
COMP40 Assignment: Code Improvement Through Profiling

Assignment due Tuesday, November 22 at 11:59 PM. There is no design document for this assignment.

Contents

1 Purpose and overview 1

2 What we expect of you 1
2.1 Your starting point 2
2.2 Tracking changes as you make them 2
2.3 Laboratory notes 3
2.4 Analysis of assembly code 4
2.5 Performance of the final stages 5
2.6 What to submit .. 6

3 Methods of improving performance 7

4 Partial solution to the adventure game 9

5 Secrets of the shell-programming masters 9

1 Purpose and overview

The purpose of this assignment is to learn to use profiling tools to apply your knowledge of machine structure
and assembly-language programming. You will improve the performance of two programs.

2 What we expect of you

Use code-tuning techniques to improve the performance of two programs:

• Your ppmtrans program doing 90-degree and 180-degreeblockedrotations of an image like/comp/
40/images/large/mobo.jpg. This image has 50 million pixels and will not fit in the cache. If you
and your partner do not have a working version between you, you may use one of Professor Ramsey’s
solutions.

• Your Universal Machine running the large “sandmark” benchmark. Ifyou and your partner do not
have a working Universal Machine between you, it will be acceptable to borrow a Universal Machine
from another student, butonly if you have already submitted what you have for the Universal Machine
assignment.

If you wish, you may make special arrangements with Professor Ramsey to replace one of these two pro-
grams withSong Searchfrom COMP 15.

The key parts of the assignment are toidentify bottlenecks usingvalgrind and toimprove the code by
increments. You will therefore want todo most of your profiling on small inputs.

1

Your grade will be based on three outcomes:

• Your laboratory notesabout theinitial stateof your program andeach stage of improvement, including
differences from the previous stage.

• Your analysis of the assembly code of the most expensive procedure in each of your final programs.

• Theperformance of your final-stage programs, measured as follows:

– For the image rotation, we will choose a large image and rotate it by both 90 degrees and 180 de-
grees. We will do the two rotations independently and sum the squares of therunning times.

– Your Universal Machine running a large benchmark, not identical to thesandmark but closely
related to it.

2.1 Your starting point

Please begin with your code in the state it was after the array-rotation and Universal Machine assignments.
If your code did not work, you may fix it, or you may start with Professor Ramsey’s array-rotation code and
another student’s Universal Machine. If you have not yet completed the UM, you may not look at another
student’s UM until you have submitted.

Please take baseline measurements of your codeas submitted. (If you have already changed your Uni-
versal Machine, don’t worry; your CS department account should have received an email containing your
UM as submitted.)

2.2 Tracking changes as you make them

During this assignment, you may run into a dead end that requires you to go back to a previous version of
your code. Werecommend, but do not require, that you usegit to keep track of each stage of improvement
in your code.

• Initialize git by running

git init

in the directory that contains your source code.

• Take a snapshot of your initial code by running

git commit *.c *.h

• Every time you profile a stage, take another snapshot by running

git commit *.c *.h

• When you have something for your laboratory notes, “tag” the snapshotwith a meaningful name, as
in this example:

git commit *.c *.h

git tag replaced-segment-map-with-turtles

2

• Although the interface is a bit busy, Professor Ramsey likes the graphicalcommit tool

git gui

for seeing what has changed since the last snapshot. It may help you withyour notes.

Your first source for all thingsgit should be a fellow student who has learnedgit in one of Ming Chow’s
courses, or failing that, Ben Lynn’s online tutorialGit Magic. One task you might need extra help with is if
you want to go back to an older snapshot and create abranchstarting from that snapshot.

2.3 Laboratory notes

Begin bychoosing a data set. For image rotation, choose one large image (at least 25 megapixels) and
three small images (about 100 thousand pixels each).1 For the Universal Machine, you will use the small
midmark benchmark, the largesandmark benchmark, and a partial solution to the adventure game.

Foreach program, ateach stage, for each input, please

• Report the wall-clock time required to execute the program on the input, as measured with thetime
command (for information, tryman 1 time and see the examples below). Be aware thatthe C shell
has a built-intime command, and it stupidly writes to standard output instead of standard error. If you
are using the C shell, you will need to use/usr/bin/time.

For ppmtrans, each input is an image, and “executing the program” means runningboth90-degree
and 180-degreeblockedrotations on that image.

Forum, each input is a Universal Machine binary, and “executing the program” means runningum on
that binary, supplying a suitable test input on standard input.

• For small inputs, report the total number of instruction fetches, which you can measure by running
the program undervalgrind --tool=callgrind.

