COMP40 Assignment: A Universal Virtual Machine

Designdue Thursday, November 3 at 11:59 PM.
Implementation and unit testiie Sunday, November 13 at 11:59 PM.

Contents
1 Purpose and overview
2 Specification of the Universal Machine
2.1 MachineState e e
2.2 Notation e
2.3 Initialstate e e e
2.4 Executioncycle
2.5 Instructions’ codingandsemantics e
2.5.1 Three-registerinstructions
2.5.2 Oneotherinstruction e
2.6 Failluremodes e
2.7 Resource exhaustion e
3 Advice on the implementation
3.1 Emulating a 32-bit machine: Simulating 32-bit segment identifiers
3.2 Efficientabstractions e
3.3 Controllinguseof CPUandmemory
3.4 Avoidcommonmistakes e
4 What we expect of you
4.1 Yourdesignanditsdocumentation L e
4.2 Universal Machine unittests e
4.3 Implementation
4.4 Whattosubmit e e e e,
441 DEeSION . . . v e e
4.4.2 Implementation e
5 What we provide for you

1 Purpose and overview

The purpose of this assignment is to understand virtual-machine codéyandension machine code) by
writing a software implementation of a simple virtual machine.

2 Specification of the Universal Machine

2.1 Machine State
The UM has these components:
e Eight general-purpose registers holding one word each

e Avery large address space that is divided into an ever-changing toliedf memory segment&ach
segment contains a sequence of words, and each is referred to biynatd2-bit identifier. The
memory issegmentedndword-oriented you cannot load a byte

e An I/O device capable of displaying ASCII characters and performingtiapd output of unsigned
8-bit characters

e A 32-bit program counter
One distinguished segment is referred to by the 32-bit identifier 0 andsdtueprogram This segment is

called the "0’ segment.

2.2 Notation
To describe the locations on the machine, we use the following notation:
e Registers are designat&d|0] through$r[7]
e The segment identified by the 32-bit numbes designatedm[:]. The '0’ segment is designatéa[0].
e A word at offsetn within segment is designate@m[i][n]. You might refer ta as thesegment number

andn as theaddress within the segment

2.3 Initial state
The UM is initialized by providing it with gorogram which is a sequence of 32-bit words. Initially

e The '0’ segmen®m[0] contains the words of the program.

e A segment may benappedor unmapped Initially, $m[0] is mapped and all other segments are un-
mapped.

e All registers are zero.

e The program counter points #m[0][0], i.e., the first word in the 0’ segment.

2.4 Execution cycle

At each time step, an instruction is retrieved from the word in the 0 segmerdendmidress is the program
counter. The program counter is advanced to the next word, if adytheninstruction is then executed.
2.5 Instructions’ coding and semantics

The Universal Machine recognizes 14 instructions. The instructiondeaby the four most significant bits
of the instruction word. These bits are called tprode

2.5.1 Three-register instructions

Most instructions operate on three registers. The registers are idetyfiedmber; we'll call the numbers
A, B, andC. Each number coded as a three-bit unsigned integer embedded in thetiostiord. The
registerC' is coded by the three least significant bits, the registday the three next more significant than
those, and the registet by the three next more significant than those:

opcode B

Semantics are given in Figure 1.

2.5.2 One other instruction

One special intruction, with opcode 13, does not describe registers sathe way as the others Instead,
the three bits immediately less significant than opcode describe a single regist@e remaining 25 bits
indicate a value, which is loaded inta[A].

Number

Ol WNPEFLO

Operator

Action

Conditional Move if$r[C] # 0 then$r[A] := $r[B]
Segmented Load $r[A] := $m[$r[B]][$r[C]]
Segmented Store $m[3r[A]|[3r[B]] := $r[C]

Addition
Multiplication
Division
Bitwise NAND

$r[A] := ($r[B] + $r[C]) mod 23
$r[A] := ($r[B] x $r[C]) mod 23
$r[A] := |$z[B] + $r[C]]

$Sr[A] := —($z[B] A $[C))

Some instructions ignore one or more of the register numbers, andC'.

7
8

10

11

12

13

Halt
Map Segment

Unmap Segment

Output

Input

Load Program

Load Value

Computation stops.

A new segment is created with a number of
words equal to the value #x[C]. Each word in
the new segment is initialized to 0. A bit pattern
that is not all zeroes and that does not identify
any currently mapped segment is place@#53].
The new segment is mappedasgr|B]].

