
COMP 40 Assignment: Analysis of AMD64 Assembly Code

Assignment due Tuesday, November 1 at 11:59 PM.

Contents

1 Purpose and overview 1

2 Making a game of it: the binary bomb 2
2.1 How to get a bomb 2
2.2 Preparing to defuse your bomb 3
2.3 Defusing the bomb 3

3 What we expect from you 4

4 Resources 5
4.1 Tools 5

4.1.1 The Data Display Debugger 5
4.1.2 The GNU debugger 6
4.1.3 Theobjdump program . 6
4.1.4 Thenm program . 6
4.1.5 The lowly but usefulstrings program . 6

4.2 Documentation 6

5 How to analyze assembly code 8

6 Acknowledgements 9

1 Purpose and overview

The purpose of this assignment is to take the first step towardone of the central goals of this course: to acquire a
working knowledge of the AMD64 instruction-set architecture.1 To that end you will read, analyze, and understand a
half-dozen or so C procedures given access only to an executable binary. An important secondary objective is for you
to learn to debug programs using the Data Display Debugger (DDD).

Fundamental questions about assembly code include

• When a procedure starts executing, where does it find its parameters, and where should it put its return value?

• What does each instruction do when executed?

• How are expressions translated into operations on memory, constants, and registers?

• How are statements likeif, while, for, andswitch translated into control flow?

The homework requiresanalysis of assembly-language programs. Important questions include

• What state of the machine determines whether a conditional branch is taken, and how did that state get set?

• What are the possible values of a machine register, and how didthat value get set?

• What values could be returned from a procedure, and how are those values determined?

1Now that Intel also supports AMD64, it is more officially knownasx86 64, but certain old dogs have trouble learning new tricks, not to
mention that credit should be given where credit is due. Down with revisionist history!

1

• What values could be input to a given procedure in order to create a desired return value?

You’ll mix three kind of activities:

• Analyzing assembly code

• Using your analysis to defuse a “binary bomb”

• Using the results of your analysis to reconstruct C code

You’ll hand in a written report of your analysis; your work ondefusing the bomb is reported automatically.

2 Making a game of it: the binary bomb

A “binary bomb” is a program that consists of a sequence of phases, each of which can bedefusedby the proper input.
In a COMP 40 bomb, each phase expects one line on standard input; if thephase receives the input it expects, it is
defused, and you continue to the next phase. If the phase receives any other input, the bombexplodes: it prints

BOOM!!!

The bomb has blown up.

Worse, it sends a message to the class “bomb server,” and you you lose 1

40
of the available credit for that phase.

Be careful!
The bomb is divided into six phases. If you defuse a phase successfully, you will receive either full credit (if

your bomb has never blown up) or partial credit (if your bomb blew up at any point). If you fail to defuse a phase,
you receive no credit for defusing. The phases get progressively harder to defuse, but the increasing difficulty should
be offset by the expertise you gain as you move from phase to phase. The final phase will challenge even the best
students—don’t start at the last minute.

We’ve doctored the bomb to help you avoid repetetive work andslips of the finger. First, the bomb ignores blank
input lines. Second, if you run your bomb with a command-lineargument, for example,

./bomb inputs1-3.txt

then the bomb reads input lines frominputs1-3.txt, which might contain the inputs expected by phases 1 to 3.
Afterward, when the bomb reaches end of file oninputs1-3.txt, it switches to reading standard input. Use this
feature to your advantage by putting correct phrases into a file!

2.1 How to get a bomb

On this assignment you are encouraged to work in pairs. Each pair should useone and only onebomb. Bombs
are available fromhttp://bomb.cs.tufts.edu:54321 (think countdown). This URL worksonly from inside the
firewall; if you are not in the lab,ssh to linux and download your bomb withelinks or w3m. Each bomb is an
executable binary which has been compiled from C; it is packaged in atar file which can be unpacked with, e.g.,

tar xvf bomb4.tar

Save thebombk.tar file to the directory in which you plan to do your work. Unpack thetar file by
tar xvf bombk.tar

This command will create a directory called./bombk with three files:

• File README identifies the bomb and its owners.

• File bomb is the executable binary bomb.

• File bomb.c is the source code of the bomb’smain routine, complete with snarky comments.

