmm0 (floating-point),
but for large return values, more complicated rules obt&specially noteworthy is the item 2 which
normally applies to functions returningructs.

x Figure 3.4 on page 21 provides a very nice summary of how texgisnay be used and which are
preserved by function calls.

The rest of this very large document can be ignored.

How to analyze assembly code

The primary technique involved is toaintain at each program point an account of the contentsaxftime registers
and the procedure’s stack fram& Registers and stack slots that you don’t care about can bigsahfiiom description
or can be written using the “don’t care” value (pronounced “undefined”). The technique is best appliedh bot
backwardsandforwards

e Backwards dataflow analystonsiders the desired machine stitowing an instruction and asks what state
is necessary to achieve that statecedingan instruction. For example, if the desired state followthg
instruction involves having registétbx greater than 5, and the instruction in question is

add $0x1,%rbx # %rbx := %rbx + 1

then the desired state preceding the instruction must beve %irbx + 1 > 5, or equivalently,%rbx > 4,
or equivalently. The condition characterizing the desistaie preceding the instruction is called theakest
precondition and | calculated it by substituting the right-hand sidehef assignment for the register on the left.

e Backwards control-flow analystonsiders what has to be done to reach (or to avoid) a patipabgram point.
For example, consider the following disassembled code:

40122d: je 401234 <phase_1+0x17>
40122f: callg 40155b <explode_bomb>
401234: add $0x8, Jirsp

You might naturally wish to avoid ever having control arrateaddresex40122f, which calls theexplode_bomb
function. It is therefore natural to ask what has to be dormaa&e sure the preceding condition jusycceeds
in jJumping around the call to th&dd instruction. Looking backward, we see the preceding irtsion is

40122b: test Yeax,%eax

Looking up this instruction in the architecture manual, e that the instruction computes the “bitwise and”
of %eax with itself (that is, the “bitwise and” of the least signifita32 bits of}rax), uses the result to set the
sign, parity, and zero bit in the condition codes, and thepatlids the result. So thie instruction is mnemonic
for “jump on equal,” which is the same as “jump if zerd”which means the jump will succeed if and only if
%eax is zero.

Now, as is utterly typical, the control-flow program has bmeca dataflow problem, and we must look backward
to see what setéeax. We haven't far to look, as the preceding instruction is

401226: callg 40125f <strings_not_equal>

and we know from the calling convention that a 32-bit integalue is returned irf,eax. Thus it is safe to
conclude that in order to prevent the bomb from exploding, ¢brings_not_equal function must return
zero. Suggestive, is it not?

15You are not yet expected to know what a stack frame is; it is @i your book and will be covered in class.
16you can see where this analysis is going to get tedious. Aailyibu're going to need to start early.

Backwards analysis is what Sherlock Holmes used to lovesorgag from effects to what causes must produce those
effects. But to validate your reasoning, you'll want to ifghiin a little forwards analysis. This is sometimes called
“symbolic execution.”

e Forwards dataflow analysiasks if a register or stack slot contains a certain value, Wiirthat value affect
subsequent execution?

e Forwards control-flow analysiasks if a register, stack slot, or condition-code flag corstai certain value, what
instructions can be reached in a subsequent execution.

You can do forward analysis in your head, but it's much eatsidet DDD do it for you. You can set a breakpoint
anywhere you like, use DDD tohange the values in registers and memdhen single-step forward to see what
happens. Just don't go too far, or you might blow yourself up!

6 Acknowledgements

The “binary bomb” idea and the associated code were develbpéavid O’Hallaron, who has a twisted sense of
humor!’ Many of the informational resources were suggested by Sasséun. Backwards dataflow analysis was
invented by Sherlock Holmes, who was invented by Arthur @oDayle.

Terry Pratchett helped with the footnotes.