• Reporttwo different relative time values:

– The wall-clock time of this stage divided by the wall-clock time of the initial stage (time relative
to start)

– The wall-clock time of this stage divided by the wall-clock time of thepreviousstage (time
relative to previous stage)

Lower relative times are better.

• In clear, correct English, say what was the bottleneck from the previous stage and how you improved
the code.

You can see some sample reports (using made-up data) in Table 1.
When you change the code, it is critical thateach set of changes be small and isolated. Otherwise you

will not know what changes are responsible for what improvements.

1. Yourstarting pointshould be your code as submitted, compiled and linked with your original compile
scripts.

1If you do not have a large image, you can make a small image larger by usingpnmscale with a scale factor greater than one.

3

Benchmark Time Instructions Rel to start Rel to prev Improvement

big 30s — 1.000 1.000 No improvement (starting point)
small 1s 75.02 × 10

6 1.000 1.000

big 28s — 0.933 0.933 Compiled with optimization turned on
and linked against-lcii-O1

small 900ms 69.21 × 10
6 0.920 0.920

big 28s — 0.933 1.000 Compiled with optimization turned on
and linked against-lcii-O2

small 900ms 69.18 × 10
6 0.920 1.000

big 25s — 0.833 0.893 RemovedArray width() call fromfor

loop and placed result in local variable
instead

small 833ms 62.01 × 10
6 0.833 0.926

big 22s — 0.733 0.880 Removedarray->blocks expression
from loop and placed result in local
variable

small 800ms 56.16 × 10
6 0.800 0.960

big 60s — 2.000 2.727 Used explicitfor loop instead of
blocked-array mapping function. Time
improved for small image but got worse
for big image—undid change.

small 650ms 49.20 × 10
6 0.650 0.813

big 18s — 0.600 0.300 Changed representation of blocks so that
access to elements within the blocked
mapping function uses unsafe pointer
arithmetic without bounds checking

small 600ms 44.89 × 10
6 0.600 0.923

Table 1: Sample report for blocked image rotation (made-up data)

2. Your first changeshould be to compile with-O1 and to link with-lcii40-O1, which must come
beforeother libraries.

3. Yoursecond changeshould be to compile with-O2 and to link with-lcii40-O2.

4. After that you can start profiling withcallgrind andkcachegrind and improving your code based
on the results.

Keep in mind that-O1 is not always better than-O2.

2.4 Analysis of assembly code

Once you have improved the code as much as you can, usevalgrind andkcachegrind to find the single
routine that takes the most time. (You can find it by clicking on the Self tab inkcachegrind.) For this
final phase you may want to use the--dump-instr=yes option so you can see the assembly code in

4

kcachegrind. The advantage ofkcachegrind overobjump -d is that it will tell you how many times
each instruction was executed.

Once you’ve found the routine in which the most time is spent, examine the assembly code and either
identify specific ways (changes to to the assembly code itself) in which it could be improvedor argue that
there is not an obvious way to improve the assembly code.

Do this exercise for bothppmtrans andum binaries.
Things to look for include:

• Do you see opportunities to keep data in registers, where currently there are unnecessary memory
accesses?

• Do you see unnecessary computation in loops?

Be alert for ahorrible idiom in the Intel assembly language: the instruction

mov %esi, %esi

looksredundant, but it’s not. This idiom stands for an instruction that zeroes out the most significant 32 bits
of the 64-bit register%rsi. Whoever allowed this syntax into the assembler should be shot.

Do this exercise for bothppmtrans andum.
For this assignment,there is no need to modify assembly code.

2.5 Performance of the final stages

All profiling and measurements must be done on the Intel Q6700 machines in Halligan 116 or 118.Almost
all the machines in 116 and 118 are suitable; to be sure you have the right kind of machine, run the command

grep ’model name’ /proc/cpuinfo

and make sure the output is

model name : Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz

model name : Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz

model name : Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz

model name : Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz

Any other output means you have the wrong kind of machine and your time measurements will not be
consistent. In particular, The machines in 120 arenot suitable for this assignment.

The importance of using the lab machines cannot be overstated.

• For consistency, you absolutely must use these machines for profiling andmeasurements—if neces-
sary, log into the machines remotely.

• NR made what he thought was a minor change to his Universal Machine, intended to improve modu-
larity. On NR’s home computer, the new code was 25% slower. On thelinux.cs.tufts.edu server,
the new code was about the same speed. On the machines in Halligan 118, the new code was about
twice as fast.

The machine you’re using matters.