If you make a mistake, such as losing your bomb or typing in thewrong group members, request another bomb.

2

2.2 Preparing to defuse your bomb

Run objdump -d bomb to get a printout of the assembly code of your bomb. You’ll be especially interested in
functionsmain (to which you have the source) and functionsphase 1 throughphase 6. You will also be interested
in other functions, but anything beforemain in the printout is probably not interesting.

You mustdefuse the bomb onlinux.cs.tufts.edu or one of the machines in Halligan 116, 118, or 120. If you
wish to work remotely, you will need either an X windows client or a VNC client. If you are not already familiar
with X clients and ssh forwarding, I recommend you use a VNC client, available fromhttp://www.realvnc.com.
Information about how to set up VNC is available athttp://www.cs.tufts.edu/comp/40/howto-vnc/, with
emphasis on using the Windows PuTTY client to get through thefirewall. If you are using Linux you can SSH tunnel
by using the-via option on the VNC viewer.

Connect to a class server, launch the Data Display Debugger (DDD) on your bomb, and start stepping through the
code.

• You will almost certainly want to use the stop sign to set breakpoints to keep the bomb from executing more
code than you intend; after all, if you get the input wrong andthe bomb keeps executing, the bomb will explode!

• You will also find it useful to use the flashlight to watch the values of particular registers and stack locations.
You can watch any C expression, including expressions involving registers. For example, the expression

((int *)($rbp + $rbx * 4)[0]

watches the value in the address known to the assembler as0x0(%rbp,%rbx,4).2

2.3 Defusing the bomb

You will need access to volumes of information, including

• An architecture manual for AMD64 Manuals are available fromAMD3 and Intel4. I find the AMD manuals a
bit easier to read, but the Intel manuals have a compensatingadvantage: Intel gives all the instructions in simple
alphabetical order, in two volumes. If you open both Intel manuals in Adobe Reader, you can quickly look up
any instruction using the alphabetical table of contents.

• Documentation of theprocedure calling convention, which is also known as the Application Binary Interface
(ABI)5

• Documentation for the GNU assembler

• Documentation for DDD6

• Possibly documentation forgdb

Please see theResourcessection below. There is too much information, but the critical parts are

• Understanding how procedures’ parameters are passed in registers and on the stack (ABI)

• Recognizing instructions and addressing modes

• Remembering thatthe GNU tools put the destination on the right, but the manufacturers’ documentation puts
the destination on the left7

2For reasons known only to the people at the Free Software Foundation, the assembly-language tools use the% sign to refer to a register name,
but the debuggers use a$ sign.

3See URLhttp://developer.amd.com/documentation/guides/Pages/default.aspx#manuals.
4See URLhttp://www.intel.com/products/processor/manuals/index.htm.
5See URLhttp://www.cs.tufts.edu/comp/40/readings/amd64-abi.pdf.
6See URLhttp://www.gnu.org/manual/ddd/.
7Someone must pay.

3

As for the rest, you are not expected to understand much of it—just use it judiciously to get through your bomb.
Once you are comfortably seated on this indigestible brick of information, launch DDD and start single-stepping.

Key skills are

• Aborting execution if things don’t go your way

• Bringing up the machine-code window and the command window

• Setting breakpoints

• Inspecting values in registers and memory

• Watching expressions involving registers and memory

Using the debugger is a critical skill; time invested now will be repaid manyfold throughout your career.

3 What we expect from you

Results from defusing the bomb are automatically sent to your instructor, so there is no need to hand them in. You
shouldvalidate your resultsby checking the page at

http://www.cs.tufts.edu/comp/40/bombstats.html

This web page is updated frequently and shows everyone’s progress.
In addition to defusing the bomb, we expect you towrite down the results of your analysis:

• In clear, grammatical English, please explain what is happening in Phases 1 through 6. We want the simplest
possible explanations; for example, you might say “Phase 1 reads two numbers and explodes unless the second is
evenly divisible by the first.”8 When you encounter more complex phases, feel free to support your explanations
with pictures of stack-frame layout and register contents.

• For each phase, write C code which represents your best guessas to how the function might be implemented.
This code must compile, but it need not run.

– Please include code for each phase.

– Please include code for each phase-specific helper function.