The segmén{$r|[C]] is unmapped. Future Map
Segment instructions may reuse the
identifier$r[C].

The value ifir[C] is displayed on the I/O device
immediately. Only values from O to 255 are
allowed.

The universal machine waits for input on the
I/O device. When input arrive$r|[C] is loaded
with the input, which must be a value from
0 to 255. If the end of input has been signaled,
then$r[C] is loaded with a full 32-bit word in
which every bit is 1.

Segmedti[$r[B]] is duplicated and the
duplicate replace$m|[0], which is abandoned.
The program counter is set to point to
$m[0][$r[C]]. If $r[B] = 0, the load-program
operation is expected to be extremely quick.

See semantics for “other instruction” in
Section 2.5.2.

Figure 1: Semantics of UM instructions
4

2.6 Failure modes

The behavior of the Universal Machine is not fully defined; undenritstances detailed below (and only
these circumstances), the machine rfaly

e If at the beginning of a machine cycle the program counter points outsideotineds of$m[0], the
machine may falil.

¢ If at the beginning of a cycle, the word pointed to by the program courtes dot code for a valid
instruction, the machine may fail.

e If a segmented load or segmented store refers to an unmapped segmenthirenray fail.

¢ If a segmented load or segmented store refers to a location outside theshmfianchapped segment,
the machine may fail.

e If an instruction unmap$m|0], or if it unmaps a segment that is not mapped, the machine may fail.
e If an instruction divides by zero, the machine may fail.
¢ If an instruction loads a program from a segment that is not mapped, teenabhine may fail.
e If an instruction outputs a value larger than 255, the machine may fail.
In the interests of performanctilure may be treated as aimncheckedun-time error. Even a core dump

is OK. Go wild!

2.7 Resource exhaustion

If a UM program demands resources that your implementation is not abletdpr and if the demand
does not constitutiilure as defined in Section 2.6, your only recourse is to halt execution with &etiec
run-time error.

3 Advice on the implementation

This problem presents two challenges:
e Emulating a 32-bit machine on 64-bit hardware
e Choosing abstractions that are efficient enough
There are also some pitfalls:
e It's easy to forget to test the input instruction, or to test it inadequately.

e It's easy to let the amount of memory allocated grow without bound. If ydurfeo this pit, you
won'’t be able to run any nontrivial UM programs.

e It's easy to allocate more memory than is really needed to solve the problemu falyanto this pit,
you'll find that nontrivial UM programs run very, very slowly.

And finally there are some useful things to know:

¢ In the C programming language running on modern hardware, addition alighlination of values
of type uintk_t keeps only the least significaitbits of each result. Mathematically, the least
significantk bits of a value is equivalent to that value mod@fo

¢ Inthe C programming language running on AMD64 hardware, divisioigoiesl and unsigned integer
types rounds toward zero.

3.1 Emulating a 32-bit machine: Simulating 32-bit segment idntifiers

On a 32-bit machine, you could simply use a 32-bit pointer as a segment ideatifi havenalloc do
your heavy lifting. On the 64-bit machine, you will need an abstraction thasr32-bit segment identifiers
to actual sequences of words in memory. (Any representation of segingamsthink of requires at least
64 bits to store.) Hanson’s Cll library is there if you need it.

Plan to reuse 32-bit identifiers that have been unmapped. One way isdadiston in one of Hanson'’s
sequencessSeq-T). A wonderful C99 trick is that you can cast atintptr_t to avoid *, SO statements
like

Seq_addlo(ids, (void *) (uintptr_t)id);
return (Umsegment_Id) (uintptr_t)Seq_remlo(ids);

might be useful. (I have writtetiypedef uint32_t Umsegment_Id.)

3.2 Efficient abstractions

Your choice of abstractions can easily affect performance of youidy ™ factor of 1000. We will provide a
benchmark that a well-optimized UM should be able to complete in about 1 sexxtiM designed without

regard to performance might take 20 minutes on the same benchmark. Tecget gerformance, focus on
two decisions:

e Think about what parts of the machine state are most frequently usedp #mel degree you can, be
sure that frequently used state is in local variables that the compiler can pedisters. (You can
verify placement in registers by using jdump.)

e Decide where you want to use safe abstractions like the ones in the Ctyldmmd where you want
to use unsafe techniques like pointer arithmetic. Your Universal Machiperigitted to “fail” by
misusing a C pointer.