5

Measure your code with bothgcc -O1 andgcc -O2. Neither one is faster for all problems; report the
better of the two results. In your finalcompile script, use whichever gives the best results.

You will be evaluated both on your improvement relative to the code you startwith and on the absolute
performance of your final results. This means it is easier for you to get top marks if you start with your own
code rather than NR’s, since his has less room to be improved. Your laboratory notes will record all your
improvements and the performance of your final stages.

2.6 What to submit

Please use thesubmit40-profile script to submit the following items.

1. A compile file, which when run withsh, compiles all your source code and produces bothppmtrans

andum binaries.

2. A run file, which when run withsh runs all your test cases. For accurate performance measurements,
large inputs should be copied to/data or /tmp, so they reside on a local disk. (See Section 5.) Here’s
a sample for ppmtrans; you will want to change it to suit your own image files:

#!/bin/sh

. /usr/sup/use/use.sh

use comp40

img=‘tempfile --suffix=.ppm‘

djpeg big.jpg > $img

time -f "large rotate 90: %e seconds" ./ppmtrans -block-major -rotate 90 $img > /dev/null

time -f "large rotate 180: %e seconds" ./ppmtrans -block-major -rotate 180 $img > /dev/null

for i in small1.jpg small2.jpg small3.jpg

do

djpeg $i > $img

time -f "rot $i 90 deg: %e seconds" ./ppmtrans -block-major -rotate 90 $img > /dev/null

time -f "rot $i 180 deg: %e seconds" ./ppmtrans -block-major -rotate 180 $img > /dev/null

done

(Because we are using a sane, sensible shell, we can usetime instead of/usr/bin/time.)

And here is an example for the UM:

#!/bin/sh

. /usr/sup/use/use.sh

use comp40

for i in midmark.um sandmark.umz

do

time -f "um $i: %e seconds" um $i > /dev/null

done

6

3. A README file which

• Identifies you and your programming partner by name

• Acknowledges help you may have received from or collaborative workyou may have undertaken
with others

• Explains what routine in the finalppmtrans takes up the most time, and says whether the as-
sembly code could be improved

• Explains what routine in the finalum takes up the most time, and says whether the assembly code
could be improved

• Says approximately how many hours you have spentanalyzing the problems posed in the as-
signment

• Says approximately how many hours you have spentsolving the problems after your analysis

4. A labnotes.pdf file that gives your laboratory notes in nice, readable format

5. All images and benchmarks you used as test data, preferably in a compressed format likejpg or png

3 Methods of improving performance

In performance, really big wins usually come from better algorithms which provide superior asymptotic
complexity. But for our programs, there is not much algorithmic action; everything should be pretty much
linear in either the number of pixels (images) or the number of UM instructions executed (Universal Ma-
chine). You can often improve things bychanging your data structures.

Here are some trite but true observations:

• Memory references are expensive, especially when data is not in the cache. In fact, compared with
memory references, arithmetic with values in registers is practically free. If you give valgrind
the--simulate-cache=yes option, it will will count loads and stores and also simulate the cache.
I don’t see how to get the load/store data without also running an expensive cache simulation.

• On AMD64,calls to leaf proceduresare pretty cheap, butcalls to non-leaf procedurescan be expen-
sive.

What if your program is nothingbutmemory references and procedure calls?! How can you make progress?

• To know what to improve,you must profile. Measure, measure, and measure again. Your best friends
arevalgrind --tool=callgrind and thekcachegrind visualizer.2

Nothing is more frustrating than to spend a lot of time improving code that is rarelyexecuted.

• The C compiler can be stupid about memory references. Because of pointer aliasing, if you write to
memory, the C compiler may assume thatall values in memory have changed, and may have to be
reloaded.

2For some programmers in some cases,gprof can be a pretty good friend, but it is useful only if you have access to allthe
source code, including libraries. And gprof does not have a good visualization tool likekcachegrind. In fact, the damn thing
won’t even report all the data it has because it uses only two digits after the decimal point. Beastlygprof is notmyfriend.

7

• The C compiler has no idea when multiple calls to a function will return the same value. If you do
have an idea, you can help out the C compiler by putting results in local variables.

• The C compiler has to assume that a function call could scribble all over memory. After a function
call, values referenced through pointers may have changed. Ifyouknow the values haven’t changed,
make sure those value are sitting in local varaibles, so that the compiler knowsit too.

• The C compiler isstaggeringly goodat managing local variables and putting them in machine regis-
ters. All you have to do is get your values into local variables; the compiler will do the rest. This is a
big change from the 1970s!