– You need not include code for general-purpose helper functions whose contracts are obvious, such as
number_is_divisible_by_seven or read_eight_strings. But for each such helper function, please
do include a suitableextern declaration with the correct argument and result types.

– Within an individual phase, if there is code that you can prove is not needed to defuse the bomb, you may
omit it.

We therefore expect you to submit the following:

1. A README file which

• Identifies you and your programming partner by name

• Identifies your bomb by number

• Acknowledges help and collaboration

• Gives your informal explanations of Phases 1 through 6

• Says approximately how many hours you have spent on the assignment

8Except it isn’t true, so you wouldn’t say it.

4

2. A defuse file that gives the input lines needed to defuse your bomb (foras many phases as you have successfully
defused).

3. At your option, a filepictures.pdf containing diagrams that support your README file

4. A file phases.c which gives your notion of C code that is equivalent to the machine code in Phases 1 through 6

Hand-drawn pictures can be scanned into PDF using the machine in Halligan 102.

4 Resources

4.1 Tools

4.1.1 The Data Display Debugger

The Data Display Debugger is actually a user interface that operates on top ofgdb. Here are some things to know:

• You can start DDD on a local program by running

ddd bomb

• If you are on a machine on which DDD is installed, you can run DDD remotely by giving the name of a remote
host and a path to a program. Here’s an example:

ddd -rhost linux.cs.tufts.edu /h/nr/cs/40/arith-student/40image

• The blank box on upper left, just to the right of():, is theargument field.

– Clicking the white area to the left of a statement may put asource-code locationin the argument field; you
can then use thestop signto set or clear a breakpoint. You can also type the name of a function into the
argument field and use the stop sign to set a breakpoint there.(Functionphase 1 might be an interesting
one to start with.)

– You’ll want to think more deeply about where to set breakpoints to keep your bomb from blowing up every
time you type in a wrong input.

– Clicking a variable or sweeping out an expression may put anexpressionin the argument field; you can
then use the flashlight to put a display of that expression in the display window.

– You can often double-click to get an immediate breakpoint ordata display.

– It can also be useful to type in or edit an expression of your own and to display it using the flashlight.
Casts will play a critical role here; for example, if you think that register%rax points to an array of four
unsigned integers, you might want to display each of these four expressions:9

((int *)$rax)[0]

((int *)$rax)[1]

((int *)$rax)[2]

((int *)$rax)[3]

Type an expression into the argument field and click the display flashlight, then edit the expression to show
the next element. You can easily display all four at once.

• Another way to display a sequence of integers in memory is to use the Memory tool under the Data menu.

9This example should make it very clear that DDD is designed for debugging source code,not machine code. To look at a machine register,
you have to remember to name it with a$ sign, you have to cast it to some useful C type, and then finally you can use the results in an expression.
Tedious.

5

• You will find it useful to turn on Display Machine Code under the Source menu.

• Unfortunately neither DDD norgdb understands the assembly-language syntax, so when you see an assembly-
language expression, you’ll have to translate it to a C expression.

• The commands in the command-tool window are almost all inherited fromgdb, so you would do well to print
one of the one-pagegdb quick-reference guides referred to in the next section.

• I recommend using Edit::Preferences to change default fonts to helvetica-bold and monospace fonts to
bitstream vera sans mono-medium.

• The very bottom window, wheregdb stuff is going on, is also where you have standard input and standard
output, unless they are redirected using the “run with arguments” feature under the Program::Run. . . menu.

The full documentation for DDD may be found athttp://www.gnu.org/manual/ddd/. Our class lab on DDD
highlights some especially useful commands.

4.1.2 The GNU debugger

DDD is actually “just” a user interface. To control the underlying program, DDD, relies on the the GNU debugger,
gdb. gdb is a command-line debugger that supports a handful of languages and a great many target machines. With
luck, you’ll avoid most ofgdb, but you’ll want to keep in mind that thegdb window at the bottom of the DDD interface
allows you to interact directly withgdb. All of DDD’s abilities to single step, show data, set breakpoints, and so on,
are also present ingdb.

Full documentation forgdb can be found athttp://sourceware.org/gdb/documentation. It is probably
more useful to browse the textbook site athttp://csapp.cs.cmu.edu/public/students.html, which has a
number ofgdb resources. In particular, the “Quick GDB x86-64 reference10” contains a very short summary of
commands, most of which are in common with DDD. This is the place to learn what “Stepi” and “Nexti” actually
mean.