In some cases you can achieve the benefits of procedural abstraditypa checking without any run-time
overhead by writingstatic inline procedures. If such procedures are reusable, it can be ajpgieofy
put them in a. h file.

!For signed types, rounding toward zero is a crime. Rounding towardsiriinity would be much more useful. Alas, we are
stuck with this legacy feature.

3.3 Controlling use of CPU and memory

When we test your UM, we will give it only 2000 MB of memory, and we will limit it$O time as well.
Because you can easily overlook how much time and space your UM needsiovide the commands
mem-limited andcpu-limited, which ensure that your UM runs within specified limits. For example, to
run with 500 MB of memory for at most 10 seconds, you can run

mem-limited 500m cpu-limited 10 ./um midmark.um

If your UM exceeds its limits, these programs will halt it. For more informationualfarced halts or other
failures, run

catch-signal mem-limited 500m cpu-limited 10 ./um midmark.um

These commands are not documented, but they are available when y@teruomp40.

3.4 Avoid common mistakes

Following this advice will help you avoid common mistakes:

e The Input instruction is supposed to read angkar as an integer in the range 0 to 255. Standard
printable ASCII characters live in the range 33 to 126. You'll want to éesa larger range of inputs.
One source of inputs is the special filgev/urandom. Used together with théd andcmp commands,
it should provide an easy way to test more characters.

¢ If the um binary is called from the command line in a way that violates its contract, it shouitig
suitable message to standard eread it should exit nonzero.

4 What we expect of you

4.1 Your design and its documentation

The documentation of your design should include

¢ The high points of a design checklist for UM segménésmphasizing the representation of segments
and its invariants.

e The high points of a design checklist for the full Universal Machjremphasizing the architecture
and test plan (items 11, 12, and 13).

For this assignment in particular, we have high expectations for yourlgest p

Remember we don’t want yoaompletedesign checklist—show us only the interesting parts.
In this assignment we are raising the bar for your design work:

e Excellent design documentation will give explicit, compilable interfacescamapilable unit testfor
whatever mechanism you decide will best serve to implement memory segnaetsangted by 32-bit
identifiers.

2See URLhttp://www.cs.tufts.edu/comp/40/handouts/design-adt . pdf.
3See URLhttp://www.cs.tufts.edu/comp/40/handouts/design-pgm.pdf.

e Excellent design documentation will say what data structure will be usegtesent each part of the
state of a Universal Machine, and where that data structure will bedstore

e Excellent design documentation will show how the parts will be organizetiireparticular, how the
implementation of the Universal Machine will be decoupled from the prodoatier and th@ain ()
function, so that the Universal Machine can be unit tested.

4.2 Universal Machine unit tests

Your design submission should include unit tests for the Universal Mackegment abstraction, but not
for the Universal Machine instruction set. Your final submission sholdd acludeunit tests for the
instruction setrepresented as described below. In your README file, include dontatien of a sequence
of unit tests thatn toto cover all of the Universal Machine instructions. Each unit test may relgarect
functioning of instructions from previous unit tests. For example:

¢ Your first unit test might test only Halt.
e Your second unit test might test Output and Halt.
e Your third test might Output, Load Value, and Halt.

And so on.

Every unit testmustinclude a compiled UM binary whose name endsim.* You will write code to
create these binaries. No unit test may cause any of the failures listedtiorc26.

Unit tests may also include additional files. If your UM binary is caliedlo.um, your unit test may
include these additional files:

e File hello.0 contains the input required for the unit tésfllo.um. If there is no filehello.O,
we will run your unit test with an empty file on standard input.

e Filehello.1 contains output that the unit tesé11o.um is expected to write, assuming that the UM
under test is correct. If there is no filello.1, we will assume that the test prograrallo.unm is
not supposed to write anything.

Each of your unit tests will be evaluated as follows:

1. We will run the test using a correct Universal Machine, using thetippu provide. For example, we
will run

good-um hello.um < hello.O
or if you do not provide &ello.O0,
good-um hello.um < /dev/null

We will expect this command to produce output identicahtdlo.1, or if you do not provide a
hello. 1, we will expect it to produce no output.

“You may not use the namesdmark . um or selfcheck.um.