• If a lot of time is spent in one procedure, like sayUArray at, you often have two choices: make each
call of the procedure run faster, or change code somewhere else so the procedure is called less often.

There are some external sources you might find useful.

• At http://www.stevemcconnell.com/cctune.htm, Steve McConnell has a book excerpt which
despite being 15 years old is still quite good on the subject of code tuning. The table at the end is
similar to what I want from you, except I want you to include all the false starts he leaves out.

Steve’s spelling could use some work, don’t you think?

• Although Don Knuth invented the field, when it comes to explaining how to make programs efficient,
Jon Bentley is the dean of authors. Jon has summarized some of his work athttp://cs.bell-labs.

com/cm/cs/pearls/apprules.html. Unfortunately, improvements in optimizing compilers have
rendered many of Jon’s suggestions obsolete. (Between 1982 and 1993, compilers got alot better.
Between 1993 and today, not so much.)

• Your book by O’Hallaron and Bryant devotes an entire chapter to code improvement (Chapter 5).
There’s about 15 pages’ worth of really good low-hanging fruit, and then there are a lot of details.

– The first part, through the end of Section 5.1, gives an excellent explanation of aliasing and will
help you understand the pessimism with which the compiler must treat memory references.

– Sections 5.2 and 5.3 present a basic framework and example. If you like toybenchmark pro-
grams and graphs with lines on them, these sections are for you.

– Sections 5.4 to 5.6, which comprise only ten pages, give more detailed explanations of the most
important of the techniques I’ve sketched above.

– Section 5.7 tells a complicated story that explains some of the complexities of modernproces-
sors. However, the focus on the Intel Core i7 may not be helpful for understanding the behavior
of the Core 2 Quad processors on the lab machines, as there are some differences.

– Sections 5.13 and 5.14 discuss the use of a profiler. I hope you will find theclass demo more
informative, but the class demo will be brief, and this is the place to go for additional explanation
and background—or to chase squirrels. Unfortunately the chapter refers togprof, which is
a legacy tool that I recommend against using unless you are stuck with a problem for which
valgrind is just too slow.

– Sections 5.8 to 5.10 describe program transformations which, for the most part, a good optimiz-
ing compiler can do better than you can.

8

n

take bolt

take spring

inc spring

take button

take processor

take pill

inc pill

take radio

take cache

comb processor cache

take blue transistor

comb radio transistor

take antenna

inc antenna

take screw

take motherboard

comb motherboard screw

take A-1920-IXB

comb A-1920-IXB bolt

comb A-1920-IXB processor

comb A-1920-IXB radio

take transistor

comb A-1920-IXB transistor

comb motherboard A-1920-IXB

take keypad

comb keypad motherboard

comb keypad button

s

Figure 1: Partial solution to the adventure game

– Section 5.15 summarizes material in earlier sections. Perhaps you will find the summaries useful
for review?

– Sections 5.11 and 5.12 present material that I consider interesting and important but well beyond
the scope of COMP 40. This material is more likely to be taught in a 100-level architecture
course aimed at juniors, seniors, and beginning graduate students.

4 Partial solution to the adventure game

Figure 1 gives a a partial solution to the adventure game. This solution can bemade into a benchmark that
is intermediate in difficulty between the midmark and the sandmark.

5 Secrets of the shell-programming masters

Here are someuntestedideas for automatically copying files to/data or /tmp lazily, on demand. They
should work with#!/bin/bash or #!/bin/ksh. The ideas are:

• You create a subdirectory/data/$USER.

• Your files live there.

• A file is copied (by functionin data) only if there’s not a copy there already.

First, shell functiondatafile names a file in a subdirectory of/data that belongs just to you, like/data/
nr:

function datafile { # pathname of a personal file in /data

echo "/data/$USER/$1"

}

9

Second, shell functionin_data takes an arbitrary file and copies it to your/data directory. Copying is
done only if a file of the same name is not already present:

function in_data { # possibly copy a file to /data;return its path there

set -x # uncomment me to see commands execute

typeset data="$(datafile "$(basename $1)")"

if [[! -r "$data"]]; then # file is not already in /data

mkdir -p "$(dirname "$data")" # make the directory

cp -v "$1" "$data" # copy the file

fi

echo "$data" # print the new location

}

You can now use this function routinely to make sure that every “big input” is in/data:

set -x # uncomment me to see commands execute

for i in biginput1 biginput2 biginput3

do

/usr/bin/time -f ... my_program $(in_data $i)

done

10