4.1.3 Theobjdump program

The commandobjdump -d is invaluable to print assembly language for all of the code in the bomb. You can also just
look at individual functions. Having a printed copy of the assembly code, which you can write on, is an invaluable
tool to keep track of your growing understanding of the bomb.

4.1.4 Thenm program

Runningnm -p bomb will show all the names defined and used in the bomb. These names include all of the bomb’s
functions and global variables as well as all the functions the bomb calls. You may learn something by looking at the
function names!

You’ll also see many undefined names which should look vaguely familiar; they refer to names defined in the GNU
C Library. This library is loaded dynamically, after the bomb starts. (Dynamic loading is also responsible for most of
the junk between_init and_start. These are functions that are called from the bomb, which in turn make indirect
calls through something called the Global Offset Table. At this point, sensible people run screaming from the room.)

For more information, some people likeobjdump -t, but I prefer the simplicity ofnm. Check out the man page!

4.1.5 The lowly but usefulstrings program

It won’t get you far, but

strings bomb

will display the printable strings in your bomb. Sometimesstrings squeezes a surprising amount of information out
of a reticent program. If nothing else,strings will teach you not to store your passwords in the clear!

10See URLhttp://csapp.cs.cmu.edu/public/docs/GDB-commands-x86-64.txt.

6

4.2 Documentation

You may find the following documentation useful:

• The GNU assembler manual is athttp://sourceware.org/binutils/docs/as. This manual is utterly
overwhelming, but you may find the machine-dependent section useful; AMD64 is treated as a member of the
80386 family (http://sourceware.org/binutils/docs/as/i386 002dDependent.html).

The most important thing to know is that the GNU people put thedestination on the right (AT&T syntax) where
Intel and AMD put it on the left. If you are moved to mayhem, Richard Stallman is but a short train ride away. . .

Another useful thing to know is the meaning of the address syntax; here are the addressing modes you’re most
likely to encounter:

%rax == $r[0] # similarly for other registers

%eax == least significant 32 bits of %rax

(presence may signal a 32-bit operation)

disp(base, index, scale) == $m[base + index * scale + disp]

disp(base) == $m[base + disp]

label(,index,scale) == $m[label + index * scale]

symbol(%rip) == relative reference to symbol in memory

• Documentation of the instruction-set architecture is available from both AMD (http://www.amd.com/us-en/
Processors/DevelopWithAMD/0,,30 2252 875 7044,00.html) and from Intel (http://www.intel.com/
products/processor/manuals/index.htm). People I know who have tried both prefer AMD’s documenta-
tion.

• Sections 3.1–3.7 of Bryant and O’Hallaron explain assembly-language programming in detail. (You may also
find Sections 3.8–3.10 useful for a review of machine-level representations of data; in the first edition, the same
material is spread out over Sections 3.8–3.11.) Unfortunately, the explanations are written in terms of the 32-bit
Pentium instruction set. The new edition of Bryant and O’Hallaron covers AMD64 in Section 3.13, but their
approach is to describe the differences between AMD64 and IA-32 (the official name for the Pentium family
architecture), which in your position I might find annoying.I don’t know of a book available that treats the
AMD64 instruction set as primary; if you do, please let me know.

• If you’re using the first edition of Bryant and O’Hallaron, they have written a supplement for students using
AMD64 machines11. Like the new chapter in the second edition, the supplement focuses on differences between
AMD64 and IA-32. But you might find that the information is more digestible than the same information in raw
form from the System V ABI.

• The System V ABI for AMD6412 is long, but it contains a few chunks of very good information:

– Page 12 gives the sizes and alignments of basic data types.13

– Section 3.2 on pages 14–22 explains the calling convention.As is typical for a modern ABI, it is overly
complex. The main points are as follows:

∗ Stack-frame layout is sketched in Figure 3.3 on page 16.

∗ Integer arguments are passed in integer registers%rdi, %rsi, %rdx, %rcx, %r8, and%r9.