2. If your test produces unexpected output, or if it causes the referenachine to fail, your test is
invalid. Invalid tests lower your grade and play no further role in the process.

3. If your test produces the expected output with no failures Maligl. Each valid test is run against all
the UMs submitted by all the other pairs working on the problem. It is also ramaga selection of
faulty UMs that we create.

The more faulty UMs your tests detect, the higher your grade.

4.3 Implementation

We expect you to write a complete and correct implementation of the Univdiesztiine. Moreover, we ex-
pect it to be efficient enough to execute a UM benchmark of 50 million instmgiio less than 100 CPU
seconds on the lab machines; that's half a million instructions per second.

The UM is a virtual machine. One of the purposes of virtualization is to insulaedhl (“host”)
hardware from bad behavior by client (“guest”) software. For examip the Amazon Elastic Compute
Cloud, no matter how badly the client binaries behave, Amazon makes stuvenda a virtual server halts,
all machine resources are recovered. (Any other strategy would kea@zon with machine resources that
aren’t earning any revenue.) Similarly, no matter how badly a UM clientyeygour implementation must
ensure that, when the UM finishes running, all available machine resswae recovered

For testing, you will find it useful to implement the UM as a library. Howeves, will be evaluating a
command-line version which is a command-line program that expects exaetigrgnment: the name of a
file containing a UM programWhen a UM program is stored in a file, words are stored using big-endian
byte order.

The UM “I/O device” should be implemented using standard input and stdrudeyput.

4.4 What to submit
4.4.1 Design

Using the scriptubmit40-um-design, please submit

e A DESIGN or design.pdf file describing your design. Because plain text is much easier for us to
read, please use PDF only if you have diagrams or other information that isasily rendered in
plain text.

e Source code for the segment interface and its unit tests as a collectinrantl . c files. Your segment
unit tests should include all relevarii files and should compile correctly, but they need not run.

4.4.2 Implementation
Using the scriptubmit40-um, please submit

e All .c and.h files you have written.

A script calledcompile that compiles all yout c files into . o files and then links am binary.

A UMTESTS file which lists each of your UM unit tests, one test per line.

A README file which

Identifies you and your programming partner by name

Acknowledges help you may have received from or collaborative wortkmay have undertaken
with others

Identifies what has been correctly implemented and what has not
Briefly enumerates any significant departures from your design

— Succinctlydescribes the architecture of your systelalentify the modules used, what abstrac-
tions they implement, what secrets they know, and how they relate to one anfotbil narra-
tive description®f the behavior of particular modules.

— Explains how long it takes your UM to execute 50 million instructions, and hawkymw

— Mentions each UM unit test (fro®MTESTS) by name, explainingvhateach one tests artbw
— Says approximately how many hours you have spealyzing the assignment

— Says approximately how many hours you have spegparing your design

— Says approximately how many hours you have sgehting the problems after your analysis

On a 32-bit machine, most experienced C programmers can understdditieesal Machine specification
and build an implementation in a total of two hours. We expect you to take aboutdwrs to analyze the
assignment, four hours to prepare your design and unit tests, anlddats to build a working implementa-

tion.

My implementation is about 200 lines of C code; almost half is devoted to coomsrsetween 64-bit
pointers and 32-bit Universal machine identifiers. Reading argumedt®ading the initial program takes
about 35 lines, so the Universal Machine itself is well under 100 linesdéc

5 What we provide for you

We provide the following useful items:

At http://www.cs.tufts.edu/comp/40/um/ you will find a small collection of Universal Ma-
chine binaries that you can use for final system test. The binaries scélikd by a README file.

In /comp/40/include and/comp/40/1ib64 respectively, you will find header filem-dis.h and
corresponding libraribum-dis.a, which you can link with-lum-dis -1cii. This library ex-
ports a single functiotim_disassemble, which gives a string representation of a Universal Machine
instruction.You must free the stringturned byUm_disassemble, or you will have memory leaks.

You may find it useful to caflm_disassemble from DDD.

Program/comp/40/bin/umdump will dump the contents of a Universal Machine binary, as in

umdump cat.um
umdump midmark.um | less

It is the closest counterpart | havedbjdump.
There is a working ibbitpack.a in /comp/40/1ib64; you can link against it usinglbitpack.

In Friday’s lab you will see some examples of C code that you can use tdeget about unit-testing
your Universal Machine.

10

