
COMP40 Assignment: A Universal Virtual Machine

Designdue Thursday, November 3 at 11:59 PM.
Implementation and unit testsdue Sunday, November 13 at 11:59 PM.

Contents

1 Purpose and overview 2

2 Specification of the Universal Machine 2
2.1 Machine State .. . 2
2.2 Notation .. 2
2.3 Initial state .. 2
2.4 Execution cycle 3
2.5 Instructions’ coding and semantics 3

2.5.1 Three-register instructions 3
2.5.2 One other instruction .3

2.6 Failure modes .. . 5
2.7 Resource exhaustion 5

3 Advice on the implementation 5
3.1 Emulating a 32-bit machine: Simulating 32-bit segment identifiers 6
3.2 Efficient abstractions 6
3.3 Controlling use of CPU and memory 7
3.4 Avoid common mistakes .7

4 What we expect of you 7
4.1 Your design and its documentation 7
4.2 Universal Machine unit tests 8
4.3 Implementation .9
4.4 What to submit .. 9

4.4.1 Design . 9
4.4.2 Implementation . 9

5 What we provide for you 10

1

1 Purpose and overview

The purpose of this assignment is to understand virtual-machine code (andby extension machine code) by
writing a software implementation of a simple virtual machine.

2 Specification of the Universal Machine

2.1 Machine State

The UM has these components:

• Eight general-purpose registers holding one word each

• A very large address space that is divided into an ever-changing collection of memory segments. Each
segment contains a sequence of words, and each is referred to by a distinct 32-bit identifier. The
memory issegmentedandword-oriented; you cannot load a byte

• An I/O device capable of displaying ASCII characters and performing input and output of unsigned
8-bit characters

• A 32-bit program counter

One distinguished segment is referred to by the 32-bit identifier 0 and stores theprogram. This segment is
called the ’0’ segment.

2.2 Notation

To describe the locations on the machine, we use the following notation:

• Registers are designated$r[0] through$r[7]

• The segment identified by the 32-bit numberi is designated$m[i]. The ’0’ segment is designated$m[0].

• A word at offsetn within segmenti is designated$m[i][n]. You might refer toi as thesegment number
andn as theaddress within the segment.

2.3 Initial state

The UM is initialized by providing it with aprogram, which is a sequence of 32-bit words. Initially

• The ’0’ segment$m[0] contains the words of the program.

• A segment may bemappedor unmapped. Initially, $m[0] is mapped and all other segments are un-
mapped.

• All registers are zero.

• The program counter points to$m[0][0], i.e., the first word in the ’0’ segment.

2

2.4 Execution cycle

At each time step, an instruction is retrieved from the word in the 0 segment whose address is the program
counter. The program counter is advanced to the next word, if any, and the instruction is then executed.

2.5 Instructions’ coding and semantics

The Universal Machine recognizes 14 instructions. The instruction is coded by the four most significant bits
of the instruction word. These bits are called theopcode.

2.5.1 Three-register instructions

Most instructions operate on three registers. The registers are identifiedby number; we’ll call the numbers
A, B, andC. Each number coded as a three-bit unsigned integer embedded in the instruction word. The
registerC is coded by the three least significant bits, the registerB by the three next more significant than
those, and the registerA by the three next more significant than those:

A C

| |

vvv vvv

.--------------------------------.

|VUTSRQPONMLKJIHGFEDCBA9876543210|

‘--------------------------------’

^^^^ ^^^

| |

opcode B

Semantics are given in Figure 1.

2.5.2 One other instruction

One special intruction, with opcode 13, does not describe registers in thesame way as the others Instead,
the three bits immediately less significant than opcode describe a single registerA. The remaining 25 bits
indicate a value, which is loaded into$r[A].

A

|

vvv

.--------------------------------.

|VUTSRQPONMLKJIHGFEDCBA9876543210|

‘--------------------------------’

^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^

| |

| value

|

opcode == 13

3

Number Operator Action
0 Conditional Move if$r[C] 6= 0 then$r[A] := $r[B]
1 Segmented Load $r[A] := $m[$r[B]][$r[C]]
2 Segmented Store $m[$r[A]][$r[B]] := $r[C]
3 Addition $r[A] := ($r[B] + $r[C]) mod 232

4 Multiplication $r[A] := ($r[B]× $r[C]) mod 232

5 Division $r[A] := ⌊$r[B]÷ $r[C]⌋
6 Bitwise NAND $r[A] := ¬($r[B] ∧ $r[C])

Some instructions ignore one or more of the register numbersA, B, andC.
7 Halt Computation stops.
8 Map Segment A new segment is created with a number of

words equal to the value in$r[C]. Each word in
the new segment is initialized to 0. A bit pattern
that is not all zeroes and that does not identify
any currently mapped segment is placed in$r[B].
The new segment is mapped as$m[$r[B]].