∗ Floating-point arguments are passed in registers%xmm0 through%xmm7. Confusingly enough the
%xmmk registers are called the SSE registers.14

11See URLhttp://www.cs.tufts.edu/comp/40/readings/asm64-handout.pdf.
12See URLhttp://www.cs.tufts.edu/comp/40/readings/amd64-abi.pdf.
13All page numbers refer to the draft version 0.99 dated December7, 2007.
14Shockingly, this nomenclature isnot Richard Stallman’s fault.

7

∗ As described on page 20, values are typically returned in%rax (integer) or%xmm0 (floating-point),
but for large return values, more complicated rules obtain.Especially noteworthy is the item 2 which
normally applies to functions returningstructs.

∗ Figure 3.4 on page 21 provides a very nice summary of how registers may be used and which are
preserved by function calls.

The rest of this very large document can be ignored.

5 How to analyze assembly code

The primary technique involved is tomaintain at each program point an account of the contents of machine registers
and the procedure’s stack frame.15 Registers and stack slots that you don’t care about can be omitted from description
or can be written using the “don’t care” value⊥ (pronounced “undefined”). The technique is best applied both
backwardsandforwards:

• Backwards dataflow analysisconsiders the desired machine statefollowing an instruction and asks what state
is necessary to achieve that stateprecedingan instruction. For example, if the desired state followingthe
instruction involves having register%rbx greater than 5, and the instruction in question is

add $0x1,%rbx # %rbx := %rbx + 1

then the desired state preceding the instruction must be to have%rbx + 1 > 5, or equivalently,%rbx > 4,
or equivalently. The condition characterizing the desiredstate preceding the instruction is called theweakest
precondition, and I calculated it by substituting the right-hand side of the assignment for the register on the left.

• Backwards control-flow analysisconsiders what has to be done to reach (or to avoid) a particular program point.
For example, consider the following disassembled code:

40122d: je 401234 <phase_1+0x17>

40122f: callq 40155b <explode_bomb>

401234: add $0x8,%rsp

You might naturally wish to avoid ever having control arriveat address0x40122f, which calls theexplode_bomb
function. It is therefore natural to ask what has to be done tomake sure the preceding condition jumpsucceeds
in jumping around the call to theadd instruction. Looking backward, we see the preceding instruction is

40122b: test %eax,%eax

Looking up this instruction in the architecture manual, we see that the instruction computes the “bitwise and”
of %eax with itself (that is, the “bitwise and” of the least significant 32 bits of%rax), uses the result to set the
sign, parity, and zero bit in the condition codes, and then discards the result. So theje instruction is mnemonic
for “jump on equal,” which is the same as “jump if zero”,16 which means the jump will succeed if and only if
%eax is zero.

Now, as is utterly typical, the control-flow program has become a dataflow problem, and we must look backward
to see what sets%eax. We haven’t far to look, as the preceding instruction is

401226: callq 40125f <strings_not_equal>

and we know from the calling convention that a 32-bit integervalue is returned in%eax. Thus it is safe to
conclude that in order to prevent the bomb from exploding, the strings_not_equal function must return
zero. Suggestive, is it not?

15You are not yet expected to know what a stack frame is; it is covered in your book and will be covered in class.
16You can see where this analysis is going to get tedious. And that you’re going to need to start early.

8

Backwards analysis is what Sherlock Holmes used to love: reasoning from effects to what causes must produce those
effects. But to validate your reasoning, you’ll want to indulge in a little forwards analysis. This is sometimes called
“symbolic execution.”

• Forwards dataflow analysisasks if a register or stack slot contains a certain value, howwill that value affect
subsequent execution?

• Forwards control-flow analysisasks if a register, stack slot, or condition-code flag contains a certain value, what
instructions can be reached in a subsequent execution.

You can do forward analysis in your head, but it’s much easierto let DDD do it for you. You can set a breakpoint
anywhere you like, use DDD tochange the values in registers and memory, then single-step forward to see what
happens. Just don’t go too far, or you might blow yourself up!

6 Acknowledgements

The “binary bomb” idea and the associated code were developed by David O’Hallaron, who has a twisted sense of
humor.17 Many of the informational resources were suggested by Soha Hassoun. Backwards dataflow analysis was
invented by Sherlock Holmes, who was invented by Arthur Conan Doyle.

17Terry Pratchett helped with the footnotes.

9