9 Unmap Segment The segment$m[$r[C]] is unmapped. Future Map
Segment instructions may reuse the
identifier$r[C].

10 Output The value in$r[C] is displayed on the I/O device
immediately. Only values from 0 to 255 are
allowed.

11 Input The universal machine waits for input on the
I/O device. When input arrives,$r[C] is loaded
with the input, which must be a value from
0 to 255. If the end of input has been signaled,
then$r[C] is loaded with a full 32-bit word in
which every bit is 1.

12 Load Program Segment$m[$r[B]] is duplicated, and the
duplicate replaces$m[0], which is abandoned.
The program counter is set to point to
$m[0][$r[C]]. If $r[B] = 0, the load-program
operation is expected to be extremely quick.

13 Load Value See semantics for “other instruction” in
Section 2.5.2.

Figure 1: Semantics of UM instructions
4

2.6 Failure modes

The behavior of the Universal Machine is not fully defined; under circumstances detailed below (and only
these circumstances), the machine mayfail.

• If at the beginning of a machine cycle the program counter points outside thebounds of$m[0], the
machine may fail.

• If at the beginning of a cycle, the word pointed to by the program counter does not code for a valid
instruction, the machine may fail.

• If a segmented load or segmented store refers to an unmapped segment, the machine may fail.

• If a segmented load or segmented store refers to a location outside the bounds of a mapped segment,
the machine may fail.

• If an instruction unmaps$m[0], or if it unmaps a segment that is not mapped, the machine may fail.

• If an instruction divides by zero, the machine may fail.

• If an instruction loads a program from a segment that is not mapped, then the machine may fail.

• If an instruction outputs a value larger than 255, the machine may fail.

In the interests of performance,failure may be treated as anuncheckedrun-time error. Even a core dump
is OK. Go wild!

2.7 Resource exhaustion

If a UM program demands resources that your implementation is not able to provide, and if the demand
does not constitutefailure as defined in Section 2.6, your only recourse is to halt execution with a checked
run-time error.

3 Advice on the implementation

This problem presents two challenges:

• Emulating a 32-bit machine on 64-bit hardware

• Choosing abstractions that are efficient enough

There are also some pitfalls:

• It’s easy to forget to test the input instruction, or to test it inadequately.

• It’s easy to let the amount of memory allocated grow without bound. If you fall into this pit, you
won’t be able to run any nontrivial UM programs.

• It’s easy to allocate more memory than is really needed to solve the problem. If you fall into this pit,
you’ll find that nontrivial UM programs run very, very slowly.

And finally there are some useful things to know:

5

• In the C programming language running on modern hardware, addition and multiplication of values
of type uintk_t keeps only the least significantk bits of each result. Mathematically, the least
significantk bits of a value is equivalent to that value modulo2k.

• In the C programming language running on AMD64 hardware, division of signed and unsigned integer
types rounds toward zero.1

3.1 Emulating a 32-bit machine: Simulating 32-bit segment identifiers

On a 32-bit machine, you could simply use a 32-bit pointer as a segment identifier and havemalloc do
your heavy lifting. On the 64-bit machine, you will need an abstraction that maps 32-bit segment identifiers
to actual sequences of words in memory. (Any representation of segmentsI can think of requires at least
64 bits to store.) Hanson’s CII library is there if you need it.

Plan to reuse 32-bit identifiers that have been unmapped. One way is to store them in one of Hanson’s
sequences (Seq T). A wonderful C99 trick is that you can cast anuintptr t to avoid *, so statements
like

Seq_addlo(ids, (void *)(uintptr_t)id);

return (Umsegment_Id)(uintptr_t)Seq_remlo(ids);

might be useful. (I have writtentypedef uint32 t Umsegment Id.)

3.2 Efficient abstractions

Your choice of abstractions can easily affect performance of your UMby a factor of 1000. We will provide a
benchmark that a well-optimized UM should be able to complete in about 1 second; a UM designed without
regard to performance might take 20 minutes on the same benchmark. To get decent performance, focus on
two decisions:

• Think about what parts of the machine state are most frequently used, andto the degree you can, be
sure that frequently used state is in local variables that the compiler can putin registers. (You can
verify placement in registers by usingobjdump.)

• Decide where you want to use safe abstractions like the ones in the CII library and where you want
to use unsafe techniques like pointer arithmetic. Your Universal Machine ispermitted to “fail” by
misusing a C pointer.

In some cases you can achieve the benefits of procedural abstraction and type checking without any run-time
overhead by writingstatic inline procedures. If such procedures are reusable, it can be appropriate to
put them in a.h file.

1For signed types, rounding toward zero is a crime. Rounding toward minus infinity would be much more useful. Alas, we are
stuck with this legacy feature.

6

3.3 Controlling use of CPU and memory

When we test your UM, we will give it only 1000 MB of memory, and we will limit its CPU time as well.
Because you can easily overlook how much time and space your UM needs,we provide the commands
mem-limited andcpu-limited, which ensure that your UM runs within specified limits. For example, to
run with 500 MB of memory for at most 10 seconds, you can run

mem-limited 500m cpu-limited 10 ./um midmark.um

If your UM exceeds its limits, these programs will halt it. For more information about forced halts or other
failures, run

catch-signal mem-limited 500m cpu-limited 10 ./um midmark.um

These commands are not documented, but they are available when you runuse comp40.

3.4 Avoid common mistakes

Following this advice will help you avoid common mistakes:

• The Input instruction is supposed to read any Cchar as an integer in the range 0 to 255. Standard
printable ASCII characters live in the range 33 to 126. You’ll want to teston a larger range of inputs.
One source of inputs is the special file/dev/urandom. Used together with thedd andcmp commands,
it should provide an easy way to test more characters.

• If the um binary is called from the command line in a way that violates its contract, it should print a
suitable message to standard error,and it should exit nonzero.

4 What we expect of you

4.1 Your design and its documentation

The documentation of your design should include

• The high points of a design checklist for UM segments2, emphasizing the representation of segments
and its invariants.

• The high points of a design checklist for the full Universal Machine3, emphasizing the architecture
and test plan (items 11, 12, and 13).

For this assignment in particular, we have high expectations for your test plan.

Remember we don’t want yourcompletedesign checklist—show us only the interesting parts.
In this assignment we are raising the bar for your design work:

• Excellent design documentation will give explicit, compilable interfaces andcompilable unit testsfor
whatever mechanism you decide will best serve to implement memory segments represented by 32-bit
identifiers.

2See URLhttp://www.cs.tufts.edu/comp/40/handouts/design-adt.pdf.
3See URLhttp://www.cs.tufts.edu/comp/40/handouts/design-pgm.pdf.

7

• Excellent design documentation will say what data structure will be used to represent each part of the
state of a Universal Machine, and where that data structure will be stored.

• Excellent design documentation will show how the parts will be organized, and in particular, how the
implementation of the Universal Machine will be decoupled from the programloader and themain()
function, so that the Universal Machine can be unit tested.

4.2 Universal Machine unit tests

Your design submission should include unit tests for the Universal Machine segment abstraction, but not
for the Universal Machine instruction set. Your final submission should also includeunit tests for the
instruction set, represented as described below. In your README file, include documentation of a sequence
of unit tests thatin toto cover all of the Universal Machine instructions. Each unit test may rely on correct
functioning of instructions from previous unit tests. For example:

• Your first unit test might test only Halt.

• Your second unit test might test Output and Halt.

• Your third test might Output, Load Value, and Halt.

And so on.
Every unit testmustinclude a compiled UM binary whose name ends in.um.4 You will write code to

create these binaries. No unit test may cause any of the failures listed in Section 2.6.
Unit tests may also include additional files. If your UM binary is calledhello.um, your unit test may

include these additional files:

• File hello.0 contains the input required for the unit testhello.um. If there is no filehello.0,
we will run your unit test with an empty file on standard input.

• File hello.1 contains output that the unit testhello.um is expected to write, assuming that the UM
under test is correct. If there is no filehello.1, we will assume that the test programhello.um is
not supposed to write anything.

Each of your unit tests will be evaluated as follows:

1. We will run the test using a correct Universal Machine, using the input you provide. For example, we
will run

good-um hello.um < hello.0

or if you do not provide ahello.0,

good-um hello.um < /dev/null

We will expect this command to produce output identical tohello.1, or if you do not provide a
hello.1, we will expect it to produce no output.

4You may not use the namesmidmark.um or selfcheck.um.

8

2. If your test produces unexpected output, or if it causes the reference machine to fail, your test is
invalid. Invalid tests lower your grade and play no further role in the process.

3. If your test produces the expected output with no failures, it isvalid. Each valid test is run against all
the UMs submitted by all the other pairs working on the problem. It is also run against a selection of
faulty UMs that we create.

The more faulty UMs your tests detect, the higher your grade.

4.3 Implementation

We expect you to write a complete and correct implementation of the UniversalMachine. Moreover, we ex-
pect it to be efficient enough to execute a UM benchmark of 50 million instructions in less than 100 CPU
seconds on the lab machines; that’s half a million instructions per second.

The UM is a virtual machine. One of the purposes of virtualization is to insulate the real (“host”)
hardware from bad behavior by client (“guest”) software. For example, in the Amazon Elastic Compute
Cloud, no matter how badly the client binaries behave, Amazon makes sure that when a virtual server halts,
all machine resources are recovered. (Any other strategy would leaveAmazon with machine resources that
aren’t earning any revenue.) Similarly, no matter how badly a UM client behaves,your implementation must
ensure that, when the UM finishes running, all available machine resources are recovered.

For testing, you will find it useful to implement the UM as a library. However, we will be evaluating a
command-line version which is a command-line program that expects exactly one argument: the name of a
file containing a UM program.When a UM program is stored in a file, words are stored using big-endian
byte order.

The UM “I/O device” should be implemented using standard input and standard output.

4.4 What to submit

4.4.1 Design

Using the scriptsubmit40-um-design, please submit

• A DESIGN or design.pdf file describing your design. Because plain text is much easier for us to
read, please use PDF only if you have diagrams or other information that is not easily rendered in
plain text.

• Source code for the segment interface and its unit tests as a collection of.h and.c files. Your segment
unit tests should include all relevant.h files and should compile correctly, but they need not run.

4.4.2 Implementation

Using the scriptsubmit40-um, please submit

• All .c and.h files you have written.

• A script calledcompile that compiles all your.c files into.o files and then links aum binary.

• A UMTESTS file which lists each of your UM unit tests, one test per line.

• A README file which

9

– Identifies you and your programming partner by name

– Acknowledges help you may have received from or collaborative workyou may have undertaken
with others

– Identifies what has been correctly implemented and what has not

– Briefly enumerates any significant departures from your design

– Succinctlydescribes the architecture of your system. Identify the modules used, what abstrac-
tions they implement, what secrets they know, and how they relate to one another. Avoid narra-
tive descriptionsof the behavior of particular modules.

– Explains how long it takes your UM to execute 50 million instructions, and how you know

– Mentions each UM unit test (fromUMTESTS) by name, explainingwhateach one tests andhow

– Says approximately how many hours you have spentanalyzing the assignment

– Says approximately how many hours you have spentpreparing your design

– Says approximately how many hours you have spentsolving the problems after your analysis

On a 32-bit machine, most experienced C programmers can understand theUniversal Machine specification
and build an implementation in a total of two hours. We expect you to take about two hours to analyze the
assignment, four hours to prepare your design and unit tests, and fourhours to build a working implementa-
tion.

My implementation is about 200 lines of C code; almost half is devoted to conversions between 64-bit
pointers and 32-bit Universal machine identifiers. Reading arguments and loading the initial program takes
about 35 lines, so the Universal Machine itself is well under 100 lines of code.

5 What we provide for you

We provide the following useful items:

• At http://www.cs.tufts.edu/comp/40/um/ you will find a small collection of Universal Ma-
chine binaries that you can use for final system test. The binaries are described by a README file.

• In /comp/40/include and/comp/40/lib64 respectively, you will find header fileum-dis.h and
corresponding librarylibum-dis.a, which you can link with-lum-dis -lcii. This library ex-
ports a single functionUm_disassemble, which gives a string representation of a Universal Machine
instruction.You must free the stringreturned byUm_disassemble, or you will have memory leaks.

You may find it useful to callUm_disassemble from DDD.

• Program/comp/40/bin/umdump will dump the contents of a Universal Machine binary, as in

umdump cat.um

umdump midmark.um | less

It is the closest counterpart I have toobjdump.

• There is a workinglibbitpack.a in /comp/40/lib64; you can link against it using-lbitpack.

• In Friday’s lab you will see some examples of C code that you can use to getideas about unit-testing
your Universal Machine.

10

